
HTCondor Week 2017 1

AN INTRODUCTION TO USING

Todd Tannenbaum

June 6, 2017

HTCondor Week 2017 2

Covered In This Tutorial

• What is HTCondor?

• Running a Job with HTCondor

• How HTCondor Matches and Runs Jobs

- pause for questions -

• Submitting Multiple Jobs with HTCondor

• Testing and Troubleshooting

• Use Cases and HTCondor Features

• Automation

HTCondor Week 2017 3

Introduction

HTCondor Week 2017 4

HTCONDOR

What is HTCondor?

• Software that schedules and runs

computing tasks on computers

HTCondor Week 2017 5

How It Works

• Submit tasks to a queue (on a submit point)

• HTCondor schedules them to run on

computers (execute points)

submit
execute

execute

execute

HTCondor Week 2017 6

Single Computer

submit

execute

execute

execute

HTCondor Week 2017 7

Multiple Computers

submit

execute

execute

execute

HTCondor Week 2017 8

Why HTCondor?

• HTCondor manages and runs work on your
behalf

• Schedule tasks on a single computer to not
overwhelm the computer

• Schedule tasks on a group* of computers
(which may/may not be directly accessible to
the user)

• Schedule tasks submitted by multiple users
on one or more computers

*in HTCondor-speak, a “pool”

HTCondor Week 2017 9

User-Focused Tutorial

• For the purposes of this tutorial, we are

assuming that someone else has set up

HTCondor on a computer/computers to

create a HTCondor “pool”.

• The focus of this talk is an introduction on

how to get started running computational

work on this system.

HTCondor Week 2017 10

Running a Job with

HTCondor

HTCondor Week 2017 11

Jobs

• A single computing task is called a “job”

• Three main pieces of a job are the input,

executable (program) and output

• Executable must be runnable from the

command line without any interactive input

HTCondor Week 2017 12

Job Example

• For our example, we will be using an

imaginary program called

“compare_states”, which compares two

data files and produces a single output file.

wi.dat

compare_

states

us.dat

wi.dat.out

$ compare_states wi.dat us.dat wi.dat.out

HTCondor Week 2017 13

File Transfer

• What about files? Can use a shared file system,
chirp, or file transfer mechanism.

• Our example will use HTCondor’s file transfer :

Submit Execute

(submit_dir)/

input files

executable

(execute_dir)/

output files

HTCondor Week 2017 14

Job Translation

• Submit file: communicates everything

about your job(s) to HTCondor

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

HTCondor Week 2017 15

Submit File

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

HTCondor Week 2017 16

Submit File

• List your
executable and
any arguments it
takes.

• Arguments are
any options
passed to the
executable from
the command line.

compare_

states

$ compare_states wi.dat us.dat wi.dat.out

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

HTCondor Week 2017 17

Submit File

• Indicate

your input

files.

wi.dat

us.dat

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

HTCondor Week 2017 18

Submit File

• HTCondor will

transfer back

all new and

changed files

(usually

output) from

the job.

wi.dat.out

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

HTCondor Week 2017 19

Submit File

• log: file

created by

HTCondor to

track job

progress

• output/err

or: captures

stdout and

stderr

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

HTCondor Week 2017 20

Submit File

• Request the
appropriate
resources
for your job
to run.

• queue:
keyword
indicating
“create a
job.”

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

job.submit

HTCondor Week 2017 21

Submitting and Monitoring

• To submit a job/jobs:

condor_submit submit_file_name

• To monitor submitted jobs, use:

condor_q

$ condor_submit job.submit

Submitting job(s).

1 job(s) submitted to cluster 128.

$ condor_q

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 10:35:54

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit

HTCondor Manual: condor_q

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_submit.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_q.html

HTCondor Week 2017 22

More about condor_q

• By default condor_q shows:

– user’s job only (as of 8.6)

– jobs summarized in “batches” (as of 8.6)

• Constrain with username, ClusterId or

full JobId, which will be denoted

[U/C/J] in the following slides
$ condor_q

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/17 10:35:54

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId = ClusterId .ProcId

HTCondor Week 2017 23

More about condor_q

• To see individual job information, use:

condor_q -nobatch

• We will use the -nobatch option in the

following slides to see extra detail about

what is happening with a job

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Week 2017 24

Job Idle

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

$ condor_q - nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

Submit Node

HTCondor Week 2017 25

Job Starts by doing File Transfer

compare_states

wi.dat

us.dat

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 < 0 0.0 compare_states wi.dat us.dat w

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

Submit Node

(execute_dir)/

Execute Node

HTCondor Week 2017 26

Job Running

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:01:08 R 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

Submit Node

(execute_dir)/

compare_states

wi.dat

us.dat

stderr

stdout

wi.dat.out

Execute Node

HTCondor Week 2017 27

Job Completes

(execute_dir)/

compare_states

wi.dat

us.dat

stderr

stdout

wi.dat.out

stderr

stdout

wi.dat.out

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128 alice 5/9 11:09 0+00:02:02 > 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Execute Node

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

Submit Node

HTCondor Week 2017 28

Job Completes (cont.)

$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

(submit_dir)/

job.submit

compare_states

wi.dat

us.dat

job.log

job.out

job.err

wi.dat.out

Submit Node

HTCondor Week 2017 29

Log File

000 (128.000.000) 05/09 11:09:08 Job submitted from host:

<128.104.101.92&sock=6423_b881_3>

...

001 (128.000.000) 05/09 11:10:46 Job executing on host:

<128.104.101.128:9618&sock=5053_3126_3>

...

006 (128.000.000) 05/09 11:10:54 Image size of job updated: 220

1 - MemoryUsage of job (MB)

220 - ResidentSetSize of job (KB)

...

005 (128.000.000) 05/09 11:12:48 Job terminated.

(1) Normal termination (return value 0)

Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage

Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage

Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage

Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job

33 - Run Bytes Received By Job

0 - Total Bytes Sent By Job

33 - Total Bytes Received By Job

Partitionable Resources : Usage Request Allocated

Cpus : 1 1

Disk (KB) : 14 20480 17203728

Memory (MB) : 1 20 20

HTCondor Week 2017 30

Job States

condor_

submit

Idle

(I)

Running

(R)

Completed

(C)

transfer

executable

and input to

execute

node

transfer

output

back to

submit node

in the queue leaving the queue

HTCondor Week 2017 31

Assumptions

• Aspects of your submit file may be

dictated by infrastructure and configuration

• For example: file transfer

– previous example assumed files would need

to be transferred between submit/execute

– not the case with a shared file system

should_transfer_files = NO

should_transfer_files = YES

HTCondor Week 2017 32

Shared file system

• If a system has a shared file system, where

file transfer is not enabled, the submit

directory and execute directory are the same.

shared_dir/

input

executable

output

Submit ExecuteSubmit Execute

HTCondor Week 2017 33

Resource Request

• Jobs are nearly always using a part of a

computer, not the whole thing

• Very important to request appropriate

resources (memory, cpus, disk) for a job

whole

computer

your request

HTCondor Week 2017 34

Resource Assumptions

• Even if your system has default CPU,

memory and disk requests, these may be too

small!

