An Introduction to Real-Time Operating Systems and
Schedulability Analysis

Marco Di Natale
Scuola Superiore S. Anna

Qutline

« Background on Operating Systems
* An Introduction to RT Systems

« Model-based development of Embedded RT systems
— the RTOS in the platform-based design

« Scheduling and Resource Management

« Schedulability Analysis and Priority Inversion
— The Mars Pathfinder case

* Implementation issues and standards
— OSEK

Credits

« Paolo Gai (Evidence S.r.l.) — slides on EDF and OSEK
« Giuseppe Lipari (Scuola Superiore S. Anna) — slides on OS
« Manas Saksena (TimeSys) — examples on blocking time comput.

 From Mathworks Simulink and RTW manuals — slides on RT
blocks

Background on Operating Systems

Fundamentals

 Algorithm:
— It is the logical procedure to solve a certain problem

— It is informally specified a a sequence of elementary steps
that an “execution machine” must follow to solve the
problem

— It is not necessarily expressed in a formal programming
language!
* Program:
— It is the implementation of an algorithm in a programming
language
— Can be executed several times with different inputs
* Process:

— An instance of a program that given a sequence of inputs
produces a set of outputs

Operating System

« An operating system is a program that
— Provides an “abstraction” of the physical machine
— Provides a simple interface to the machine
— Each part of the interface is a “service’

 An OS is also a resource manager

— The OS provides access to the physical resources of a
computing machine

— The OS provides abstract resources (for example, a file, a
virtual page in memory, etc.)

Levels of abstraction

Web . Printer
-—\ 4 Interface (System API) N

Operating Virtual Memory Scheduler Virtual File Sys.
System

N\

=

el Video Card Hard disk

Abstraction mechanisms

« Why abstraction?
— Programming the HW directly has several drawbacks
« It is difficult and error-prone
* It is not portable

— Suppose you want to write a program that reads a text file
from disk and outputs it on the screen

« Without a proper interface it is virtually impossible!

Abstraction Mechanisms

 Application programming interface (API)
— Provides a convenient and uniform way to access to one
service so that
« HW details are hidden to the high level programmer
* One application does not depend on the HW
« The programmer can concentrate on higher level tasks

— Example

» For reading a file, linux and many other unix OS provide the
open(), read() system calls that, given a “file name” allow to
load the data from an external support

the need for concurrency

 there are many reason for concurrency
— functional
— performance
— expressive power

 functional
— many users may be connected to the same system at the
same time

» each user can have its own processes that execute
concurrently with the processes of the other users

— perform many operations concurrently

« for example, listen to music, write with a word processor, burn a
CD, etc...

 they are all different and independent activities
 they can be done “at the same time”

the need for concurrency (2)

« performance

— take advantage of blocking time

« while some thread waits for a blocking condition, another thread
performs another operation

— parallelism in multi-processor machines

« if we have a multi-processor machine, independent activities can be
carried out on different processors are the same time

e expressive power
— many control application are inherently concurrent

— concurrency support helps in expressing concurrency, making
application development simpler

theoretical model

« asystem is a set of concurrent activities
— they can be processes or threads

 they interact in two ways

— they access the hardware resources
* processor
+ disk
* memory, etc.

— they exchange data

 these activities compete for the resources and/or
cooperate for some common objective

Process

« The fundamental concept in any operating system
IS the “process”
— A process is an executing program

— An OS can execute many processes at the same time
(concurrency)

— Example: running a Text Editor and a Web Browser at the
same time in the PC
* Processes have separate memory spaces
— Each process is assigned a private memory space

— One process is not allowed to read or write in the memory
space of another process

— |If a process tries to access a memory location not in its
space, an exception is raised (Segmentation fault), and
the process is terminated

— Two processes cannot directly share variables

Memory layout of a Process

Dynamically allocated
— memory
(variable size)

Stack
(variable size) I
Global variables
(non initialized) I
Global variables
(initialized) I
Contains the process code
(machine code) I

Memory Protection

« By default, two processes cannot share their
memory

— If one process tries to access a memory
location outside its space, a processor
exception is raised (trap) and the
process is terminated

— The “Segmentation Fault” error!!

Any reference to this
memory results in a
segmentation fault

Processes

« We can distinguish two aspects in a process

* Resource Ownership

— A process includes a virtual address space, a process image
(code + data)

— It is allocated a set of resources, like file descriptors, 1/O
channels, etc

« Scheduling/Execution

— The execution of a process follows an ececution path, and
generates a trace (sequence of internal states)

— It has a state (ready, Running, etc.)
— And scheduling parameters (priority, time left in the round, etc.)

Multi-threading

« Many OS separate these aspects, by providing the
concept of thread

« The process is the “resource owner”

« The thread is the “scheduling entity”
— One process can consists of one or more threads

— Threads are sometime called (improperly) lightweight
processes

— Therefore, on process can have many different (and
concurrent) traces of execution!

Multi-threaded process model

In the multi-threaded
process model each
process can have many
threads

One address space
One PCB
Many stacks

Many TCB (Thread
Control blocks)

The threads are
scheduled directly by the
global scheduler

Process
control
block

Process
address
space

Process i

Threads

« Generally, processes do not share memory

— To communicate between process, it is necessary to user
OS primitives

— Process switch is more complex because we have to
change address space

« Two threads in the same process share the same
address space
— They can access the same variables in memory
— Communication between threads is simpler
— Thread switch has less overhead

Threads support in OS

 Different OS implement threads in different ways
— Some OS supports directly only processes
« Threads are implemented as “special processes”
— Some OS supports only threads
* Processes are threads’ groups

— Some OS natively supports both concepts
* For example Windows NT

* In Real-Time Operating Systems

— Depending on the size and type of system we can have
both threads and processes or only threads
— For efficiency reasons, most RTOS only support
* 1 process
« Many threads inside the process
 All threads share the same memory

— Examples are RTAI, RT-Linux, Shark, some version of
VxWorks, QNX, etc.

The thread control block

* In a OS that supports threads
— Each thread is assigned a TCB (Thread Control Block)
— The PCB holds mainly information about memory
— The TCB holds information about the state of the thread

A 4

TID

Thread Table PID
CR

IP
SP
Other Reg.
State
Priority
Time left

Thread states
« The OS can execute many threads at the same time

« Each thread, during its lifetime can be in one of the following
states

— Starting (the thread is being created)

— Ready (the thread is ready to be executed)
— Executing (the thread is executing)

— Blocked (the thread is waiting on a condition)
— Terminating (the thread is about to terminate)

Thread states

a) Creation The thread is created

b) Dispatch The thread is selected to execute

c) Preemption The thread leaves the processor

d) Wait on condition The thread is blocked on a condition
e) Condition true The thread is unblocked

fy Exit The thread terminates

Blocked

Thread queues

Ready queue

- - -

Preemption

A

Event occurs Wait condition 1

A

Event occurs Wait condition 2

<
«
<
«
<
«

Event occurs Wait condition 3

Context switch

* It happens when

— The thread has been “preempted” by another higher priority
thread

— The thread blocks on some condition

— In time-sharing systems, the thread has completed its “round”
and it is the turn of some other thread

« We must be able to restore the thread later

— Therefore we must save its state before switching to another
thread

Time sharing systems

 In time sharing systems,
— Every thread can execute for maximum one round
» For example, 10msec

— At the end of the round, the processor is given to another
thread

Ready queue Context

I / Switch

\ ¥ Timer

interrupt

Background on Programming ...

« An Example: Sensor networks ...

TinyOS: OS for WSN

e Scheduler:
— two level scheduling: events and tasks
— scheduler is simple FIFO
— a task can not preempt another task
— events (interrupts) preempt tasks (higher priority)

main {

while(1) {
while(more_tasks)
schedule_task;
sleep;

TinyOS: OS for WSN

typedef struct { ~
] - ° tp
void (*tp) (); ——
} TOSH_sched_entry_T; I TOSH MAX TASKS
_e TOSH sched full
Task code
e TOSH sched_ free
_/
TOSH__queue

enum {
TOSH MAX TASKS = 8,
TOSH _TASK BITMASK = (TOSH _MAX TASKS - 1)},

TOSH_sched_entry T TOSH_queue[TOSH_MAX TASKS];
volatile uint8_t TOSH_ sched_ full;
volatile uint8_t TOSH_sched free;

TinyOS: OS for WSN

void TOSH sched init (void)
{
TOSH_sched_free = 0;
TOSH_sched_full = 0;}

bool TOS_empty (void)

{
return TOSH_sched full == TOSH sched free;

\.

