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A Texture Analysis Approach to Corrosion Image Classification

Stefan Livens (1), Paul Scheunders (1), Gert Van de Wouwer (1), Dirk Van Dyck (1),
Hilde Smets (2), Johan Winkelmans (2) and Walter Bogaerts (2) ,

(1) RUCA University of Antwerp, Visielab, Department of Physics, Groenenborgerlaan 171,
2020 Antwerpen, Belgium
(2) K. U. Leuven, Department of Metallurgy and Materials Engineering, de Croylaan 2,
3001 Leuven, Belgium

(Received January 3; accepted April 30, 1996)

Résumé. 2014 Une méthode pour la classification des images corrosives par des méthodes d’analyse
de texture est expliquée. On considère deux morphologies : la formation de cavités et la fissuration.
Lanalyse est faite par une décomposition en ondelettes avec laquelle des caractéristiques d’énergie
sont calculées. Une transformation est introduite qui rend les caractéristiques d’ondelettes invariantes
sous rotation. La classification est faite par "Learning Vector Quantization" et est comparée avec
des classificateurs Gaussien et k-NN. L’efficacité de la méthode est démontrée par des tests sur une
collection de 398 images.

Abstract. 2014 A method is described for the classification of corrosion images using texture analysis
methods. Two morphologies are considered: pit formation and cracking. The analysis is done by
performing a wavelet decomposition of the images, from which energy feature sets are computed. A
transform that turns the wavelet features into rotation invariant ones is introduced. The classification
is performed with a Learning Vector Quantization network and comparison is made with Gaussian
and k-NN classifiers. The effectivity of the method is shown by tests on a set of 398 images.
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1. Introduction

Corrosion is a very important issue in materials science. It appears in a variety of materials and
under different forms according to varying circumstances. As a result of complex physical and
chemical phenomena, there exist a number of different corrosion morphologies, which can be
subdivided further into numerous corrosion types [1-3]. Our goal is to show that texture analysis
methods are useful for corrosion classification. Earlier results on this were reported in [4].
We concentrate on two basic morphologies: pit formation and cracking. Since they can be

found in different materials, different environments and under various process conditions, images
showing the same morphology can have very different appearances (cf. Fig. 1). The underlying
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processes that cause the corrosion are too complex for use in an automated recognition system.
Therefore, only the images themselves define the classes.
The task of a supervised classifier is to assign data to predefined classes. Before it can do this, it

goes through a training stage in which a set of example data representative of the classes must be
presented to it. For image classification, using raw image data as input to a classifier is in general
not realistic. Therefore, it is necessary to first apply some method to extract features from the
images.

Since our problem is about artifacts in images (pits and cracks), it would be logical to first seg-
ment these artifacts from the background. Since their shapes are very different, it would then be
straightforward to extract shape features and classify the images based on these features. How-
ever, in a number of preliminary experiments, this approach did not succeed. While segmentation,
even threshold-based, is possible for most individual images, this is no longer true when a large
set of examples is to be segmented automatically. The variability of the images, especially of their
background, was so large that no method could be found that was able to perform a satisfac-
tory segmentation for all images. Any classification method based on segmented images would
therefore become very unreliable. This led us to adopt a very different approach in which no
segmentation is needed.
The images have an overall textured appearance and their textures are clearly different for the

two morphologies. Therefore it makes sense to discriminate between them, using a texture anal-
ysis method. As a lot of recent work on texture discrimination shows, multiresolution approaches
generally prove very useful for this [5-8]. In most cases, wavelets are used to generate a multires-
olution representation.
For feature extraction, we will adopt a wavelet based method similar to that of [6] and adapt it

for use on our type of images. The main difference between our images and the ones used in [6]
(Brodatz textures), is that the corrosion images belonging to the same class can be very different.
The feature data is used for classification. Since the structure of the data space is unknown

but can be complex and poorly separating the classes, the use of a neural network classifier is
appropriate. We will use a Leaming Vector Quantization network, which has proved to perform
very well in a number of pattern recognition tasks [9]. For comparison, two well-known statistical
classifiers are also applied, a Gaussian Quadratic Classifier (GQC), and a 1~-Nearest Neighbour
classifier (k-NN).

Following this introduction, the feature extraction is described in detail in Section 2 and the
classification in Section 3. In Section 4, the actual experiments are outlined and their results
summarized. Concluding remarks are given in the last section.