• Important to run test jobs and use the log file

to request the right amount of resources:

– requesting too little: causes problems for your

and other jobs; jobs might by held by HTCondor

– requesting too much: jobs will match to fewer

“slots”

HTCondor Week 2017 35

Job Matching and

Class Ad Attributes

HTCondor Week 2017 36

The Central Manager

• HTCondor matches jobs with computers

via a “central manager”.

submit
execute

execute

execute

central manager

HTCondor Week 2017 37

Class Ads

• HTCondor stores a list of information about

each job and each computer.

• This information is stored as a “Class Ad”

• Class Ads have the format:

AttributeName = value

HTCondor Manual: Appendix A: Class Ad Attributes

can be a boolean,

number, or string

http://research.cs.wisc.edu/htcondor/manual/v8.5/12_Appendix_A.html

HTCondor Week 2017 38

Job Class Ad
RequestCpus = 1

Err = "job.err"

WhenToTransferOutput = "ON_EXIT"

TargetType = "Machine"

Cmd =

"/home/alice/tests/htcondor_week/compar

e_states"

JobUniverse = 5

Iwd = "/home/alice/tests/htcondor_week"

RequestDisk = 20480

NumJobStarts = 0

WantRemoteIO = true

OnExitRemove = true

TransferInput = "us.dat,wi.dat"

MyType = "Job"

Out = "job.out"

UserLog =

"/home/alice/tests/htcondor_week/job.lo

g"

RequestMemory = 20

...

...

+

HTCondor configuration*

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES

transfer_input_files = us.dat, wi.dat

when_to_transfer_output = ON_EXIT

log = job.log

output = job.out

error = job.err

request_cpus = 1

request_disk = 20MB

request_memory = 20MB

queue 1

=

*Configuring HTCondor will be covered in “Administering HTCondor”, by

Greg Thain, at 1:15 today (May 2)

http://research.cs.wisc.edu/htcondor/HTCondorWeek2016/tuesday.html

HTCondor Week 2017 39

Computer “Machine” Class Ad

HasFileTransfer = true

DynamicSlot = true

TotalSlotDisk = 4300218.0

TargetType = "Job"

TotalSlotMemory = 2048

Mips = 17902

Memory = 2048

UtsnameSysname = "Linux"

MAX_PREEMPT = (3600 * 72)

Requirements = (START) && (

IsValidCheckpointPlatform) && (

WithinResourceLimits)

OpSysMajorVer = 6

TotalMemory = 9889

HasGluster = true

OpSysName = "SL"

HasDocker = true

...

=

+

HTCondor configuration

HTCondor Week 2017 40

Job Matching

• On a regular basis, the central manager
reviews Job and Machine Class Ads and
matches jobs to computers.

submit
execute

execute

execute

central manager

HTCondor Week 2017 41

Job Execution

• (Then the submit and execute points

communicate directly.)

submit
execute

execute

execute

central manager

HTCondor Week 2017 42

Class Ads for People

• Class Ads also provide lots of useful

information about jobs and computers to

HTCondor users and administrators

HTCondor Week 2017 43

Finding Job Attributes

$ condor_q -l 128.0

WhenToTransferOutput = "ON_EXIT"

TargetType = "Machine"

Cmd = "/home/alice/tests/htcondor_week/compare_states"

JobUniverse = 5

Iwd = "/home/alice/tests/htcondor_week"

RequestDisk = 20480

NumJobStarts = 0

WantRemoteIO = true

OnExitRemove = true

TransferInput = "us.dat,wi.dat"

MyType = "Job”

UserLog = "/home/alice/tests/htcondor_week/job.log"

RequestMemory = 20

...

• Use the “long” option for condor_q
condor_q -l JobId

HTCondor Week 2017 44

Some Useful Job Attributes

• UserLog: location of job log

• Iwd: Initial Working Directory (i.e.

submission directory) on submit node

• MemoryUsage: maximum memory the job

has used

• RemoteHost: where the job is running

• BatchName: attribute to label job batches

• ...and more

HTCondor Week 2017 45

Selectively display specific

attributes

$ condor_q -af ClusterId ProcId RemoteHost MemoryUsage

17315225 116 slot1_1@e092.chtc.wisc.edu 1709

17315225 118 slot1_2@e093.chtc.wisc.edu 1709

17315225 137 slot1_8@e125.chtc.wisc.edu 1709

17315225 139 slot1_7@e121.chtc.wisc.edu 1709

18050961 0 slot1_5@c025.chtc.wisc.edu 196

18050963 0 slot1_3@atlas10.chtc.wisc.edu 269

18050964 0 slot1_25@e348.chtc.wisc.edu 245

18050965 0 slot1_23@e305.chtc.wisc.edu 196

18050971 0 slot1_6@e176.chtc.wisc.edu 220

• Use the “auto-format” option:
condor_q [U/C/J] -af Attribute1 Attribute2 ...

HTCondor Week 2017 46

Other Displays

• See the whole queue (all users, all jobs)

condor_q -all

$ condor_q -all

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS

alice DAG: 128 5/9 02:52 982 2 _ _ 1000 18888976.0 ...

bob DAG: 139 5/9 09:21 _ 1 89 _ 180 18910071.0 ...

alice DAG: 219 5/9 10:31 1 997 2 _ 1000 18911030.0 ...

bob DAG: 226 5/9 10:51 10 _ 1 _ 44 18913051.0

bob CMD: ce.sh 5/9 10:55 _ _ _ 2 _ 18913029.0 ...

alice CMD: sb 5/9 10:57 _ 2 998 _ _ 18913030.0-999

HTCondor Week 2017 47

condor_q Reminder

• Default output is batched jobs

– Batches can be grouped manually using the
JobBatchName attribute in a submit file:

– Otherwise HTCondor groups jobs

automatically

• To see individual jobs, use:

condor_q -nobatch

+JobBatchName = “CoolJobs”

HTCondor Week 2017 48

Class Ads for Computers

as condor_q is to jobs, condor_status is to computers (or “machines”)

$ condor_status

Name OpSys Arch State Activity LoadAv Mem Actvty

slot1@c001.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 0.000 673 25+01

slot1_1@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01

slot1_2@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01

slot1_3@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+00

slot1_4@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+14

slot1_5@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 1024 0+01

slot1@c002.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 1.000 2693 19+19

slot1_1@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+04

slot1_2@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01

slot1_3@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 0.990 2048 0+02

slot1@c004.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 0.010 645 25+05

slot1_1@c004.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X86_64/LINUX 10962 0 10340 613 0 0 0 9

X86_64/WINDOWS 2 2 0 0 0 0 0 0

Total 10964 2 10340 613 0 0 0 9

HTCondor Manual: condor_status

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_status.html

HTCondor Week 2017 49

Machine Attributes

$ condor_status -l slot1_1@c001.chtc.wisc.edu

HasFileTransfer = true

COLLECTOR_HOST_STRING = "cm.chtc.wisc.edu”

TargetType = "Job”

TotalTimeClaimedBusy = 43334c001.chtc.wisc.edu

UtsnameNodename = ""

Mips = 17902

MAX_PREEMPT = (3600 * (72 - 68 * (WantGlidein =?= true)))

Requirements = (START) && (IsValidCheckpointPlatform) && (

WithinResourceLimits)

State = "Claimed"

OpSysMajorVer = 6

OpSysName = "SL”

...