TinyOS: OS for WSN

bool TOS_post (void (*tp) ()) __ attribute__ ((spontaneous)) ({

__nesc_atomic_t fInterruptFlags;
uint8_t tmp;

/qr fInterruptFlags = _ nesc_atomic_start();

tmp = TOSH_sched_free;
TOSH_sched free++;
TOSH_sched free &= TOSH TASK BITMASK,

if (TOSH_sched free !'= TOSH sched full)
_ nesc_atomic_end(fInterruptFlags);

TOSH_queue[tmp] .tp = tp;
return TRUE;
}

else {
TOSH_sched free = tmp;
__nesc_atomic_end (fInterruptFlags);

return FALSE;

~
* % % ok %k X %k X X X * * * *

*
~

TOS_post (thread pointer)

Put the task pointer into the
next free slot.

Return 1 if successful,
0O if there is no free slot.

This function uses a
critical section to protect
TOSH sched free.

As tasks can be posted in both
interrupt and non-interrupt
context, this is necessary.

TinyOS: OS for WSN

bool TOSH run next task () {
__nesc_atomic_t fInterruptFlags; uint8_t old_full; wvoid (*func) (void);

if (TOSH_sched full == TOSH_sched free) return 0;
else {
fInterruptFlags = _ nesc_atomic_start ();

old_full = TOSH_sched_ full;

TOSH_sched_full++; /*
TOSH_sched_full &= TOSH_TASK BITMASK; * TOSH schedule_task ()
func = TOSH_queue|[(int)old full] .tp; *
TOSH_queue[(int)old full].tp = 0; * Remove the task at the head of
__nesc_atomic_end(fInterruptFlags); * the queue and execute it,
func(); * freeing the queue entry.
return 1; * Return 1 if a task was executed,
} * 0 if the queue is empty.
} *
* This function does not need a
void TOSH_ run_task() ({ * critical section because it
while (TOSH_run next_task()); * is only run in non-interrupt
TOSH_sleep(); * context; therefore,
TOSH_wait () ; * TOSH_sched_full does not
} *

need to be protected.

resource

e aresource can be
— a HW resource like a I/O device
— a SW resource, i.e. a data structure
— in both cases, access to a resource must be regulated to
avoid interference
« example 1

— if two processes want to print on the same printer, their
access must be sequentialised, otherwise the two printing
could be intermangled!

« example 2

— if two threads access the same data structure, the operation
on the data must be sequentialized otherwise the data could
be inconsistent!

Interaction model

« activities can interact according to two fundamental
models
— shared memory
 All activities access the same memory space
— message passing

 All activities communicate each other by sending messages
through OS primitives

— we will analize both models in the following slides

shared memory

« shared memory communication
— it was the first one to be supported in old OS
— it is the simplest one and the closest to the machine
— all threads can access the same memory locations

Shared memory

mutual exclusion problem

« we do not know in advance the relative speed of the
Processes
— we don’t know the order of execution of the hardware instructions

shared memory void *threadA(void *)| | void *threadB(void *)
{ {
] e})
intx; x=x+1; X=X+ 1;
s by
« bad interleaving:
LD RO,x TA X =0
LD RO, X TB X=0
INC RO TB x=0
ST X, RO TB Xx=1
INC RO TA x=1
ST X, RO TA x=1

critical sections

« definitions
— the shared object where the conflict may happen is a “resource”

— the parts of the code where the problem may happen are called
“critical sections”

« a critical section is a sequence of operations that cannot be interleaved
with other operations on the same resource

— two critical sections on the same resource must be properly
sequentialized

— we say that two critical sections on the same resource must
execute in MUTUAL EXCLUSION

— there are three ways to obtain motual exclusion
« implementing the critical section as an atomic operation
« disabling the preemption (system-wide)

 selectively disabling the preemption (using semaphores and mutual
exclusion)

critical sections: atomic operations

* In single processor systems
— disable interrupts during a critical section

* problems:
— if the critical section is long, no interrupt can arrive during the
critical section
« consider a timer interrupt that arrives every 1 msec.

« if a critical section lasts for more than 1 msec, a timer interrupt
could be lost!

— concurrency is disabled during the critical section!

« we must avoid conflicts on the resource, not disabling
interrupts!

critical sections: atomic operations (2)

* multi-processor
— define a flag s for each resource
— use lock(s)/unlock(s) around the critical section

e problems:

— busy waiting: if the critical section is long, we waste a lot of
time
— cannot be used in single processors!

int s;

lock(s);
<critical section>
unlock(s);

critical sections: disabling preemption

 single processor systems
— in some scheduler, it is possible to disable preemption for a
limited interval of time
— problems:

« if a high priority critical thread needs to execute, it cannot make
preemption and it is delayed

 even if the high priority task does not access the resource!

<disable preemption>
<critical section>
<enable preemption>

general mechanism: semaphores

« Djikstra proposed the semaphore mechanism

— a semaphore is an abstract entity that consists
e a counter
 a blocking queue
« operation wait
 operation signal

— the operations on a semaphore are considered atomic

semaphores

semaphores are basic mechanisms for providing
synchronization

— it has been shown that every kind of synchronization and
mutual exclusion can be implemented by using sempahores

— we will analyze possible implementation of the semaphore
mechanism later

typedef struct {
<blocked queue> blocked;
int counter;

} sem_t; Note:
.+ thereal prototype
void sem_init (sem_t &s, int n); of sem_init is

slightly different!
void sem_wait (sem_t &s);
void sem_post (sem_t &s);

wait and signal

« a wait operation has the following behavior

— if counter == 0, the requiring thread is blocked
* it is removed from the ready queue
* itis inserted in the blocked queue

— if counter > 0, then counter--;

* a post operation has the following behavior

— if counter == 0 and there is some blocked thread, unblock it
 the thread is removed from the blocked queue
* itis inserted in the ready queue

— otherwise, increment counter

semaphores

void sem_init (sem_t *s, int n)

{
s->count=n;
}
void sem_wait(sem_t *s)
{
if (counter == 0)
<block the thread>
else
counter--;
}
void sem_post(sem_t *s)
{

if (<there are blocked threads>)
<unblock a thread>
else
counter++;

signal semantics

« what happens when a thread blocks on a semaphore?
— in general, it is inserted in a BLOCKED queue

» extraction from the blocking queue can follow different
semantics:

— strong semaphore

 the threads are removed in well-specified order

» for example, the FIFO order is the fairest policy, priority based
ordering, ...

— signal and suspend
« after the new thread has been unblocked, a thread switch happens
— signal and continue

« after the new thread has been unblocked, the thread that executed the
signal continues to execute

« concurrent programs should not rely too much on the
semaphore semantic

mutual exclusion with semaphores

* how to use a semaphore for critical sections
— define a semaphore initialized to 1
— before entering the critical section, perform a wait
— after leaving the critical section, perform a post

sem_ts;

sem_init(&s, 1);

void *threadA(void *arg)
{

sem_wait(&s);
<critical section>
sem_post(&s);

void *threadB(void *arg)
{

sem_wait(&s);
<critical section>
sem_post(&s);

mutual exclusion with semaphores (2)

semaphore

sem_wait(); (TA)
<critical section (1)> (TA)
sem_wait() (TB)
<critical section (2)> (TA)
sem_post() (TA)
<critical section> (TB)

sem_post() (TB)

synchronization

* how to use a semaphore for synchronization
— define a semaphore initialized to 0
— at the synchronization point, perform a wait
— when the synchronization point is reached, perform a post
— Iin the example, threadA blocks until threadB wakes it up

sem_ts;

sem_init(&s, 1);

void *threadA(void *) void *threadB(void *)
{ {

sem_wait(&s); « sem_post(&s);
))

= how can both A and B synchronize on the same instructions?

semaphore implementation

« system calls
— wait() and signal() involve a possible thread-switch

— therefore they must be implemented as system calls!

» one blocked thread must be removed from state RUNNING and
be moved in the semaphore blocking queue

« protection:
— a semaphore is itself a shared resource
— wait() and signal() are critical sections!

— they must run with interrupt disabled and
by using lock() and unlock() primitives

semaphore implementation (2)

void sem_wait(sem_t *s)
{
spin_lock_irgsave();

if (counter==0) {
<block the thread>
schedule();

} else s->counter--;

spin_lock_irgrestore(); void sem_post(sem_t *s)

¥ {

spin_lock_irgsave();

if (counter==0) {
<unblock a thread>
schedule();
} else s->counter++;
spin_lock_irgrestore();

RTOS Standards: POSIX

Industrylnsight
Real-Time Linux

Linux 2.6

The Importance of POSIX

There's & lot to be said about the utility of POSIX. For example, the

for Embedded Syste
Closing in on Real T

While not yet ready for hard real-time compu
many new features that make it an excellent |
of embedded computing tasks

by Ravi Gupta, LynuxWorks

POSIX standard describes a set of functions for thread creation and
management called POSIX threads, or pthreads. This functionality has
been available in past versions of Linux, but its implementation has
been much impreved in 2.6, The Native POSIX Thread Library (NFTL)
has been shown to be a significant improvement over the older
LinuxThreads approach, and even improves other high-performancs
alternatives that have been available as patches.