2. Feature Extraction

2.1 WAVELET DECOMPOSITION. - A wavelet transform expands a signal onto a complete set
of functions (in most cases an orthogonal set is used). These functions, unlike the periodic func-
tions used in Fourier analysis, are localized (small outside an interval) in both the spatial and the
frequency domain. One of the main advantages of the resulting representation is that it offers
frequency information by giving separate subimages containing details of specific scales, while
retaining spatial information within the subimages.
Although some classes of wavelet bases like Gabor and Haar bases have been known and used

for decades, the real breakthrough for wavelet analysis came only in the early 1990s. The advent
of new smooth wavelet functions with compact support (exactly zero outside an interval), made it
possible to compute expansions up to sufficient precision with limited computational effort [10].
Following this, wavelets have received a fast growing attention and have found many applications
in signal and image processing tasks. The wavelet framework has become a preferred tool for
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Fig. 1. - Examples of corrosion images with varying magnifications. The images of the left two columns
contain cracking, those on the right pit formation.

multiresolution analysis, providing both conceptual and computational advantages compared to
other techniques.

In one dimension, an orthogonal wavelet transform of a signal s(t) is performed by projecting s
onto a set of wavelets which constitute an orthogonal basis. This set consists of dilates and trans-
lates of a single "mother wavelet". It has been shown that this transform can be performed by
convolving s iteratively by a set of band- and lowpass filters H and L [11]. The resulting represen-
tation contains a separate signal for every scale of resolution.
A wavelet transform of a 2D image I(x, y) can be performed by applying the same filters H and

L sequentially along the rows and columns of the image. The subimages resulting from one such
operator can be written as:

where * denotes the convolution operator. The first convolution is performed along the columns
of the image, the second along its rows. Ll is a smoothed version of the original image I. The
detail image Di, Dl and Dl contain respectively the details of the vertical, horizontal and diagonal
directions, thus retaining specific orientational information.
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Fig. 2. - Wavelet (left) and wavelet packet (right) decompositions (d = 2) of a corrosion image, with
subimages arranged in a convenient way.

Fig. 3. - Equivalent subimages for wavelet (left) and wavelet packet (right) decompositions (d = 2).

By iterating this procedure on successive low pass images L2-1, subimages (Li, D1, D’ and D3)
on different levels are generated. This results in a tree structure with detail images for differ-
ent scales and orientations, which is called a standard (pyramidal) wavelet decomposition (StW).
When not only the Li, but all subimages are decomposed further, a complete quadtree of images
is obtained. This is called a wavelet packet decomposition (WP) or tree structured wavelet trans-
form [12]. In Figure 2, an example of a wavelet and wavelet packet decomposed image is shown,
and in Figure 3 the schematic arrangement of subimages. The resulting decomposition depends
on the choice of the wavelet function. However,~in a lot of applications, this choice appears not to
be critical [5]. We employ one type of wavelets with well-known properties (9 tap bispline wavelets
from [10]).

2.2 ENERGY FEATURES. - The decomposition conventiently separates the information of dif-
ferent scales. It is now easy to extract a small feature set, by computing a single number for every
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subimage. We choose the conventional energy:

where M, N denote the size of the subimage. While many other measures are possible, our own
experiments as well as several ones in the literature [5,6] indicate that little can be gained from
the use of alternative measures. The energy is additive, and is also conserved by the wavelet
transformations. The components of the feature vector consists of the energies of the subimages
resulting from wavelet decomposition. For decomposition upto level d, the StW yields 3d + 1
features and the WP 4d.

For WP, this really are too much features for any multilevel decomposition (d &#x3E; 2), and one
will suffer from "the curse of dimensionality" during classification. A solution to this is the use
of a feature selection scheme, in which a subset of the features is selected based on classification
results. The success of this is limited here, since it suffers from a fundamental problem: the

predominant scales that carry the most useful information, differ from one image to another.
Therefore we will reduce the number of features in a different way, through the introduction of
rotational invariant features, which is explained next.

2.3 ROTATIONAL INVARIANCE. - In many texture analysis applications, including those where
wavelet features are introduced, the explicit orientation of the textures can be of importance. For
our application however, it is natural to demand rotational invariance. The decompositions and
the feature vectors of 2.2 retain orientational information.