• Use same options as condor_q:
condor_status -l Slot/Machine

condor_status [Machine] -af Attribute1 Attribute2 ...

HTCondor Week 2017 50

Machine Attributes

$ condor_q -compact

Machine Platform Slots Cpus Gpus TotalGb FreCpu FreeGb CpuLoad ST

e007.chtc.wisc.edu x64/SL6 8 8 23.46 0 0.00 1.24 Cb

e008.chtc.wisc.edu x64/SL6 8 8 23.46 0 0.46 0.97 Cb

e009.chtc.wisc.edu x64/SL6 11 16 23.46 5 0.00 0.81 **

e010.chtc.wisc.edu x64/SL6 8 8 23.46 0 4.46 0.76 Cb

matlab-build-1.chtc.wisc.edu x64/SL6 1 12 23.45 11 13.45 0.00 **

matlab-build-5.chtc.wisc.edu x64/SL6 0 24 23.45 24 23.45 0.04 Ui

mem1.chtc.wisc.edu x64/SL6 24 80 1009.67 8 0.17 0.60 **

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

x64/SL6 10416 0 9984 427 0 0 0 5

x64/WinVista 2 2 0 0 0 0 0 0

Total 10418 2 9984 427 0 0 0 5

• To summarize, use the “-compact” option
condor_status -compact

HTCondor Week 2017 51

(60 SECOND) PAUSE

Questions so far?

HTCondor Week 2017 52

Submitting Multiple Jobs

with HTCondor

HTCondor Week 2017 53

Many Jobs, One Submit File

• HTCondor has built-in ways to submit

multiple independent jobs with one submit

file

HTCondor Week 2017 54

Advantages

• Run many independent jobs...

– analyze multiple data files

– test parameter or input combinations

– and more!

• ...without having to:

– start each job individually

– create separate submit files for each job

HTCondor Week 2017 55

Multiple, Numbered, Input Files

• Goal: create 3 jobs that each analyze a

different input file.

executable = analyze.exe

arguments = file.in file.out

transfer_input_files = file.in

log = job.log

output = job.out

error = job.err

queue

job.submit

analyze.exe

file0.in

file1.in

file2.in

job.submit

(submit_dir)/

HTCondor Week 2017 56

Multiple Jobs, No Variation

• This file generates 3 jobs, but doesn’t use

multiple inputs and will overwrite outputs

analyze.exe

file0.in

file1.in

file2.in

job.submit

(submit_dir)/
executable = analyze.exe

arguments = file0.in file0.out

transfer_input_files = file.in

log = job.log

output = job.out

error = job.err

queue 3

job.submit

HTCondor Week 2017 57

Automatic Variables

• Each job’s
ClusterId and
ProcId numbers
are saved as job
attributes

• They can be
accessed inside
the submit file
using:
– $(ClusterId)

– $(ProcId)

queue N

128

128

128

0

1

2

ClusterId ProcId

...

128 N-1

...

HTCondor Week 2017 58

executable = analyze.exe

arguments = file0.in file0.out

transfer_input_files = file0.in

log = job.log

output = job.out

error = job.err

queue

job.submit

Job Variation

• How to uniquely identify each job

(filenames, log/out/err names)?

analyze.exe

file0.in

file1.in

file2.in

job.submit

(submit_dir)/

HTCondor Week 2017 59

Using $(ProcId)

• Use the $(ClusterId), $(ProcId)

variables to provide unique values to jobs.*

executable = analyze.exe

arguments = file$(ProcId).in file$(ProcId).out

should_transfer_files = YES

transfer_input_files = file$(ProcId).in

when_to_transfer_output = ON_EXIT

log = job_$(ClusterId).log

output = job_$(ClusterId)_$(ProcId).out

error = job_$(ClusterId)_$(ProcId).err

queue 3

job.submit

* May also see $(Cluster), $(Process) in documentation

HTCondor Week 2017 60

Organizing Jobs

HTCondor Week 2017 61

Shared Files

• HTCondor can transfer an entire directory

or all the contents of a directory

– transfer whole directory

– transfer contents only

• Useful for jobs with many shared files;

transfer a directory of files instead of listing

files individually

transfer_input_files = shared/

transfer_input_files = shared

job.submit

shared/

reference.db

parse.py

analyze.py

cleanup.py

links.config

(submit_dir)/

HTCondor Week 2017 62

Organize Files in Sub-Directories

• Create sub-directories* and use paths in

the submit file to separate input, error, log,

and output files.

log

* must be created before the job is submitted

HTCondor Week 2017 63

Use Paths for File Type

executable = analyze.exe

arguments = file$(Process).in file$(ProcId).out

transfer_input_files = input/file$(ProcId).in

log = log/job$(ProcId).log

error = err/job$(ProcId).err

queue 3

job.submit

analyze.exe

input/

file0.in

file1.in

file2.in

log/

job0.log

job1.log

job2.log

err/

job0.err

job1.err

job2.err

file0.out

file1.out

file2.out

job.submit

(submit_dir)/

HTCondor Week 2017 64

InitialDir

• Change the submission directory for each job
using initialdir

• Allows the user to organize job files into

separate directories.

• Use the same name for all input/output files

• Useful for jobs with lots of output files

job0 job1 job2 job3 job4

HTCondor Week 2017 65

Separate Jobs with InitialDir

executable = analyze.exe

initialdir = job$(ProcId)

arguments = file.in file.out

transfer_input_files = file.in

log = job.log

error = job.err

queue 3

job.submit

analyze.exe

job0/

file.in

job.log

job.err

file.out

job1/

file.in

job.log

job.err

file.out

job2/

file.in

job.log

job.err

file.out

job.submit

(submit_dir)/

Executable should be

in the directory with

the submit file, *not*

in the individual job

directories

HTCondor Week 2017 66

Other Submission Methods

• What if your input files/directories aren’t

numbered from 0 - (N-1)?

• There are other ways to submit many jobs!