Along with POSIX threads, 2.6 provides POSIX =ignals and POSIX
high-resolution timers as part of the mainstream kernel. POSIX signals
are an improvement over UN[X-style signals, which were the default in
previous Linux releases. Unlike UNIX signals, POSIX signals cannot be
lost and can earry information as an argument. Also, P { signals
can be =sent from one POSIX thread to ancther, rather than only from
process to process like UNIX signals.

Embedded systems also often need to poll hardware or do other
tasks on a fixed schedule. POSIX timers make it easy to arrange any
task to get scheduled periodically. The clock that the timer uses can
be ==t to tick at a rate as fine as one kilohertz, =o that software engi-

ith its low cost, abundant fea-
tures and inherent openness,
Linux provides fertile ground

for creativity in embedded computing. As
its importance grows, we can even expect
Linux to become the platform where
progress first happens. The question is,
could Linux 2.6 be the breakthrough ver-
sion we've been anticipating for
embedded systems—the version that
opens the floodgates to Linux accep-
tance? The answer is “yes.”

The embedded computing universe
is vast and encompasses computers of all
sizes, from tiny wristwatch cameras to
telecommunications switches with thou-
sands of nodes distributed worldwide.
Embedded systems can be simple enough
to require only small microcontrollers, or
they may require massive parallel
processors with prodigious amounts of
memory and computing power. Linux 2.6
delivers enhancements to provide sup-

1,000
100

01
oo

— 2.6 kerrel

IEETEIN (inux 2.6 shows marked i

time as loads are increaseq

Taken together, these enhancemer
serve to both “firm up™ Linux

embedded computing while making it a
more attractive alternative for a wider

Task Response Ti

1GHz Pentium 1l operd

|

Best

0.068

neers can contral the scheduling of tasks with precision.

This is largely due to its cost-effectiveness
in what are often low-margin commodity
devices. Linux 2.6 delivers support for
several technologies that are key to the
suceess of many types of consumer prod-
ucts. For example, 2.6 includes the
Advanced Linux Sound Architecture, or
ALSA. This state-of-the-art facility sup-
ports USE and MIDI devices with fully
thread and multiprocessor-safe software.
With ALSA, a system can run multiple
sound cards, play and record at the same
time or mix multiple audio streams.

USB 2.0 also makes its debut on Linux
2.6, We can expect that high-speed devices
will proliferate in the near future, and that
Linux will be a leading platform for USB

2 (et

user interface and sometimes with no
operator interface. While previous Linux
versions made it possible to build a head-
less system, some of the support software
was not removable, giving the kemnel more
bulk than was necessary or desirable.
Linux 2.6 however can be configured to
entirely omit support for unneeded dis-
plays, keyboards or mice.

For portable products, Linux 2.6
debuts the Bluetooth wireless interface,
which is now taking its place next to
802.11 as a protocol option for wireless
communications. With both the SCO
datalink for audio and the L2CAP for con-
nection-oriented data transfers available,
Linux 2.6 is an excellent choice wherever

nm fircs chert rongs wingls 2

duces improvements that make it a far
more worthy platform than in the past
I I

suite.

RTLinux was one of the

e duisdd

wvery large memory sizes have their choice
of 6d-bit microprocessors with Linux 2.6.

The Intel Itanium 64 architecture was
treated in a previous releases of Linux, and
support continues in 2.6, Linux 2.6 also
continues o cover the AMD64 architecture
with support of the AMD Opteron micro-
processor. Nor is the PowerPC left out, as
PPCA4 support is also available. Clearly, as
2.6 illustrates, the Linux community has
the momentum to keep upwith innovations
in large-bus, large-memory computing.

Microcontrollers, on the other hand,
have been something of a frontier for
Linux. Now they are supported on the
mainstream Linux 2.6 kemel. In most
cases, previous instances of Linux
required a full-featured microprocessor
with a memory management unit {MMLU).
But simpler microcontrollers are typically
the more appropriate choice when low
cost and simplicity are called for.

There have been ways to put Linux on
MMU-less processors prior to version 2.6.
The Linux for Microcontrollers project has
been a successful branch of Linux for some
important small systems. Version 2.6 inte-
grates a significant portion of uClinux into
the production kernel, bringing microcon-
troller support into the Linux mainstream.

The Linux 2.6 version suppomns sev-
eral current microcontrollers that don’t
have memory management units. These
include Motorola m68k processors such as
Dragonball and ColdFire, as well as
Hitachi H8/300 and NEC v&50 micro-
processors. The ETRAX family of net-
working microcontrollers by Axis
Communications is also supported.

As a caveat, Linux running on MMU-
less processors will still be multitasking,
but will obviously not have the memory
protection provided on fully endowed
processars. Consistent with the lack of true
processes on these small platforms, there is

RTOS Standards: OSEK

Eil=

0SEK-¥DX.org - Mozilla Firefox

Modifica Wisualizea Wai Segnalbri Strume

RTA Software Products

Overview

The RTA product family is made up of tools and software compo-
nents for developing optimized embedded real-time systermns. As
the required functionality for ECUs becomes ever more demand-
ing, the RTA product family offers the ideal solution to deliver
complex real-time software systems on time and to budget.

Oosed-Loop Davalopmart

Fgure 3.2

Use of the OSEK aperating system (O5) standard is accepted prac-
tice acrass the worldwide automative industry. RTA-OSEK Cam-
ponent is the world's best implementation of the OSEK 0S
standard that has been refined and enhanced as a result of many
years experience with successful ECU prajects. It offers full com-
pliance with OSEK QS features and supports a wide range of mi-
cracontrollers that are commanly used for automative
applications.

A key benefit of RTA-DSEK is the ability to use its Planner tool to
model an application's real-time performance and analyze
whether all of the associated real-time performance requirements
will be met. In this way, the application cade can be written with
the confidence that costly reworking to avoid performance prob-
lems will not be necessary.

The Builder tool of RTA-OSEK permits the configuration of every
aspect of the OSEK OF application. Using this information, the
Builder is able to produce highly optimized OSEK 05 implemen-
tation specifically for the configured application.

RTA-CSEK Planner and Builder integrate tightly into the software
design process, with both graphical and command line modes of
aperation.

When a working system is available, the powerful features of

Software Development Tools

Contact Us

downloads

J Systems
I

hd ermbedded Linux development solution, includi
stacks, The addition of this key technology compl
and helps shorten custamer time-to-market by
orn single source,

s you have all the tools for develoaping application
br Integrated Development Environment (IDE). Co
Fornpiling, linking, and debugging your projects wil
ures that CodeWarrior for QMR RTOS offers iz the
ead awareness support, This allows rmultiple user:
on the same on the target system. For each proc
Fiple threads, with the ability to view rmermory, regi

and 32 bit architectures:

and scalable ermbedded RTOS, with an extrernel
hes, Metrowarks ©SEKturbo is the ideal software p
tanding reputation for quality, stability and predict
ptions, which requires both performance and real-
ing for many platforms including: HCOS, HC12, 5T
7. 5T10, MEC WED0, SHZ,

| debug tools, together with Metrawerks' Code'w ar
., offer an ideal platform for developing and deillll
»
A

cl |

Definitions of Real-time system

Interactions between the system and the environment
(environment dynamics).

Time instant when the system produces its results (performs an
action).

A real-time operating system is an interactive system that
maintains an ongoing relationship with an asynchronous
environment i.e. an environment that progresses irrespective of
the RTS

A real-time system responds in a (timely) predictable way to
(un)predictable external stimuli arrival.

(Open, Modular, Architecture Control user group - OMAC): a
hard real-time system is a system that would fall if its timing
requirements were not met; a soft real-time system can tolerate
significant variations in the delivery of operating system services
like interrupts, timers, and scheduling.

In real-time computing correctness depends not only on
the correctness of the logical result of the computation but
also on the result delivery time (timing constraints).

Timing constraints

* Where do they come from ?
* From system specifications (design choices?)