This can be removed by simply summing the three features into one energy feature per scale.
However, these results in a much coarser description, which also contain important information,
ignore the directionality of the energy.
On a scale i, the energy associated with a detail subimage D~ can be interpreted as the energy

for one direction. This interpretation also can be made locally, where for a subimage, the squared
pixelvalues E.~ (m, rc) = (D2 (m, n)) 2 (denoted Ei) represent the local energy for one direction.
From the three local energies E;=1,2,3 together, not only the total energy per pixel can be extracted,
but a measure for the anisotropy of the energy (how much it differs with the direction) as well. We
propose the following transformation that corresponds to this intuitive concept:

Now E~(m, n) represents the pixelwise total energy and Orian’(x, y) the pixelwise anisotropy of
the energy. By summing over subimages global features per scale are obtained:

If a wavelet decomposition of depth d is performed, the resulting feature vector will have 2d+ 1 di-
mensions. It will contain an Etot and an Orian’ feature for every scale i, plus one extra component
for the energy of the low pass image Ld.
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For the wavelet packet decomposition, a similar feature transformation can be considered. For
the Etot of a scale, all equivalent subimages are taken together. Which subimages are called equiv-
alent is illustrated in Figure 3. For depth d, the transformation results in 2d orientation averaged
wavelet packet (OWP) features. The Orian concept can be applied to the packet decomposition
as well, by computing an Orian for every three subimages that come from the same subimage of
the previous level, and averaging over all such features for equivalent subimages. The number of
features for this OrianWP becomes 2~+B twice that of OWR

3. Classification

3.1 GENERAL CONSIDERATIONS. - Supervised classification consists of two major stages. In the
learning stage, the examples of a training set of known classes are used to compile knowledge
about the class distributions. This knowledge is used during the actual classification stage where
previously unseen examples are presented to the system, that will output class memberships. A
popular way to evaluate the performance of the classifier is by presenting to it a test set of known
classes and compare them with the actual outputs [13].
A classifier can only be as good as the data that is presented to it, thus the separation of the

classes in the feature space determines the success of the classifier. A typical feature space is
multidimensional, and can have severely intermixed or overlapping class clusters. Both feature
extraction and classification become equally important and have to be carefully tuned and adapted
to each other in order to obtain satisfactory results.
When the class probability density functions are known, a Bayesian classifier maximizes correct

classification. It will associate the regions of the input space to the class which has largest prob-
ability density. In practice, the density functions are unknown. How well they can be estinîated
depends on several aspects. The dimension of the feature space and the number of examples are
readily available. The shape of the class clusters and their separation however, most often only
reveal themselves through the trial of some classifiers. The use of initial simple classifiers is there-
fore very useful to gain insight in a problem and provide clues for picking an appropriate final
classifier afterwards.

A very large number of different classification techniques exist, ranging from simple ones like
linear discrimants, over multimodal parametric approaches and Principal Component Analysis
(which in fact includes a transformation of features), to complicated fuzzy and neural classifiers.
An important distinction has to be made between parametric approaches, that assume a spe-
cific distribution of the data, and try to estimate its parameters, and those that do not and are
called non-parametric. We choose one very commonly used classifier for every type, a Gaussian
Quadratic classifier (GQC), which is a global parametric method, and a l~-nearest neighbour clas-
sifier (1~-NN) which is local and non-parametric [13].
The GQC uses the Bayesian approach and assumes that the data of each class is Gaussian

distributed. The parameters are estimated from the examples. The Gaussian assumption is rarely
valid in a strict sense, but the classifier still works well whenever the examples are distributed
reasonably compact around a single center per class.
On the contrary, a 1~-NN classifier determines the regions associated with the classes using a

local class density estimate. As its name indicates, for every data point, it looks at the k nearest
neighbours of the example set, and decides on the class membership using a majority vote. So
k-NN is more appropriate in the case of more complex shaped clusters. In all its simplicity, k-NN
is not very efficient and its crucial parameter k which determines the scope is chosen arbitrarily.
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3.2 LVQ NETWORKS. - For classification in more complex data spaces, when little is known
about the structure of the data, neural techniques are often a good choice. We will employ a
Learning Vector Quantization network (LVQ) that is related to k-NN. It is capable of modelling
a feature space very accurately.
We apply the basic algorithm from Kohonen [9], which works as follows. An initial set of code-

book vectors mi, representing the classes, is chosen from the training set. This set is iteratively
adapted using all training vectors x sequentially. If the codebook vector me closest to x belongs
to the same class as x, nie is moved a little bit towards x, if not, me is moved away somewhat from
x:

where a(t) denotes the learning rate. This process can be iterated until convergence. The result-
ing codebook divides up the feature space into regions associated with the classes, using a nearest
neighbour rule.
The number of codebook vectors is a very important parameter, and it should be chosen care-

fully. A small number will result in a coarse, generalized partitioning of the feature space, while a
larger number will provide more local modelling. Compared to k-NN, LVQ will actually adapt its
scope in different parts of the data space, whereas this i~ fixed in the 1~-NN schemes. Where k-NN
holds on to the original data, LVQ gives up on probability estimation, and tries to place its code-
book vectors in such a way as to give an optimal description of the class boundaries. This leads to
a more efficient classifier that performs better when the feature space is sparsely populated.