HTCondor Week 2017 67

Submitting Multiple Jobs

Replacing

single job

inputs

with a

variable of

choice

executable = compare_states

arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

queue 1

executable = compare_states

arguments = $(infile) us.dat $(infile).out

transfer_input_files = us.dat, $(infile)

queue ...

HTCondor Week 2017 68

multiple

“queue”

statements

matching ...

pattern

in ... list

from ... file

Possible Queue Statements

infile = wi.dat

queue 1

infile = ca.dat

queue 1

infile = ia.dat

queue 1

queue infile matching *.dat

queue infile in (wi.dat ca.dat ia.dat)

queue infile from state_list.txt
wi.dat

ca.dat

ia.dat

state_list.txt

HTCondor Week 2017 69

multiple

“queue”

statements

matching ...

pattern

in ... list

from ... file

Possible Queue Statements

infile = wi.dat

queue 1

infile = ca.dat

queue 1

infile = ia.dat

queue 1

queue infile matching *.dat

queue infile in (wi.dat ca.dat ia.dat)

queue infile from state_list.txt
wi.dat

ca.dat

ia.dat

Not Recommended

state_list.txt

HTCondor Week 2017 70

multiple

queue

statements

Not recommended. Can be useful when submitting job batches

where a single (non-file/argument) characteristic is changing

matching ..

pattern

Natural nested looping, minimal programming, use optional

“files” and “dirs” keywords to only match files or directories

Requires good naming conventions,

in .. list Supports multiple variables, all information contained in a single

file, reproducible

Harder to automate submit file creation

from .. file Supports multiple variables, highly modular (easy to use one

submit file for many job batches), reproducible

Additional file needed

Queue Statement Comparison

HTCondor Week 2017 71

Using Multiple Variables

• Both the “from” and “in” syntax support

using multiple variables from a list.

executable = compare_states

arguments = -year $(option) -input

$(file)

should_transfer_files = YES

when_to_transfer_output = ON_EXIT

transfer_input_files = $(file)

queue file,option from job_list.txt

wi.dat, 2010

wi.dat, 2015

ca.dat, 2010

ca.dat, 2015

ia.dat, 2010

ia.dat, 2015

job.submit job_list.txt

HTCondor Manual: submit file options

http://research.cs.wisc.edu/htcondor/manual/current/condor_submit.html#SECTION0012564000000000000000

HTCondor Week 2017 72

Other Features

• Match only files or directories:

• Submit multiple jobs with same input data

– Use other automatic variables: $(Step)

queue input matching files *.dat

queue directory matching dirs job*

queue 10 input matching files *.dat

arguments = -i $(input) -rep $(Step)

queue 10 input matching files *.dat

HTCondor Week 2017 73

Testing and

Troubleshooting

HTCondor Week 2017 74

What Can Go Wrong?

• Jobs can go wrong “internally”:

– something happens after the executable

begins to run

• Jobs can go wrong from HTCondor’s

perspective:

– A job can’t be started at all,

– Uses too much memory,

– Has a badly formatted executable,

– And more...

HTCondor Week 2017 75

Reviewing Failed Jobs

• A job’s log, output and error files can provide

valuable information for troubleshooting

Log Output Error

• When jobs were

submitted,

started, and

stopped

• Resources used

• Exit status

• Where job ran

• Interruption

reasons

Any “print” or

“display” information

from your program

Captured by the

operating system

HTCondor Week 2017 76

Reviewing Jobs

• To review a large group of jobs at once,
use condor_history
As condor_q is to the present, condor_history is to the past

$ condor_history alice

ID OWNER SUBMITTED RUN_TIME ST COMPLETED CMD

189.1012 alice 5/11 09:52 0+00:07:37 C 5/11 16:00 /home/alice

189.1002 alice 5/11 09:52 0+00:08:03 C 5/11 16:00 /home/alice

189.1081 alice 5/11 09:52 0+00:03:16 C 5/11 16:00 /home/alice

189.944 alice 5/11 09:52 0+00:11:15 C 5/11 16:00 /home/alice

189.659 alice 5/11 09:52 0+00:26:56 C 5/11 16:00 /home/alice

189.653 alice 5/11 09:52 0+00:27:07 C 5/11 16:00 /home/alice

189.1040 alice 5/11 09:52 0+00:05:15 C 5/11 15:59 /home/alice

189.1003 alice 5/11 09:52 0+00:07:38 C 5/11 15:59 /home/alice

189.962 alice 5/11 09:52 0+00:09:36 C 5/11 15:59 /home/alice

189.961 alice 5/11 09:52 0+00:09:43 C 5/11 15:59 /home/alice

189.898 alice 5/11 09:52 0+00:13:47 C 5/11 15:59 /home/alice

HTCondor Manual: condor_history

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_history.html

HTCondor Week 2017 77

“Live” Troubleshooting

• To log in to a job where it is running, use:

condor_ssh_to_job JobId

$ condor_ssh_to_job 128.0

Welcome to slot1_31@e395.chtc.wisc.edu!

Your condor job is running with pid(s) 3954839.

HTCondor Manual: condor_ssh_to_job

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_ssh_to_job.html

HTCondor Week 2017 78

Held Jobs

• HTCondor will put your job on hold if there’s

something YOU need to fix.

• A job that goes on hold is interrupted (all

progress is lost) and kept from running

again, but remains

in the queue in the

“H” state.

HTCondor Week 2017 79

Diagnosing Holds

• If HTCondor puts a job on hold, it provides

a hold reason, which can be viewed with:
condor_q -hold [-wide]

$ condor_q -hold -af HoldReason

Error from slot1_1@wid-003.chtc.wisc.edu: Job has gone over

memory limit of 2048 megabytes.

Error from slot1_20@e098.chtc.wisc.edu: SHADOW at

128.104.101.92 failed to send file(s) to <128.104.101.98:35110>: error

reading from /home/alice/script.py: (errno 2) No such file or directory;

STARTER failed to receive file(s) from <128.104.101.92:9618>

Error from slot1_11@e138.chtc.wisc.edu: STARTER

at 128.104.101.138 failed to send file(s) to <128.104.101.92:9618>; SHADOW at

128.104.101.92 failed to write to file /home/alice/Test_18925319_16.err:

(errno 122) Disk quota exceeded

Error from slot1_38@e270.chtc.wisc.edu: Failed

to execute '/var/lib/condor/execute/slot1/dir_2471876/condor_exec.exe' with

arguments 2: (errno=2: 'No such file or directory')

HTCondor Week 2017 80

Common Hold Reasons

• Job has used more memory than

requested

• Incorrect path to files that need to be

transferred

• Badly formatted bash scripts (have

Windows instead of Unix line endings)

• Submit directory is over quota

• The admin has put your job on hold

HTCondor Week 2017 81

Fixing Holds

• Job attributes can be edited while jobs are
in the queue using:
condor_qedit [U/C/J] Attribute Value

• If a job has been fixed and can run again,
release it with:
condor_release [U/C/J]

$ condor_qedit 128.0 RequestMemory 3072

Set attribute ”RequestMemory".