Automotive systems development process

« V-cycle

MAGNE'r _ _ _
ARELIJ from Magneti Marelli web site

Cs AS, SQ
System P System
Function g = P
Matlab e | System Validation ADI Simulator
Saber i Helios
Logicall Phisycal
Matlab Partitioning
Saber Operation Design e Logic Component [' e fime simulator
Statemate (SFO, SRO) Helios
dSPACE Dspace
) Debugger, CAN an., DTS,...
Cconpiler|l SW Design | SW Test and Validation| | s.sic simulator
gogf”“”s 7 Real time simulator
niffer :
Logiscope
ICEmulators

Simulink, Target Link (autocode)

RTS and Platform-Based Design

Platform based design and the decoupling of Functionality and Architecture
enable the reuse of components on both ends in the meet-in-the middle

approach
Reuse of functions on different
architectures
Application Space
Application
Functional nstance
Platform

specification _
Functional Mod
interface

Architecture
Platform

System
Platform

Architecture Stack

Platform space
exploration

Platform
instance

Architecture Space

Reuse of resources to
implement different
functions

Vehicle functional model
Independent of Platform

(=

System platform model
Independent from both and suitable for
evaluation of mapping solutions

Execution architecture model
Independent of Functionality

RTS and Platform-Based Design

« Design (continued): matching the logical design into the SW
architecture design

waveform heartrate | alarm alarm
controller —_ alarm Kiosk
— arameter |manager ||display o
Foul

physician sets up
for patient ise 4 waveforms| Rate=50 I 1| theManager
menitoring etsweep | I

i speed(25) Rate=47 1

setbradycardia
alarm

LiMT

settachycardia
alarm

Rate:

raise

T
o N Timing constraints (from
intervention ” Rate=ds a\a;mlext functional model
, |

i
|
i
T
i
i
I
! asystole event
i
i
i
I
i

count_out
RESET
{ \ i lower
I bradycardia alg
I
|
|
\ o
i = O
\ { | e
T a—
A i I I 0P | e s
Z, | I I iowk ispay
) ! - " a
T Tis Gles Dagram s oo, sk e Lo cepenseride
b R = L A | -
o sevice requst ey
\ 1] SEE e
fuel price.

-

]
]
1
]
v .
Task and

[7
€S0urces Tnreads (tasks).” ,’ Threads (tasks resource

-
o -]
— =

—_—

.

RTOS API

Timing attributes (from
platform deployment

An introduction to Real-Time scheduling

Application of schedulability theory (worst case timing
analysis and scheduling algorithms)

for the development of scheduling and resource
management algorithms inside the RTOS, driving the
development of efficient (in the worst case) and predictable
OS mechanisms (and methods for accessing OS data
structures)

for the evaluation and later verification of the design of
embedded systems with timing constraints and possibly for
the synthesis of an efficient implementation of an

embedded system (with timing constraints) model
— synthesis of the RTOS

Real-time scheduling

« Assignment of system resources to the software threads

« System resources
— pyhsical: CPU, network, 1/0O channels
— logical: shared memory, shared mailboxes, logical channels

» Typical operating system problem

* |In order to study real-time scheduling policies we need a model
for representing

— abstract entities
 actions,
* events,
 time, timing attributes and constraints

— design entities
* units of computation
* mode of computation
* resources

Classification of RT Systems

« Based on input

— time-driven: continuous (synchronous) input

— event-driven: discontinuous (asynchronous) input
« Based on criticality of timing constraints

— hard RT systems: response of the system within the timing
constraints is crucial for correct behavior

— soft RT systems: response of the system within the timing
constraints increases the value of the system

« Based on the nature of the RT load:
— static: predefined, constant and deterministic load
— dynamic: variable (non deterministic) load
« real world systems exhibit a combination of these characteristics

Classification of RT Systems: criticality

« Typical Hard real time systems
— Aircraft, Automotive
— Airport landing services
— Nuclear Power Stations
— Chemical Plants
— Life support systems

+ Typical Soft real time systems
— Multimedia
— Interactive video games

Classification of RT Systems: criticality

« Hard, Soft and Firm type

value

Hard type

time

deadline

value

Firm type

value

time

deadlir'i‘e

Soft type

deadHﬁe

Classification of RT Systems: Input-based

« Event-Triggered vs. Time-Triggered models
« Time triggered
— Strictly periodic activities (periodic events)

« Event triggered

— activities are triggered by external or internal asynchronous
events, not necessarily related to a periodic time reference

Classification of RT Systems: Input-based

« Example, activity to be executed when the temperature
exceeds the warn level:

« event triggered

« — Action triggered only when temperature > warn

* lime triggered

« — controls temperature every int time units; recovery Is
triggered when temperature > warn

| f\w\ | /\j[\w
Y] Y]
I - | -
IEN IR _ "E _

Classification of RT Systems: Input-based

* Activation models

@ Periodic @ Aperiodic ® Sporadic

1YY R B | B

RN

P

® Periodic with jitter

¢ o o

I I B

Modeling Real-time systems

« We need to identify (in the specification and design phase)
— Events and Actions (System responses).
« Some temporal constraints are explicitly expressed as a
results of system analysis

— “The alarm must be delivered within 2s from the time instant a
dangerous situation is detected”

« More often, timing constraints are hidden behind

sentences that are apparently not related to time ...
— And are the result of design choices

Modeling Real-time systems

« Example: plastic molding

« The controller of the temperature must be activated within
Temp SECONAS from the time instant when temperature
thresholds are surpassed, such that T, ; < T < Ty,

A
Tooit —=

TI'H'EI T

Tmf

-

Aow

o R — -—-*—-—— - —
|
|
|
|

Modeling Real-time systems

* ... the injector must be shut down no more than 7,
seconds after receiving the end-run signals A or B such
that v...t,. < $

INJ ¥inj

Modeling Real-time systems

« (UML profile, alternate notation)

{0 ms}
{1.5 ms}

{2 ms}

{4.7 ms}

{10.2 ms}

{11 ms}

InstanceA :

\

\

\
L

helloMsg

InstanceB :

\
\
\
\
\
I
\
\
.

2.7ms

%

Modeling Real-time systems

« What type of timing constraints are in a Simulink
diagram?

F-14 Digital Autopilot High Angle of Attack Mode EI

Digcrats
Eing Waes

|

Stick Filber

-l

Dripoiate- Tims
Alpha Sensor Fiiter Irda-grabei

Tape-Didad
Heldl

Pitch Sensor Fiter

Copyrigh 10003000 Th b skt s ne

Scheduling of Real-time systems

« What are the key concepts for real-time systems?
— Schedulable entities (threads)

— Shared resources (physical — HW / logical)
— Resource handlers (RTOS)

« Defined in the design of the Architectural level

Our definition of real-time

« Based on timing correctness

— includes timing constraints o R >
o et lime Deadli
+ Response times : e

e Jitter
* Release times, slack ...

* Precedence and resource constraints

Release time tl me

Real-time systems: handling timing constraints

« Real Time = the fastest possible implementation dictated by
technology and/or budget constraints ?

« “the fastest possible response is desired. But, like the cruise control
algorithm, fastest is not necessarily best, because it is also desirable
to keep the cost of parts down by using small microcontrollers. What is
important is for the application requirements to specify a worst-case
response time. The hardware and software is then designed to meet
those specifications”

« “Embedded systems are usually constructed with the least powerful
computer that can meet the performance requirements. Marketing and
sale concerns push for using smaller processors and less memory
reducing the so-called recurring costs”

Real-time systems: handling timing constraints

« Faster is always better ?

Task 1 E =l
Task 2 - l ‘
Task1 | | N [|

| ,

Task 2 ﬁ u

Real-time systems: handling timing constraints

« Scheduling anomalies [Richards]

* The response time of a task in a real-time system may
iIncrease if
— the execution time of some of the tasks is reduced
— precedence constraints are removed from the specifications
— additional resources (processors) are added to the system ...

Operating Systems background

« Scheduling anomalies

P1
P2
P3

completion time=12

T1

T2

T3

T4

T5

T6

Ti:3 () () Ts:9
2 (O (O Ts: 4
2 O () Tr4
T O Te: 4
T2 O O Ts:4
T+ To
T2 Ta Ts T7
T3 Te Ts
| T

9 10 11 12 13 14

v

T7

T8

T9

O|lh|A|A[B[(DIDID|IOW|IO

Operating Systems background

 Increasing the number of processors ...

completion time=15
Ti:3 () () Ts:9
2 (O (O Ts: 4
() Tr 4 C
::2 O O T .4
| 6: T1 3
T.:2 O () Ts: 4 ! T2 >
T3 2
P1 T T T2 5
P2 T2 Ts Ts | T5 4
P3 | Ts Te To T6 4
P4 | Ta T/ i T7 4
| T T T 1 1 T 1
0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 T8 4
T9 9

A typical solution: cyclic scheduler

« Used for now 40 years in industrial practice
* military
* navigation
¢ monitoring
* control ...
« Examples
 space shuttle
» Boeing 777
» code generated by Mathworks embedded coder (single task
mode)

A typical solution: cyclic scheduler

The individual tasks/functions are arranged in a cyclic pattern according

to their rates, the schedule is organized in a major cycle and a minor
cycle.

