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Abstract

An analytical pinning-voltage model of a pinned photodiode has been proposed and derived. The pinning-voltage is calculated
using doping profiles based on shallow- and exponential-junction approximations. Therefore, the derived pinning-voltage model is
analytically expressed in terms of the process parameters of the implantation. Good agreement between the proposed model and
simulated results has been obtained. Consequently, the proposed model can be used to predict the pinning-voltage and related
performance of a pinned photodiode in a CMOS active pixel sensor.
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1. INTRODUCTION

Pinned photodiode(PPD)-based pixels are widely used in
CMOS active pixel sensors(CAPSs) due to their low noise
level and high sensitivity[1-7] performances. During the
operation of the PPD-based pixels, the performance
strongly depends on its pinning-voltage(VP) level, which
directly affects the charge-transfer process by the transfer-
gate[2,3]. It is mainly because PPD-based pixels have
shown some problems in pixel operation, especially at a
low supply-voltage, due to an incomplete charge-transfer
and the difficulty of full depletion arising from a high level
of VP, resulting in a high random noise-level[3-5]. Hence,
it should be required to measure the VP. However, it is
difficult to measure VP,  so that an accurate prediction of
VP is very important to improve device performance in
advance, using an analytical model. A simple analytic
model for VP was introduced in which the abrupt junction
approximation is assumed[6]. However, this model is only
valid for uniform doping profiles of a PPD.

In this work, an analytical VP model of a PPD has been
proposed. To derive the analytic model, shallow- and
exponential-junction approximations are employed for

Gaussian doping profiles based on the LSS(Lindhard,
Scharff, Schiott) theory[8-10]. In order to verify the
proposed VP model, comparisons between the new model
and the simulation data have been made using a two-
dimensional device simulator(SIL-VACO). In the
following sections, the pinning voltage model is derived,
verified, and discussed.

2. MODEL DEVELOPMENT

A schematic cross sectional view of the PPD is
illustrated in Fig. 1(a), which is composed of both Po/NW

junction and NW /Pepi junction. In Fig. 1(a), a definition for
the voltage pinning condition can be expressed by

In addition, the pinning-point is located at the middle of
NW, as shown in Fig. 1(a). To calculate the depletion
width(WN1, WN2) at VP, we begin with a Poisson’s
equation as follows:

where E(x) is an electric field, V(x) is the potential, ρ(x)
is the charge density, n(x) is ionized donor density, p(x) is
ionized acceptor density, εis the permittivity of the silicon,
and q is the magnitude of an electron charge. For n(x), the
PPD shows Gaussian profiles of  NW(x) by the
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implantation process[8,9], as shown in Fig. 1(b). However,
it is difficult to solve the Poisson's equation based on the
Gaussian function analytically. Thus, the Gaussian function
can be transformed to the parabolic function in the log-
scale[8-10]. In addition, the parabolic function can be
expressed by a linear function in the range of  x > (RP2+Δ
RP2), and the linear function in the log-scale is transformed
into an exponential function in the linear-scale[10].
Therefore, NW2(x) based on the exponential junction
approximation are employed[8, 9], as shown in Fig. 1(b).
We can then solve the Poisson's equation and derive an
analytical expression for VP. The detailed derivation of the
proposed VP model is as follows. As shown in Fig. 1(b),
we may obtain p(x) and n(x) based on the Gaussian
distribution as in (3) and (4):

where PP is the peak density of Po(x), ΔRP1 is the
projected range of Po(x), ΔRP1 is the normal straggle of
Po(x), NP is the peak density of NW(x), RP2 is the projected
range of  NW(x), and RP2 is the normal straggle of  NW(x).
After the annealing, ΔRP is redefined by both the
annealing time (t) and the dopant-diffusivity (D) at the
annealing temperature[8, 9]. At the junction XJ1, we can
write (5) for a charge density of ρ(x1) based on the shallow
junction approximation:

By solving (2) using ρ(x1) and the boundary conditions
that relate the balance of the charge requirement and
depletion approximation[10], we may obtain

For junction XJ2, we can write (7) for charge density ρ(x2)
based on an exponential junction approximation:

By solving (2) using charge density ρ(x2) and boundary
conditions that relate the balance of the charge requirement
and depletion approximation[10], we may obtain (8)
assuming exp(αWN2)≫1≫exp(-αWP2):

From (1), (6) and (8), we can obtain the analytical
expression for VP as follows:

Fig. 1. (a) A schematic diagram in cross-sectional view and (b)
doping profiles based on the Gaussian distribution of the PPD
(where tNw is the junction thickness of the N-well, WN1 is the
depletion width in the N-well region at the junction of the
NW/Po, and WN2 is the depletion width in the N-well region at
the junction of the NW/ Pepi).
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Finally, we have an analytical expression for VP, as
shown in (9). The derived pinning-voltage model is
analytically expressed in terms of the parameters of the
implantation(NP, PP, RP1, RP2, ΔRP1, and ΔRP2), which
are associated with the implant dose(QP, QN) and
implantation energy(EP, EN)[8,9]. Therefore, VP can be
expressed and calculated by the process parameters of the
implant dose and implant energy.

Table I. Implantation and related process conditions of the
PPD for typical cases

3. RESULT AND DISCUSSION

In order to verify the accuracy of the proposed model,
the simulation results are used for comparison with our
model. The typical process conditions for the PPD are used
for both the proposed model and simulation, as shown in
Table 1. The calculation of  VP has been performed using
the proposed VP model, as shown in (9). For the
calculation of the proposed model, the implant
parameters(ΔRP1, RP1, ΔRP2, and RP2) are determined by
using the plots based on the LSS theory[8, 9]. Fig. 2 shows
the calculated VP in comparison with the SILVACO
simulation results. Good agreement between the proposed
model and simulation results has been obtained, as shown
in Fig. 2. In addition, it has been found that VP shows very
sensitive characteristics for the N-well implant conditions

of QN and EN. This is mainly because the dominant
parameters(NP and XJ2) are determined by the combination
of  QN and EN.

On the other hands, the proposed model is based on a 1-
Dimensional Poisson’s equation so that it is difficult to
consider some non-ideal effects, such as breakdown
characteristics and parasitic element-related effects. In
other words, the proposed model is only valid for a shallow
junction, which is fabricated by using a low energy
implantation, operating at a low voltage. There are some
reasons why a 1-Dimensional model was employed in our
analytical model. First, the PPD is normally operated at a
low voltage below 1.8 V. Moreover, the p-type substrate
and the epi-layer(Pepi) play a role as a resistor to suppress
the diode breakdown, though the pinning voltage is below
1 V. Second, a shallow junction can be approximated to a
1-Dimensional structure, which is also one of the reasons
why our model is more fit to the simulation results at lower
implantation energy below 150 eV, as shown in Fig. 2. 

Consequently, the proposed model has been verified and
can be used to predict VP for typical cases of implantation
conditions(QN, EN) of the PPD process.

4. CONCLUSION

This paper presents an analytical model for the pinning-
voltage of a pinned photodiode. In order to verify the
proposed model, comparisons between the proposed model
and simulation results have been made. It is shown that
excellent agreement has been obtained. Although the

Fig. 2. Plot of the Pinning-voltage(VP) vs. N-well implantation
energy(EN) of the proposed model in comparison with the
simulated results for various cases of N-well Dose(QN = 1
×1012 cm-2, 2×1012 cm-2, 3×1012 cm-2, 4×1012 cm-2,
and 5×1012 cm-2). Other conditions(QP, EP, Pepi) are
fixed.
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developed model is valid for the Gaussian doping profile
based on the LSS theory and suitable for a shallow junction
device by low energy implantation, it can be used to predict
a typical case of the pinning voltage in a CMOS active
pixel sensor.
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