4. Experiments ,

4.1 IMAGE ACQUISITION AND FEATURE EXTRACTION. - A set of 398 microscopic images (199
of each morphology) was collected from the corrosion literature. The photographs were scanned
at 128 by 128 pixels, 64 grey levels. This procedure provided us with a set of images showing cor-
rosion in different materials and obtained under a broad variety of acquisition conditions such
as illumination, magnification, etc.. 260 images were selected as training set, the remaining were
used for performance evaluation. To correct for all possible differences caused by unequal light-
ning conditions a histogram equalization was applied on the images. A standard or wavelet packet
transform is performed, and energy feature vectors are computed as described in 2.2. For different
depths d, OW, OWP, OrianW and OrianWP feature sets are compared.

4.2 CLASSIFICATION. - The feature vectors are rescaled such that every component has an aver-
age value of 1. This corresponds with the assumption that all components are equally important
for classification. This affects the 1~-NN and LVQ classifiers, which use Euclidean distances, but
not the GQC. For k-NN, we fix k = 5. For LVQ, we use two modifications of the basic learning
scheme, both proposed in [9], one for initial learning, and one for additional fine tuning. Good
values for the number of codebook vectors were determined experimentally as 15 to 20 per class.
As a last step in the classification, the outputs of several classifiers are combined with a majority

vote to give a single output. This strategy can still improve the final results and makes the classifier
more robust as well.

4.3 COMPUTATIONAL ISSUES. - Computing a wavelet transform of an image essentially involves
filtering which is done by applying two one dimensional convolution masks. The computation
time grows linearly with n, the number of image pixels. For a multilevel decomposition, in the



150

standard method only a quarter of the image is processed in the next level, so further levels will
not much increase the time. For the packet method, all parts are reprocessed, so the time is also
proportional to the depth d. The times for the energy calculation and feature transformations are
also proportional to n, but small compared to those of the convolutions.

All calculations were performed on a HP-712/100 UNIX workstation, using the C language.
The computation time of the wavelet transform was 160 ms for the first level of an 128 by 128
image. For the total feature calculation, this added up to 220 ms for StW with d = 4, and 660 ms
for WP with d = 4.

For the classification, a public domain implementation of the LVQ was used [14]. A complete
learning process typically took 10 to 15 s. This is small compared to the wavelet transform times
for the whole training set (e.g. 260 * 660 ms = 172 s). When classifying a new image, computation
time is also determined by the wavelet decomposition time, since classifying the features only
involves a search for the nearest vector in the codebook. Using combinations of classifiers is not
much more time consuming, since the decomposition has to be performed only once.

Table I. - Classification results in %.

4.4 RESULTS. - In Table I, classification results are given for different feature sets obtained with
all three classifiers. Results on the independent test set and on the training set are both shown. It
is clear from the results that while more features give rise to more selectivity and a more precise
discrimination, at the same time, generalization becomes more difficult, due to the limited number
of examples. This effect reveals itself in larger discrepancies between training and test results.
Apart from the feature set, the choice of the classifier itself determines the generalization. The

global GQC generalizes well but cannot adapt itself to specific cluster shapes. The local l~-NN can,
but its generalization is not as good. The LVQ, when used with a modest number of codebook
vectors, combines local adaptivity with good generalization properties. Its test classification scores
are always the highest, except for the OrianW.
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Using packet or Orian features are two ways to extend the feature set and increase selectiv-
ity. This does not lead to a systematic improvement of the results, because of the more difficult
generalization. They are however advantageous in an other way, because they give alternative
classifications. By combining three of the best (OW3, OWP4 and OrianWP3) classifications, an
improvement of the overall score on the test set upto 86.2% was obtained (95.4% for the training
set).

5. Conclusions

In this paper, a method was developed for the classification of corrosion images of two morpholo-
gies, using tools and techniques from texture analysis. We used a wavelet transform to decompose
the images and computed energy features from the decomposition. The resulting feature sets were
used for classification.

In applying this, several difficulties arose that where not yet handled by the existing methods.
The main obstacle was the large variability of the images within a single class, which is unusual for
most textures. In order to cope with it, this work focused its interest on a couple of key points : the
use of rotational invariant features, and of a LVQ network for classification. A successful scheme
was obtained, with a classification score of 86.2%.

This work is an example of how a problem that typically is handled by rule based systems (in this
case of materials scientists), but is too hard to handle with simple image processing and analysis
techniques, can still be solved by using modem texture analysis methods and a neural network
type classification scheme. The experimental knowledge gathered here can offer a starting point
for related problems in the area of robust classification of unsegmented images.
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