ABIE| [AlclF] [AB |aAlp] |AB [Alc] |ABla |Al]pH

¢ -------- >
S0msec (GCD of periods)
Minor cycle
o .
400msec (LCM of periods)
Major cycle

= 50 msec function A
l = period 100 msec (function B)
= 200 msec (2 functions C, D)
= 400 msec (4 functions : E, F, G, H)

A typical solution: cyclic scheduler

Advantages:
 simplicity (no true OS, only dispatcher tables)
efficiency
observability
jitter control
extremely general form (handles general precedence and resource
constraints)

Disadvantages
« almost no flexibility
 potentially hides fundamental information on task interactions
« additional constraints on scheduling
« all functions scheduled in a minor cycle must terminate before
the end of the minor cycle.
A+B+E < minor cycle time (the same for A+C+F, A+B+G, A+D+H)

Problems with cyclic schedulers

« Solution is customized upon the specific task set

— a different set, even if obtained incrementally, requires a completely
different solution

« Race conditions may be “hidden” by the scheduling solution
— see the shared resource section

— problems due to non-protected concurrent accesses to shared
resources may suddenly show up in a new solution

Problems with cyclic schedulers

« Solution is customized upon the specific task set

« what happens if in our example ...
— we change the implementation of C and A+C+F > minor cycle?
— Possible solution: C is split in C1 and C2 (this might not be easy)

ABIE| |Alci|F| [ABlcd (Ap] [AJBlc1| |Alcd |AlBla| |AD]H

¢ -------- >
S0msec (GCD of periods)
Minor cycle
400msec (LCM of periods)
Major cycle

— we change the execution rate of (some) functions?
— The minor and major cycle time change! We must redo everything!

From cyclic schedulers (Time triggered systems) to
Priority-based scheduling

 Periodic timer:

— once initialized send periodic TimeEvents at the appropriate time
instants (minor cycle time) until explicitly stopped or deleted

« Threads exclusively activated by periodic timers are periodic
tasks

— scheduled according to a fixed priority policy

A Taxonomy for FP scheduling

D=T D<=T Any D
Optimal pri ass. Y (RM) [L&L] Y (DM) [JP] [Leh] Yes (Aud) [Aud]
Test Util (sufficient) Resp. time (1st inst.) | Resp. time (1st busy
Resp. time (1st inst.) | Process. demand period)
Process. demand Process. demand

With Resources

Optimal Pri ass.

NP-complete [Mok]

Test

Sufficient tests (PIP,PCP)

With Offsets

Optimal Pri ass.

Yes (Aud) [Aud]

Test

Processor Demand

Case 1: Independent periodic tasks

« Activation events are periodic (period=T),

« Deadlines are timing contraints on the execution of tasks (D=T)
— evey task instance must be completed before the next instance
— (no need to provide queues (buffers) for activation events)

« tasks are independent

— the execution of a task does not depend upon the execution
(completion) of another task

— periods may be correlated
« The execution time of each task is constant
— approximated with the worst case execution time

Task set

* nindipendent tasks t4, T,, ... T,
« Taskperiods T4, T, ... T,

— the activation rate of 7, is 1/T,
« Execution times are C,, C,, ... C,

Scheduling algorithm

* Rules dictating the task that needs to be executed on
the CPU at each time instant

« preemptive & priority driven
— task have priorities
« statically (design time) assigned

— at each time the highest priority task is executed

« if a higher piority task becomes ready, the execution of the
running task is interrupted and the CPU given to the new task

 In this case, scheduling algorithm = priority
assignment + priority queue management

Priority-based scheduling

» Static (fixed priorities)
e as opposed to ... Dynamic

— the priority of each task instance may be different from the
priority of other instances (of the same task)

Definitions ...

Deadline of a task - latest possible completion time and
time instant of the next activation

Time Overflow when a task completes after the deadline

A scheduling algorithm is feasible if tasks can be
scheduled without overflow

Critical instant of a task = time instant t, such that, if the
task instance is released in t,, it has the worst possible
response (completion) time (Critical instant of the system)

Critical time zone time interval between the critical instant
and the response (completion) of the task instance

Critical instant for fixed priorities

 Theorem 1: the critical instant for each task is when
the task instance is released together with (at the
same time) all the other higher priority instances

« The critical instant may be used to check if a priority
assignment results in a feasible scheduling

— if all requests at the critical instant complete before their
deadlines

Example

« T, &1, with T,=2, T,=5, & C,=1, C,=1
* 1, has higher priority than z,
— priority assignment is feasible
— G, may b increased to 2 and the task set is still feasible

T, 1 [I R T X
1 2 3 4 5 1 2 3 4
T2 » 1 T2 >
& 1 2 3 4 j « 1 2 3 4 B
Y ~"

CRITICAL TIME ZONE CRITICAL TIME ZONE

Example

« However, if T, has higher priority than t,

— Assignment is still feasible
— but computation times cannot be further increased C,=1, C,=1

T2 l > i
1 2 3 4 5
T1 »
1 2 3 4 5
\ J
Y
CRITICAL

TIME ZONE

Rate Monotonic

 Priority assignment rule Rate-Monotonic (RM)
« Assign priorities according to the activation rates (indipendently
from computation times)
— higher priority for higher rate tasks (hence the name rate monotonic)
 RM is optimal (among all possible staic priority assignments)

« Theorem 2: if the RM algorithm does not produce a feasible
schedule, then there is no fixed priority assignment that can
possibly produce a feasible schedule

A priori guarantees

« Understanding at design time if the system is
schedulable

o different methods
— utilization based

— based on completion time
— based on processor demand

Processor Utilization

« Processor Utilization Factor: fraction of processor time spent in
executing the task set
» i.e. 1 - fraction of time processor is idle

« Forntasks, 1,, 1,, ... T, the utilization factor U is
U=C,/T, +C/T,+ ... + C /T,

« U can be improved by increasing C,’s or decreasing T;'s as long
as tasks continue to satisfy their deadlines at their critical
instants

Processor Utilization

Given a priority assignment, a set of tasks fully utilizes
a processor if:
* the priority assignment is feasible for the set
« and, if an increase in the run time of any task in the set will make
the priority assignment infeasible
The least upper bound of U is the minimum of the U’s
over all task sets that fully utilize the processor

« for all task sets whose U is below this bound, 3 a fixed priority
assignment which is feasible

U above this bound can be achieved only if the task periods T,'s
are suitably related

Processor Utilization

« The upper bound on U depends on the task set

O S S — J—J—J— h h_.
TEJ—V—V—_—V—V—h ||||| > TE _ A _ A

U, = 0.833 Up=1
* Imagine we try all possible sets
A
Uub
unschedulable
100 %
.............. \‘ ‘\
——————— -k - —————————-—
fully utilized Q: is there a A: yes, we can
task sets minimum or build .the task
0 % least upper set with least
bound? upper bound

Processor Utilization for Rate-Monotonic

* RM priority assignment is optimal

« for a given task set, the U achieved by RM priority
assignment is > the U for any other priority
assignment

* the least upper bound of U = the minimum U, for RM
priority assignment over all possible T's and all C’s
for the tasks

Processor Utilization

« Theorem: For a set of n tasks with fixed priority
assignment, the least upper bound to processor
utilization factor is U=n(2""-1)

* QOr, equivalently, a set of n periodic tasks scheduled
by RM algorithm will always meet their deadlines for
all task start times if

C/T, +C/Ty+... + C/T, <n(2n-1)

Processor Utilization

* If n—>eo, U converges quickly to In 2 = 0.69

o sufficient only condition (quite restrictive)
— what happens to the missing 31%?

« We need a necessary and sufficient condition!

1 4\
0,9
I o \.\-\'\H—H_H
0,7 1

0,6

1 2 3 4 5 6 7 8 9 10

—— 1 10,828| 0,78 | 0,757 0,743|0,735| 0,729/ 0,724 | 0,721/ 0,718

number of tasks

Response time based guarantee

* Response time is the sum of

« Execution time
— Time spent executing the task

« Scheduling interference
— Time spent executing higher priority jobs

« Applying the critical instant theorem we can compute the worst
case completion time (response time) ...

Theorem 1 Recalled

« Theorem 1: A critical instant for any task occurs whenever the
task is requested simultaneously with requests of all higher
priority tasks

« (Can use this to determine whether a given priority assignment

will yield a feasible scheduling algorithm

« if requests for all tasks at their critical instants are fulfilled before their
respective deadlines, then the scheduling algorithm is feasible

« Applicable to any static priority scheme... not just RM

Example #1

« Taskrt,:GC,=20;T,=100; D, =100
Task t,: C, =30; T, =145; D, =145

Is this task set schedulable?