$ condor_release 128.0

Job 18933774.0 released

HTCondor Manual: condor_qedit

HTCondor Manual: condor_release

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_qedit.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_release.html

HTCondor Week 2017 82

Holding or Removing Jobs

• If you know your job has a problem and it

hasn’t yet completed, you can:
– Place it on hold yourself, with condor_hold [U/C/J]

– Remove it from the queue, using condor_rm [U/C/J]

$ condor_hold bob

All jobs of user ”bob" have been held

$ condor_hold 128.0

Job 128.0 held

$ condor_hold 128

All jobs in cluster 128 have been held

HTCondor Manual: condor_hold

HTCondor Manual: condor_rm

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_hold.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_rm.html

HTCondor Week 2017 83

Job States, Revisited

Idle

(I)

Running

(R)

Completed

(C)

condor_

submit

in the queue leaving the queue

HTCondor Week 2017 84

Job States, Revisited

Idle

(I)

Running

(R)

Completed

(C)

condor_

submit

Held

(H)

condor_hold, or

HTCondor puts

a job on holdcondor_release

in the queue leaving the queue

HTCondor Week 2017 85

Job States, Revisited*

Idle

(I)

Running

(R)

Completed

(C)

condor_

submit

Held

(H)

Removed

(X)

condor_rm

condor_hold,

or job error
condor_release

in the queue leaving the queue

*not comprehensive

HTCondor Week 2017 86

Use Cases and

HTCondor Features

HTCondor Week 2017 87

Interactive Jobs

• An interactive job proceeds like a normal
batch job, but opens a bash session into the
job’s execution directory instead of running
an executable.
condor_submit -i submit_file

• Useful for testing and troubleshooting

$ condor_submit -i interactive.submit

Submitting job(s).

1 job(s) submitted to cluster 18980881.

Waiting for job to start...

Welcome to slot1_9@e184.chtc.wisc.edu!

HTCondor Week 2017 88

Output Handling

• Only transfer back specific files from the

job’s execution using transfer_ouput_files

condor_exec.exe

results-tmp-01.dat

results-tmp-02.dat

results-tmp-03.dat

results-tmp-04.dat

results-tmp-05.dat

results-final.dat

transfer_output_files = results-final.dat

(submit_dir)/ (execute_dir)/

HTCondor Week 2017 89

condor_chirp

• What if you want to only read part of a file?

• What if you want to write records into an output
file?

Use condor_chirp !

http://htcondor.org/manual/current/condor_chirp.html

(can also edit job classad or add entries to

the job event log file)

HTCondor Week 2017 90

Self-Checkpointing

• By default, a job that is interrupted will

start from the beginning if it is restarted.

• It is possible to implement self-

checkpointing, which will allow a job to

restart from a saved state if interrupted.

• Self-checkpointing is useful for very long

jobs, and being able to run on

opportunistic resources.

HTCondor Week 2017 91

Self-Checkpointing How-To

• Edit executable:

– Atomically save intermediate states to a

checkpoint file

– Always check for a checkpoint file when starting

• Add HTCondor option that a) saves all

intermediate/output files from the interrupted

job and b) transfers them to the job when

HTCondor runs it again

when_to_transfer_output = ON_EXIT_OR_EVICT

HTCondor Week 2017 92

Job Universes

• HTCondor has different “universes” for

running specialized job types
HTCondor Manual: Choosing an HTCondor Universe

• Vanilla (default)

– good for most software
HTCondor Manual: Vanilla Universe

• Set in the submit

file using:

universe = vanilla

http://research.cs.wisc.edu/htcondor/manual/v8.5/2_4Running_Job.html#SECTION00341000000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.5/2_4Running_Job.html#SECTION00341200000000000000

HTCondor Week 2017 93

Other Universes

• Standard

– Built for code (C, fortran) that can be
statically compiled with condor_compile

HTCondor Manual: Standard Universe

• Java

– Built-in Java support
HTCondor Manual: Java Applications

• Local

– Run jobs on the submit node
HTCondor Manual: Local Universe

http://research.cs.wisc.edu/htcondor/manual/v8.5/2_4Running_Job.html#SECTION00341100000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.5/2_8Java_Applications.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/2_4Running_Job.html#SECTION00341600000000000000

HTCondor Week 2017 94

Other Universes (cont.)

• Docker

– Run jobs inside a Docker container
HTCondor Manual: Docker Universe Applications

• VM

– Run jobs inside a virtual machine
HTCondor Manual: Virtual Machine Applications

• Parallel

– Used for coordinating jobs across multiple

servers (e.g. MPI code)

– Not necessary for single server multi-core jobs
HTCondor Manual: Parallel Applications

http://research.cs.wisc.edu/htcondor/manual/v8.5/2_12Docker_Universe.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/2_11Virtual_Machine.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/2_9Parallel_Applications.html

HTCondor Week 2017 95

Multi-CPU and GPU Computing

• Jobs that use multiple cores on a single

computer can be run in the vanilla universe

(parallel universe not needed):

• If there are computers with GPUs, request

them with:

request_cpus = 16

request_gpus = 1

HTCondor Week 2017 96

Docker Universe

universe = docker

executable = /bin/my_executable

Executable comes either from submit machine or image

NOT FROM execute machine

HTCondor Week 2017 97

Docker Universe

universe = docker

executable = /bin/my_executable

docker_image =deb7_and_HEP_stack

Image is the name of the docker image stored on
execute machine

HTCondor Week 2017 98

Docker Universe

HTCondor can transfer input files from
submit machine into container

(same with output in reverse)

universe = docker

executable = /bin/my_executable

docker_image =deb7_and_HEP_stack

transfer_input_files = some_input

HTCondor Week 2017 99

Docker Universe

universe = docker

executable = /bin/my_executable

arguments = arg1

docker_image = deb7_and_HEP_stack

transfer_input_files = some_input

output = out

error = err

log = log

queue

HTCondor Week 2017 100

Automation

HTCondor Week 2017 101

Automation

• After job submission, HTCondor manages

jobs based on its configuration

• You can use options that will customize job

management even further

• These options can

automate when

jobs are started,

stopped, and removed.

HTCondor Week 2017 102

Retries

• Problem: a small number of jobs fail with a

known error code; if they run again, they

complete successfully.

• Solution: If the job exits with the error

code, leave it in the queue to run again

max_retries = 3

HTCondor Week 2017 103

Retries, cont.