U = 20/100 + 30/145 = 0.41 < 2(212-1) = 0.828

Yes!

Example #2

« Taskrt,:GC,=20;T,=100; D, =100
Task 1,: C, =30; T, =145; D, =145
Task t5: C; =68; T; =150; D, =150
s this task set schedulable?

U = 20/100 + 30/145 + 68/150
- 0.86 > 3(213-1) = 0.779

Can’t say! Need to apply Theorem 1.

Example #2 (contd.)

« Consider the critical instant of t;, the lowest priority
task

— 1, and t, must execute at least once before t; can begin
executing

— therefore, completion time of 75 is 2 C; +C, +C5 =
20+68+30 = 118

— however, T, is initiated one additional time in (0,118)

— taking this into consideration, completion time
of 1, =2 G, +C, +C; = 2"20+68+30 = 138

« Since 138 < D; = 150, the task set is schedulable

Response Time Analysis for RM

* For the highest priority task, worst case response
time R is its own computation time C
- R=C
« Other lower priority tasks suffer interferences from
higher priority processes
- R=C+1
— | is the interference in the interval [t, t+R]

Response Time Analysis (contd.)

Consider task i, and a higher priority task |

Interference from task j during R;:

— # of releases of task k =[R/T, |

— each will consume G, units of processor

— total interference from task j =[R/T,1* C

Let hp(i) be the set of tasks with priorities higher than
that of task i

Total interference to task i from all tasks during R;:

R;

[?; = >
1;

jE€hp(i)

C;

Response Time Analysis (contd.)

 This leads to:

i

J
Tj

=
|
9
4
1N
=
®

« Smallest R; will be the worst case response time
« Fixed point equation: can be solved iteratively

Algorithm

for 1 in 1..N loop -- for each process in turn
n :=0
'w,'f = Gg
loop
calculate new w!'! from Equation
if w't = w' then
R; := w
exit {value found}
end if
if wil > T, then
exit {value not found}
end 1if
n :=n+ 1
end loop
end loop

Deadline Monotonic (DM)

 If deadlines are different from the periods, then RM is no
more optimal

 If deadlines are lower than periods the Deadline
Monotonic policy is optimal among all fixed-priority
schemes

Deadline Monotonic (DM)

deadline (< period)
Di<D, =P/ >P,

priority assignment can

Fixed priority of a process is inversely proportional to its

Optimal: can schedule any task set that any other static

Example: RM fails but DM succeeds for the following

Period | Deadline | Comp | Priority | Response

T D Time, C'| P Time, R
Task_1| 20 5 3 4 3
Task 2| 15 7 3 3 6
Task 3| 10 10 4 2 10
Task 4| 20 20 3 1 20

Deadline Monotonic (DM)

The sufficient-only utilization bound is very pessimistic ...

 Theset (C,D, T)t,=(1,1.5,5)and 1,=(1.5, 3, 4) is
schedulable even if ...

Y. C/D, =1/1.5+1.5/3=0.66+0.5=1.16 > 1

Can one do better?

* Yes... by using dynamic priority assignment

 In fact, there is a scheme for dynamic priority
assignment for which the least upper bound on the
processor utilization is 1

« More later...

Arbitrary Deadlines

« Case when deadline D, < T;is easy...

« Case when deadline D, > T, is much harder

— multiple iterations of the same task may be alive
simultaneously

— may have to check multiple task initiations to obtain the
worst case response time

« Example: consider two tasks
— Task1: C1=28,T1 =80
— Task2:C2=71,T2=110
— Assume all deadlines to be infinity

Arbitrary Deadlines (contd.)

« Response time for task 2:

activation completion time response time
0 127 127
110 226 116
220 353 133
330 452 122
440 551 111
550 678 128
660 777 117
770 876 106

« Response time is worst for the third instance (not
the first one at the critical instant !)
— Not sufficient to consider just the first iteration

Arbitrary Deadlines (contd.)

* Furthermore, deadline monotonic priority
assignment is not optimal anymore ...

e Letn=2with
- (C,=52,T,=100,D,=110
- (C,=52,T,=140,D, =154.

« if T, has highest priority, the set is not schedulable
(first instance of 1, misses its deadline)

« if 1, has highest priority ...

t1 response times t2 response times
104 52
208 192

260 332

Arbitrary Deadlines (contd.)

« (Can we find a schedulabillity test ?
— Yes

« (Can we find an optimal priority assignment ?
— Yes

Schedulability Condition for Arbitrary Deadlines

« Analysis when D, (and hence potentially R,) can be greater than T,

wi@=@+nc+ ¥ |

JE€hp (i) j

R,(Q) = W, (Q)_qu

« The number of releases that need to be considered is bounded by
the lowest value g* of g = 0,1,2,... for which the following relation is
true:

q*:minq R(q)<T

* Note: for D < T, the condition is true for g=0 if the task can be
scheduled, in which case the analysis simplifies to original

— if any R>D, the task is not schedulable

Arbitrary Deadlines (contd.)

« The worst-case response time is then the maximum
value found for each q:

Ri = InanzO,..q>‘< Ri (Q)

Optimal priority assignment for Arbitrary Deadlines

« Audsley’s algorithm

PriorityAssignment (A)

{
for j in (n..1) {

unassigned = TRUE
for T, in A {
if ((feasible(T,, J)) {
Y(j) =T,
A=A-T,
unassigned = FALSE

}

1f (unassigned)
exit // NOT SCHEDULABLE

Glossary

A
J

set of all tasks
priority level

feasible() feasibility test

()

inverse of priority
level assignment
function

 Processor demand criterion

Response Time Analysis

Response time Analysis runs in pseudopolynomial
time

Is it possible to know a-priori the time intervals over
which the test should be performed?

— The iterative procedure tests against increasing intervals
corresponding to the wk

The alternative method is called processor demand
criterion
It applies to the case of static and dynamic priority

Fixed Priority Scheduling

« Utilization-based Analysis
* Response time Analysis
* Processor Demand Analysis

— Important: allows for sensitivity analysis

Processor Demand Analysis

« Consider tasks t,, 1., ... T,, in decreasing order of
priority

» For task 7, to be schedulable, a necessary and
sufficient condition is that we can find some t e [0,T]
satisfying the condition

t=[tT,IC, + [¥T,IC, +... [UTIC., +C,

« But do we need to check at exhaustively for all values
of tin [0,T]?

Processor Demand Analysis

« Clearly only T, is not enough ...
« Example: consider the set t,=(2, 5) and 1,=(3,6)
« The processor demand for 1, in [0,6] is 7 units

... but the system is clearly schedulable since the
processor demand in [0,5] is 5 units

Processor Demand Analysis

« QObservation: right hand side of the equation changes
only at multiples of T,, T,, ... T,;

« It is therefore sufficient to check if the inequality is

satisfied for some t € [0,T] that is a multiple of one or
more of Ty, T,, ... T,

t> [¢T,IC, + [YT,IC, + ... [¥T,IC, +C,

Processor Demand Analysis

« Notation
Wi(t) = X, C[VT,]
Li(t) = WD)
Li = ming <; <7 Li(t)
L = max{L;}
« General sufficient & necessary condition:
— Task 1, can be scheduled iff L; <1
 Practically, we only need to compute W(t) at all times
o = {KT; | j=1,....L; k=1,...LT/T]}
— these are the times at which tasks are released
— W.(t) is constant at other times

» Practical RM schedulability conditions:

— if min_ Wi(t)/t <1, task 7, is schedulable
— if max, g {ming; Wi(t)/t} < 1, then the entire set is schedulable

Example 4

« Task set:
« 1,: T,=100, C,=20
« 1,: T,=150, C,=30
« 1, T,=210, C,=80
. 1,: T,=400, C,=100
* Then:

Wi(t)

/

o, = {100}

° O, = {100,150} T 44 0 time
- 0, = {100,150,200,210}
+ o, ={100,150,200,210,300,400}

Points that need to be checked

» Plots of Wi(t): task t, is RM-schedulable iff any part of the
plot of W,(t) falls on or below the W.(t)=t line.

« We will improve this formulation (see next slide(s) ...)

Processor Demand Analysis

* Improvement [Bini]

Theorem 1 (Theorem 3in [2]) A rask set T —
{T1,T2,...,Tn} is schedulable if and only if:

Vi=1..n \/ i{%}(;‘jq (2)
J

teP;_1(T%) 3=1

where ‘P;(t) is defined by the following recurrent expres-
sion:

[Po(t) = {t}

\ Pit) = lQ%JTj)u’PHm. (3)

Preemption Threshold (dual priority)

« Derived from Fixed priority scheduling theory
— Also available for dynamic priority policies

« Uses two priority levels for each task
— Ready priority for enqueuing tasks in the ready queue
— Dispatch priority for preempting the currently executing task
— Ready priority <= Dispatch priority

« Advantages

— May perform better than purely preemptive or non-preemptive
schemes

— Allows selectively disabling preemption

Preemption Threshold (dual priority)

| preemption
enabled

_ _' Dispatch Priority, or

Higher | — Preemption Threshold

priority

preemption
disabled

Base priority
(ready)
* Preemptive Scheduling
— Dispatch Priority = Base Priority
« Non-Preemptive Scheduling
— Dispatch Priority = Maximum Priority

Preemption Threshold (dual priority) : esempio

Tasks C; T, Di
« Task 7z 20 70 50
» 20 80 80 2
s 35 200 100 3

« Worst-case Response Time

Tasks 7z, % WCRT WCRT WCRT
Preemptive Non-Preemptive With Threshold

20 55 40

1 1
2 1 40 75 75
3 2 115 95

Preemption Threshold (dual priority): an example

70 80 9095

-

WCRT 7,

Preemption Threshold: analysis

Before a task t; starts execution, there is blocking from lower
priority tasks and interference from higher priority tasks.
Among all lower priority tasks, only one lower priority task can
cause blocking. The maximum blocking time of a task t;,
denoted by B(t), is given by:

B(r;) = max (|

V1Y 2mi >

All higher priority tasks that come before the start time
Si(q) and any earlier instances of task t; before instance g
should be finished before the g-th start time.

'5:' .
Silg) =B(ri)+(¢—1)-Ci+ > (1 + { T@J) .C,

vy, mi>m;

Preemption Threshold: analysis

« Once the g-th instance of task t, starts execution, we have to
consider the interference to compute its finish time. From the
definition of preemption threshold, we know that only tasks with
higher priority than the preemption threshold of t, can preempt
T, and get the CPU before it finishes. Furthermore, we only
need to consider new arrivals of these tasks, i.e., arrivals after

Si(Q).

Release Jitter

 AKeyissue in
distributed systems
« Sporadic task willbe -

released at time 0, 5,
25,45, and soon ... t

o |e a.t tlmeS O, T'J, 2T' time — =
J, 3T-J, and so on...

t+15 t+20

release of periodic task

completion of periodic task and release of the sporadic task

Release Jitter (contd.)

« Examination of the derivation of the schedulability
equation implies that process i will suffer one
interference from S if R, is between 0 and T-J, that is
R e [0, T-J), two if R e [T, 2T-J), three if R, € [2T—
J, 3T-J), and so on...

Rgﬁ — B@i+cgﬁ—f_ _ Z_
j€hp()

Release Jitter (contd.)

* In general, periodic tasks do not suffer jitter

« But, an implementation may restrict granularity of
system timer which releases periodic tasks
 a periodic task may therefore suffer from jitter
 If response time is to be measured relative to the real
release time then the jitter value must be added to
that previously calculated:

Riperiodic — Ri + Ji

Arbitrary Deadlines with Release Jitter

Tasks with Jitter/Processor demand (dbf)
 Taskt,:T,=50, C,=10J,=10, 1, T,=80, C,=20 J,=20

| pal R +J,
| /| R =C+) |—,
| / l l T J
match=wcrt / Jjehp(i) J
\ J N\ /
Demand of processor time
J, time
H T T T T - Availability of processor time

@ ‘T J Points/intervals that need to be
- . checked

Earliest Deadline First

« With EDF (dynamic priorities) the utilization bound is

100%

RM

EDF...

...utilization
can be
further
increased !

A

Task A

Task B T |

| Y |

A

Task A

I

Task B T |

A

Task A

T S

Task B T |

l
l
l
| | | l
l
l

Earliest Deadline First

« EDF is clearly optimal among all scheduling schemes
* Proof for any D: interchange argument [Dertouzos 74]

. if left side is feasible i p :l: L

— so is therightside ' & &« &+ + o

« (Proof D=T: [LiuLayland73] follows from utilization
bound=100%)

Earliest Deadline First

« There are few (if any) commercial
implementations of EDF

“EDF implementations are inefficient and
should be avoided because a RT system
should be as fast as possible”

“EDF cannot be controlled in overload
conditions”

Implementation of Earliest Deadline First
 Is it really not feasible to implement EDF scheduling ?

 Problems

— absolute deadlines change for each new task instance,
therefore the priority needs to be updated every time the task
moves back to the ready queue

— more important, absolute deadlines are always increasing,
how can we associate a (finite) priority value to an ever-
increasing deadline value

— most important, absolute deadlines are impossible to compute
a-priori (there are infinitely many). Do we need infinitely many
priority levels?

— What happens in overload conditions?

Implementation of fixed priority

« When implementing fixed priority scheduling, it is possible to build
ready queues and semaphore queues with constant-time
insertion and extraction times (at the price of some memory)

Insertlng aq task requwes scanning the list

| e T . 2 . Step 1: simple ready list

Ready list (extraction O(1) insertion
Fret task O(n)) where n is the number

the list of task descriptors

Frocessore

Cicli

Implementation of fixed priority

488

« Simple queue experimental measures

Coda Singola -

Inserzione

T
Priorita®: @

48
Frocessi

gia’

=15}
in coda

1]

168

Frocessore

Cicli

oa

48

za

za

Coda Singola - Estrazione

Friorita’: @

45

Processi

-15)

gia' in coda

168

Implementation of fixed priority

extracting a task
requires finding .
the first non-empty ;/

First task in
the ready list

bucket Inserting a task requires
e N finding the appropriate
* priority bucket
01101... | = A
|] | <~I
-
1111111
g <-|

Address of bucket 0

Step 2: multiple priority queue
ready list (extraction O(m)
insertion O(1)) where m is the
number of priorities

Processore

Cicli

lae

1]

=1]

48

f=d]

Implementation of fixed priority

« Multiple queue experimental measures

Ciclo While - Inserzione

T T T T
Friorita*: @ ——
16 ——
e —
64—

256
—_—]
I I 1 1
5] 28 48 1] 1]

Processi in Coda

Frocessore

Cicli

j=1515]

488

jel= 1]

=4z]

lae

Ciclo While - Estrazione
T T T T
Priorita®: 8 ——
16 ——
32—
64—
296
1 1 1 1
£a 48 -15] t=1c]

Frocessi

in Coda

l@a

Implementation of fixed priority

Step 3: hierarchical priority
queues (extraction O(log,m)
insertion O(1)) + lookup tables
in order to avoid bit shifting. B
is the size (in bits) of the
bitmask containing the status
of the priority queues

If m=256 and b=8 than
extraction is in constant time
(2 steps)

Implementation of fixed priority

« Bitmapped queue experimental measures

28 -

2
S 6B

o 48

28 -

-

2a -

Maschere - Inserzione Masch Est
16a
F ita': @ F ita? 5]
16 16
8 32
64 g4
e -
:
£ [:)

R

Count Leading Zeros (where available)

ARM Architecture
Reference Manual

The ARM Instruction Set

3.6 Miscellaneous arithmetic instructions

In addition to the normal data-processing and multiply instructions, versions 3 and above of the ARM
architecture include a Count Leading Zeros (CLEZ) instruction. This instruction returns the number of O bits
at the most significant end of its operand before the first 1 bit is encountered {or 32 if its operand is zero).

Two typical applications for this are:

. To determine how many bits the operand should be shifted left in order to rormalize it, so that its
most significant bit is [. (This can be used in integer division routines.)

. To locate the highest priority bit in a bit mask,

3.6.1 Instruction encoding

CLZ{=cond>} <Rd>, <Rm>

3l 28 27 26 25 24 23 22 21 20 19 16 15 12 11 # 7 6 5 4 3 [
cond 000101 10 SBO Rd SBO o001 Rm

Rd Specifies the destination register.

Rm Specifies the operand register.

3.6.2 List of miscellaneous arithmetic instructions

CLZ Count Leading Zeros. See C'LZ on page A4-22.

Implementation of fixed priority

From an evaluation of VxWorks 5.3 (www.embedded-systems.com)

In this test, we measure the time it takes the
system to release a binary semaphore and schedule a higher priority thread that was thereby released. A

aucoboc of theoode be inerooced nos by one vetibthore nea 966 theoode of difforcnt odarite pondinog co ths

The idea is to investigate whether or not the time to release the
semaphore (and schedule the released thread) is proportional with the number of threads waiting for the
semaphore.