• Can also combine with

success_exit_code = < Integer >

retry_until = < Integer | Expression >

executable = foo.exe

max_retries = 5

retry_untl = ExitCode >= 0

queue

HTCondor Week 2017 109

Workflows

• Problem: Want to submit

jobs in a particular order,

with dependencies

between groups of jobs

• Solution: Write a DAG

split

1 2 3 N

combine

...

download

HTCondor Week 2017 110

DAG = ”directed acyclic graph”

• topological ordering of
vertices (“nodes”) is
established by directional
connections (“edges”)

• “acyclic” aspect requires
a start and end, with no
looped repetition

– can contain cyclic
subcomponents, covered
in later slides for
workflows

wikipedia.org/wiki/Directed_acyclic_graph

Wikimedia Commons

https://en.wikipedia.org/wiki/Directed_acyclic_graph

HTCondor Week 2017 111

Describing Workflows with

DAGMan

HTCondor Week 2017 112

DAGMan in the HTCondor

Manual

HTCondor Week 2017 113

...

Simple Example for this Tutorial

B1 B2 B3 BN

A

C

HTCondor Manual: DAGMan Applications > DAG Input File

• The DAG input file will

communicate the

“nodes” and directional

“edges” of the DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

HTCondor Week 2017 114

Basic DAG input file:

JOB nodes, PARENT-CHILD edges

JOB A A.sub

JOB B1 B1.sub

JOB B2 B2.sub

JOB B3 B3.sub

JOB C C.sub

PARENT A CHILD B1 B2 B3

PARENT B1 B2 B3 CHILD C

my.dag

HTCondor Manual: DAGMan Applications > DAG Input File

...B1 B2 B3 BN

A

C• Node names are used by various
DAG features to modify their
execution by DAG Manager.

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

HTCondor Week 2017 115

Endless Workflow Possibilities

Wikimedia Commons

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

HTCondor Week 2017 116

Endless Workflow Possibilities

https://confluence.pegasus.isi.edu

HTCondor Week 2017 117

Submitting and Monitoring a

DAGMan Workflow

HTCondor Week 2017 118

Basic DAG input file:

JOB nodes, PARENT-CHILD edges

JOB A A.sub

JOB B1 B1.sub

JOB B2 B2.sub

JOB B3 B3.sub

JOB C C.sub

PARENT A CHILD B1 B2 B3

PARENT B1 B2 B3 CHILD C

my.dag

HTCondor Manual: DAGMan Applications > DAG Input File

...B1 B2 B3 BN

A

C

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

HTCondor Week 2017 119

Submitting a DAG to the queue

• Submission command:

condor_submit_dag dag_file

$ condor_submit_dag my.dag

--

File for submitting this DAG to HTCondor : mydag.dag.condor.sub

Log of DAGMan debugging messages : mydag.dag.dagman.out

Log of HTCondor library output : mydag.dag.lib.out

Log of HTCondor library error messages : mydag.dag.lib.err

Log of the life of condor_dagman itself : mydag.dag.dagman.log

Submitting job(s).

1 job(s) submitted to cluster 87274940.

--

HTCondor Manual: DAGMan > DAG Submission

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

HTCondor Week 2017 120

Jobs are automatically

submitted by the DAGMan job

• Seconds later, node A is submitted:

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice my.dag+128 4/30 18:08 _ _ 1 5 129.0

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 4/30 18:08 0+00:00:36 R 0 0.3 condor_dagman

129.0 alice 4/30 18:08 0+00:00:00 I 0 0.3 A_split.sh

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

HTCondor Manual: DAGMan > DAG Submission

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

HTCondor Week 2017 121

Jobs are automatically

submitted by the DAGMan job

• After A completes, B1-3 are submitted

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice my.dag+128 4/30 8:08 1 _ 3 5 129.0...132.0

4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 4/30 18:08 0+00:20:36 R 0 0.3 condor_dagman

130.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh

131.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh

132.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh

4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

HTCondor Manual: DAGMan > DAG Submission

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

HTCondor Week 2017 122

Jobs are automatically

submitted by the DAGMan job

• After B1-3 complete, node C is submitted

HTCondor Manual: DAGMan > DAG Submission

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice my.dag+128 4/30 8:08 4 _ 1 5 129.0...133.0

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 4/30 18:08 0+00:46:36 R 0 0.3 condor_dagman

133.0 alice 4/30 18:54 0+00:00:00 I 0 0.3 C_combine.sh

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

HTCondor Week 2017 123

Status files are Created at the

time of DAG submission

A.sub B1.sub B2.sub

B3.sub C.sub (other job files)

my.dag my.dag.condor.sub my.dag.dagman.log

my.dag.dagman.out my.dag.lib.err my.dag.lib.out

my.dag.nodes.log

(dag_dir)/

DAGMan > DAG Monitoring and DAG Removal

*.condor.sub and *.dagman.log describe the queued
DAGMan job process, as for all queued jobs

*.dagman.out has detailed logging (look to first for errors)

*.lib.err/out contain std err/out for the DAGMan job
process

*.nodes.log is a combined log of all jobs within the DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003107000000000000000

HTCondor Week 2017 124

Removing a DAG from the queue

• Remove the DAGMan job in order to stop and remove

the entire DAG:

condor_rm dagman_jobID

• Creates a rescue file so that only incomplete or

unsuccessful NODES are repeated upon resubmission

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice my.dag+128 4/30 8:08 4 _ 1 6 129.0...133.0

2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_rm 128
All jobs in cluster 128 have been marked for removal

DAGMan > DAG Monitoring and DAG Removal
DAGMan > The Rescue DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003107000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031010000000000000000

HTCondor Week 2017 125

Removal of a DAG results in a

rescue file

• Named dag_file.rescue001
• increments if more rescue DAG files are created

• Records which NODES have completed
successfully
• does not contain the actual DAG structure

DAGMan > DAG Monitoring and DAG Removal
DAGMan > The Rescue DAG

A.sub B1.sub B2.sub B3.sub C.sub (other job files)

my.dag my.dag.condor.sub my.dag.dagman.log

my.dag.dagman.out my.dag.lib.err my.dag.lib.out

my.dag.metrics my.dag.nodes.log my.dag.rescue001

(dag_dir)/

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003107000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031010000000000000000

HTCondor Week 2017 126

Rescue Files For Resuming a

Failed DAG

• A rescue file is created when:

– a node fails, and after DAGMan advances

through any other possible nodes

– the DAG is removed from the queue

(or aborted; covered later)

– the DAG is halted and not unhalted

(covered later)

• Resubmission uses the rescue file (if it exists)

when the original DAG file is resubmitted

– override: condor_submit_dag dag_file -f

DAGMan > The Rescue DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031010000000000000000

HTCondor Week 2017 127

Node Failures Result in DAG

Failure

• If a node JOB fails
(non-zero exit code)

– DAGMan continues to
run other JOB nodes
until it can no longer
make progress

• Example at right:

– B2 fails

– Other B* jobs continue

– DAG fails and exits after
B* and before node C

...B1 B2 B3 BN

A

C

DAGMan > The Rescue DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031010000000000000000

HTCondor Week 2017 128

Resolving held node jobs

• Look at the hold reason (in the job log, or with
‘condor_q -hold’)

• Fix the issue and release the jobs (condor_release)
-OR- remove the entire DAG, resolve, then resubmit
the DAG

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 4/30 18:08 0+00:20:36 R 0 0.3 condor_dagman

130.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh

131.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh

132.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh

4 jobs; 0 completed, 0 removed, 0 idle, 1 running, 3 held, 0 suspended

HTCondor Manual: DAGMan > DAG Submission

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

HTCondor Week 2017 129

DAG Completion

A.sub B1.sub B2.sub

B3.sub C.sub (other job files)

my.dag my.dag.condor.sub my.dag.dagman.log

my.dag.dagman.out my.dag.lib.err my.dag.lib.out

my.dag.nodes.log my.dag.dagman.metrics

(dag_dir)/

DAGMan > DAG Monitoring and DAG Removal

*.dagman.metrics is a summary of events and outcomes

*.dagman.log will note the completion of the DAGMan job

*.dagman.out has detailed logging (look to first for errors)

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003107000000000000000

HTCondor Week 2017 130

Beyond the Basic DAG:

Some Node-level Modifiers

HTCondor Week 2017 131

PRE and POST scripts run on the

submit server, as part of the node

JOB A A.sub

SCRIPT POST A sort.sh

JOB B1 B1.sub

JOB B2 B2.sub

JOB B3 B3.sub

JOB C C.sub

SCRIPT PRE C tar_it.sh

PARENT A CHILD B1 B2 B3

PARENT B1 B2 B3 CHILD C

my.dag

HTCondor Manual: DAGMan Applications > DAG Input File

...B1 B2 B3 BN

A

C

PRE script

POST script

• Use sparingly for lightweight work;

otherwise include work in node jobs

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003105000000000000000

HTCondor Week 2017 132

RETRY failed nodes to overcome

transient errors

DAGMan Applications > Advanced Features > Retrying
DAGMan Applications > DAG Input File > SCRIPT

• Retry a node up to N times if the exit code is
non-zero:

RETRY node_name N

• See also: retry except for a particular exit code
(UNLESS-EXIT), or retry scripts (DEFER)

• Note: Unnecessary for nodes (jobs) that can use
max_retries in the submit file

JOB A A.sub

RETRY A 5

JOB B B.sub

PARENT A CHILD B

Example:

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003109100000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102400000000000000

HTCondor Week 2017 133

RETRY applies to whole node,

including PRE/POST scripts

DAGMan Applications > Advanced Features > Retrying
DAGMan Applications > DAG Input File > SCRIPT

• PRE and POST scripts are included in retries

• RETRY of a node with a POST script uses the

exit code from the POST script (not from the job)

– POST script can do more to determine node success,

perhaps by examining JOB output

SCRIPT PRE A download.sh

JOB A A.sub

SCRIPT POST A checkA.sh

RETRY A 5

Example:

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003109100000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102400000000000000

HTCondor Week 2017 134

SCRIPT Arguments and Argument

Variables

DAGMan Applications > DAG Input File > SCRIPT
DAGMan Applications > Advanced Features > Retrying

$JOB: node name

$JOBID: cluster.proc

$RETURN: exit code of the node

$PRE_SCRIPT_RETURN: exit code of PRE script

$RETRY: current retry count

(more variables described in the manual)

JOB A A.sub

SCRIPT POST A checkA.sh my.out $RETURN

RETRY A 5

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102400000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003109100000000000000

HTCondor Week 2017 135

Modular Organization and

Control of DAG Components

• Splices and SubDags

• Node Throttling

• Node Priorities

• Lots more in the Manual…

HTCondor Week 2017 136

Additional Resources

• Nice HTCondor FAQs, examples, and
documentation from our friends in Canary
Islands:

https://is.gd/TjRvY8

• Email list:

http://htcondor.org/mail-lists/

• HTCondor HOWTO Recipes has FAQ on job
submission

http://wiki.htcondor.org/index.cgi/wiki?p=HowToAdmin
Recipes

https://is.gd/TjRvY8
http://htcondor.org/mail-lists/
http://wiki.htcondor.org/index.cgi/wiki?p=HowToAdminRecipes

HTCondor Week 2017 137

THANK YOU AND

QUESTIONS

HTCondor Week 2017 138

ADDITIONAL DAGMAN SLIDES

HTCondor Week 2017 139

Submit File Templates via VARS

JOB B1 B.sub

VARS B1 data=”B1” opt=“10”

JOB B2 B.sub

VARS B2 data=“B2” opt=“12”

JOB B3 B.sub

VARS B3 data=“B3” opt=“14”

my.dag

DAGMan Applications > Advanced Features > Variable Values

…

InitialDir = $(data)

arguments = $(data).csv $(opt)

…

queue

B.sub

• VARS line defines node-specific values that are
passed into submit file variables
VARS node_name var1=“value” [var2=“value”]

• Allows a single submit file shared by all B jobs, rather
than one submit file for each JOB.

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003109300000000000000

HTCondor Week 2017 140

SPLICE groups of nodes to

simplify lengthy DAG files

DAGMan Applications > Advanced Features > DAG Splicing

...B1 B2 B3 BN

A

C

JOB A A.sub

SPLICE B B.spl

JOB C C.sub

PARENT A CHILD B

PARENT B CHILD C

my.dag

JOB B1 B1.sub

JOB B2 B2.sub

…

JOB BN BN.sub

B.spl

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091300000000000000

HTCondor Week 2017 141

Use nested SPLICEs with DIR for

repeating workflow components

...

A

C

my.dag

B.spl

222

JOB A A.sub DIR A

SPLICE B B.spl DIR B

JOB C C.sub DIR C

PARENT A CHILD B

PARENT B CHILD C

SPLICE B1 ../inner.spl DIR B1

SPLICE B2 ../inner.spl DIR B2

…

SPLICE BN ../inner.spl DIR BN

DAGMan Applications > Advanced Features > DAG Splicing

inner.spl

JOB 1 ../1.sub

JOB 2 ../2.sub

PARENT 1 CHILD 2

B.spl B1

1
B2 BN

11

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091300000000000000

HTCondor Week 2017 142

Use nested SPLICEs with DIR for

repeating workflow components

my.dag

A/ A.sub (A job files)

B/ B.spl inner.spl

1.sub 2.sub

B1/ (1-2 job files)

B2/ (1-2 job files)

…

BN/ (1-2 job files)

C/ C.sub (C job files)

(dag_dir)/

DAGMan Applications > Advanced Features > DAG Splicing

JOB A A.sub DIR A

SPLICE B B.spl DIR B

JOB C C.sub DIR C

PARENT A CHILD B

PARENT B CHILD C

SPLICE B1 ../inner.spl DIR B1

SPLICE B2 ../inner.spl DIR B2

…

SPLICE BN ../inner.spl DIR BN

inner.spl

JOB 1 ../1.sub

JOB 2 ../2.sub

PARENT 1 CHILD 2

my.dag

B.spl

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091300000000000000

HTCondor Week 2017 143

More on SPLICE Behavior

• Upon submission of the outer DAG, nodes in the
SPLICE(s) are added by DAGMan into the overall DAG
structure.

– A single DAGMan job is queued with single set of status files.

• Great for gradually testing and building up a large DAG
(since a SPLICE file can be submitted by itself, as a
complete DAG).

• SPLICE lines are not treated like nodes.

– no PRE/POST scripts or RETRIES (though this may change)

DAGMan Applications > Advanced Features > DAG Splicing

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091300000000000000

HTCondor Week 2017 144

What if some DAG components

can’t be known at submit time?

...B1 B2 B3 BN

A

C

If N can only
be determined
as part of the
work of A …

HTCondor Week 2017 145

A SUBDAG within a DAG

DAGMan Applications > Advanced Features > DAG Within a DAG

...B1 B2 B3 BN

A

C

JOB A A.sub

SUBDAG EXTERNAL B B.dag

JOB C C.sub

PARENT A CHILD B

PARENT B CHILD C

my.dag

JOB B1 B1.sub

JOB B2 B2.sub

…

JOB BN BN.sub

B.dag (written by A)

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091300000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091200000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091300000000000000

HTCondor Week 2017 146

More on SUBDAG Behavior

• WARNING: SUBDAGs should only be used (over
SPLICES) when absolutely necessary!

– Each SUBDAG EXTERNAL has it’s own DAGMan job
running in the queue.

• SUBDAGs are nodes (can have PRE/POST scripts,
retries, etc.)

• A SUBDAG is not submitted until prior nodes in
the outer DAG have completed.

DAGMan Applications > Advanced Features > DAG Within a DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091300000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091200000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091300000000000000

HTCondor Week 2017 147

Use a SUBDAG to achieve Cyclic

Components within a DAG

DAGMan Applications > Advanced Features > DAG Within a DAG

B

A

C

JOB A A.sub

SUBDAG EXTERNAL B B.dag

SCRIPT POST B iterateB.sh

RETRY B 1000

JOB C C.sub

PARENT A CHILD B

PARENT B CHILD C

my.dag

POST script
RETRY

• POST script determines whether another iteration is
necessary; if so, exits non-zero

• RETRY applies to entire SUBDAG, which may include
multiple, sequential nodes

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091300000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091200000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091300000000000000

HTCondor Week 2017 148

DAG-level Control

HTCondor Week 2017 149

Pause a running DAG with

hold/release

• Hold the DAGMan job process:

condor_hold dagman_jobID

• Pauses the DAG
– No new node jobs submitted

– Queued node jobs continue to run (including

SUBDAGs), but no PRE/POST scripts

– DAGMan jobs remains in the queue until
released (condor_release) or removed

DAGMan > Suspending a Running DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003108000000000000000

HTCondor Week 2017 150

Pause a DAG with a halt file

• Create a file named DAG_file.halt in the
same directory as the submitted DAG file

• Pauses the DAG
– No new node jobs submitted

– Queued node jobs, SUBDAGs, and POST scripts
continue to run, but not PRE scripts

• DAGMan resumes after the file is deleted

– If not deleted, the DAG creates rescue DAG file
and exits after all queued jobs have completed

DAGMan > Suspending a Running DAG
DAGMan > The Rescue DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003108000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031010000000000000000

HTCondor Week 2017 151

Throttle job nodes of large DAGs

via DAG-level configuration

• If a DAG has many (thousands or more)
jobs, performance of the submit server
and queue can be assured by limiting:
– Number of jobs in the queue

– Number of jobs idle (waiting to run)

– Number of PRE or POST scripts running

• Limits can be specified in a DAG-specific
CONFIG file (recommended) or as
arguments to condor_submit_dag

DAGMan > Advanced Features > Configuration Specific to a DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003108000000000000000

HTCondor Week 2017 152

DAG-specific throttling via a

CONFIG file

...B1 B2 B3 BN

A

C

JOB A A.sub

SPLICE B B.dag

JOB C C.sub

PARENT A CHILD B

PARENT B CHILD C

CONFIG my.dag.config

my.dag

DAGMAN_MAX_JOBS_SUBMITTED = 1000

DAGMAN_MAX_JOBS_IDLE = 100

DAGMAN_MAX_PRE_SCRIPTS = 4

DAGMAN_MAX_POST_SCRIPTS = 4

my.dag.config

DAGMan > Advanced Features > Configuration Specific to a DAG

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003108000000000000000

HTCondor Week 2017 153

Other DAGMan Features

HTCondor Week 2017 154

Other DAGMan Features:

Node-Level Controls

DAGMan Applications > Advanced Features > Setting Priorities
DAGMan Applications > The DAG Input File > PRE_SKIP

• Set the PRIORITY of JOB nodes with:

PRIORITY node_name priority_value

• Use a PRE_SKIP to skip a node and mark it as

successful, if the PRE script exits with a specific

exit code:

PRE_SKIP node_name exit_code

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003109400000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102500000000000000

HTCondor Week 2017 155

Other DAGMan Features:

Modular Control

DAGMan Applications > The DAG Input File > JOB
DAGMan Applications > Advanced Features > INCLUDE
DAGMan Applications > Advanced > Throttling by Category

• Append NOOP to a JOB definition so that its JOB

process isn’t run by DAGMan
– Test DAG structure without running jobs (node-level)

– Simplify combinatorial PARENT-CHILD statements (modular)

• Communicate DAG features separately with INCLUDE
– e.g. separate file for JOB nodes and for VARS definitions, as part of the

same DAG

• Define a CATEGORY to throttle only a specific subset

of jobs

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003102100000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091000000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003109500000000000000

HTCondor Week 2017 156

Other DAGMan Features:

DAG-Level Controls

• Replace the node_name with ALL_NODES to apply
a DAG feature to all nodes of the DAG

• Abort the entire DAG if a specific node exits with a
specific exit code:

ABORT-DAG-ON node_name exit_code

• Define a FINAL node that will always run, even in
the event of DAG failure (to clean up, perhaps).

FINAL node_name submit_file

DAGMan Applications > Advanced > ALL_NODES
DAGMan Applications > Advanced > Stopping the Entire DAG
DAGMan Applications > Advanced > FINAL Node

https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091600000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION003109200000000000000
https://research.cs.wisc.edu/htcondor/manual/current/2_10DAGMan_Applications.html#SECTION0031091500000000000000