However, we reprocessed the test results to find out how long it takes for a thread to acquire a semaphore
that is not available. When a thread acquires a semaphore that is not available, the thread needs to be
added to the semaphore’s queue of waiting threads. Good RTOS design requires this queue to be sorted at
all times in order to keep the release time of a semaphore constant (as described in the previous
paragraph). The structure of this queue is therefore very important, in order to keep the sorting time as
constant and as short as possible. This did not happen in VxWorks 5.3.1 as can be seen from Figure
4.7-13 and Figure 4.7-14 (p.57). It is clear that the time it takes to add a thread to the semaphore’s queue
(and sort it) is proportional to the number of threads already in the queue. Queue structures that lead to
better (and more constant) sorting latencies are available but require more memory, which may be
unacceptable for systems with tight memory constraints.

event duration (ns)

Implementation of fixed priority

From an evaluation of VxWorks 5.3

S000 “ - "
5000
7000
5000
5000
4000 i 2 -
3000 - T T f T
a 50000 100000 150000 200000 0 ! ! !
n| 5DDW 100000 150000 200000
30000 -
1 Test Cvcle
=
g 24000 7 o4 5 = f
= ;,g.’f ;‘#"f .240_'5{ :;g;
® 18000 f’ £ ’,i wad
= f F Fy
§ 12000 2 4 =
g
BO00 £ /ﬁ? f /..‘4‘
D T T T
50000 55000 F0000 E5000

ahsolute time [ps)

Implementation of Earliest Deadline First

* Problem 2: deadline encoding ?

— The EDF scheduler, requires a time reference to compute the
absolute deadline (the priority) of a newly activated task. Such
a timer must necessarily feature a long lifetime and a short
granularity. For example, in POSIX systems, a 64 bit structure
allows for a granularity of nanoseconds. In an embedded
system, such a high precision might actually become
undesirable since it leads to an unacceptable overhead.

Implementation of Earliest Deadline First

* Problem 2: deadline encoding ?

— The problem can be efficiently solved using a limited resolution
(i.,e. 16 bit) timer and an algorithm first described in
[FonsecaO1]. Suppose the current timer value and the
absolute deadlines are represented as 16 bit words. Each time
a task is activated, the system computes an absolute deadline
for it as the current timer value plus the task's relative
deadline: this operation could result in an overflow. However,
ignoring overflows, it is still possible to compare two absolute
deadlines in a consistent way. Suppose that the maximum
relative deadline is less than 7FFFh timer ticks, and let o be

the difference between two absolute deadlines d, and d,: o is
always in the interval [-8000h; +7FFFh] and can be

expressed as a signed 16 bit integer. The sign of 6 can be
used as a way to compare d, and d,: if 6 >0 then d,>d..

Implementation of Earliest Deadline First

« This compare algorithm is very simple and can efficiently be
implemented with two simple operations: a difference between
iIntegers and a sign check.

0000h

1013h d1-d2 = 43F2h-2148h = 22AA > 0
x|
d2 d1>d2
2148h
43F2h
d1
AOTFR d1-d2 = AO1Fh-1013h =900C <0
d1 I

d1<d2
8000h

Implementation of Earliest Deadline First

 Qverload conditions

« EDF can give rise to a cascade of deadline miss

— There is no guarantee on which is the task that will miss its
deadline

— (see also problems with determination of worst case
completion time)

« Try the case
T,=4

1

~ C,=1
— C,=2
— C4=2
— C,=3

(utilization =106%)

Overload in FP scheduling

 Qverload conditions

« Misconception: In FP the lowest priority tasks are the
first to miss the deadline

« Counterexample: start from the set (2,4) (2,6) fully
utilizing the processor

[

v

Task Synchronization

« So far, we considered independent tasks

« However, tasks do interact: semaphores, locks,
monitors, rendezvous etc.
« shared data, use of non-preemptable resources

« This jeopardizes systems ability to meet timing
constraints

* e.g. may lead to an indefinite period of priority inversion where
a high priority task is prevented from executing by a low priority
task

Optimality and U,

« When there are shared resources ...

— The RM priority assignment is no more optimal. As a matter
of fact, there is no optimal priority assignment (NP-complete
problem [Mok])

— The least upper bound on processor utilization can be
arbitrarily low
 ltis possible (and quite easy as a matter of fact) to build a

sample task set which is not schedulable in spite of a utilization
U—->0

Key concepts
« Task

— Encapsulating the execution thread
— Scheduling unit
— Each task implements an active object

* Protected Objects

— Encapsulating shared information (Resources)

— The execution of operations on protected objects is mutually
exclusive

Response time of a real-time thread

« Execution time
— time spent executing the task (alone)

« Execution of non schedulable entities
— Interrupt Handlers
« Scheduling interference
— Time spent executing higher priority jobs
« Blocking time

— Time spent executing lower priority tasks
» Because of shared resources

HIGHER PRIORITY TASK | |

MY TASK

LOWER PRIORITY TASK Interference 1

Blocking

An example of “unbounded” priority inversion

Thih
9\51

T —

low
Th'gheSt Lock tried (S,)
Thigh - s
T'edium e
Tiow s [[s] []

[] Normal [s4] Critical section

. Unbounded Priority inversion

Methods

« Non-preemptable CS
 Priority Inheritance
 Priority Ceiling (Original Priority Ceiling Protocol)

« Immediate priority ceiling or highest locker (Stack
Resource Protocols)

Non-preemptable CS

« A task cannot be preempted if in critical section

« When a task enters a CS its priority is raised to the
highest possible value

Advantages

« Simple and effective
* Prevents deadlocks
* Predictable!
Disadvantages

« May block tasks (even highest priority!) regardless of
the fact that they use (some) resource or not ...

» Blocking term B=max(CS,)

Preemption vs. non preemption

Task C; T =« WCRT WCRT D;! Df
| NP
Ty 20 /70 1 20 20+35 45 60

o 20 80 2 20+20 20+35+20 80 80
=40 =75

73 35 200 3 35+2'20+2"20 35+20+20 120 100
= =75

Priority Inheritance Protocol

« [Sha89]
« Tasks are only blocked when using CS

« Avoids unbounded blocking from medium priority
tasks

It is possible to bound the worst case blocking time if
requests are not nested

« Saved the Mars Pathfinder ...

Priority Inheritance Protocol

« High and low priority tasks share a common

Thi h
T resource
T _— « Atask in a CS inherits the highest priority
o among all tasks blocked on the same resource
Thighest -
Try lock on S,
Thigh f —-
Reac
Tmedium . !
T FBONEE B N]

] Normal [s4] Critical section

priority inheritance

 low priority task inherits the priority of T1

« T2 Is delayed because of push-through blocking (even if it
does not use resources!)

—1 normal execution Push-Through
1 critical section Blocking
Y S
T1 - T l
Te T | B

LI —r— ﬁggxs i

Priority Inheritance Protocol: multiple blocking

Each task t; may block K times where
K=m|n(ntlp(i)v nrusatge(i,k))

A a A
23

T,
vIait (R4) vl/ait (R3) vl/ait (R2)
T S BRd B
T2 L7 % % R L
T3 _ L ////é it |

T4.Fz4 R4 B

Awoud

Priority Inheritance Protocol

« Disadvantages
« Tasks may block multiple times

« Worst case behavior (CS not nested) even worse
than non-preemptable CS

« Costly implementation except for very simple cases
« Does not even prevent deadlock (nested CS)

Priority Ceiling Protocol

priority ceiling of a resource S = maximum priority among all tasks
that can possibly access S

A process can only lock a resource if its dynamic priority is higher
than the ceiling of any currently locked resource (excluding any that it
has already locked itself).

If task t blocks, the task holding the lock on the blocking resource
inherits its priority
Two forms

— Original ceiling priority protocol (OCPP)

— Immediate ceiling priority protocol (ICPP, similar to Stack Resource
Policy SRP)

Properties (on single processor systems)

— A high priority process can be blocked at most once during its execution
by lower priority processes

— Deadlocks are prevented
— Transitive blocking is prevented

Deadlock (prevention)

« (Conditions for deadlock (Coffman 71)

1. Mutual exclusion : a resource cannot be used by more than one
process at a time

2. Hold and wait : processes already holding resources may request
NEew resources

3. No preemption: No resource can be forcebly removed from a
process holding it, Resources can be released only by the explicit
action of the process

4. Circular wait. two or more processes form a circular chain where
each process waits for a resource that the next process in the
chain holds

« Deadlock only occurs when all of the previous four hold true

PCP prevents circular waits!

Example of OCPP

A

A

R, ceiling R, = 1

1
2 -
% R; ceiling Ry = 1

:C;/ Rs ceiling R, = 1
4 wait (R4) wait (R3) wait (R2)
}) |

T R4JR3 I R2IH

wait (R2) 7/

| 7 R2 |
12 GamEa] %
Y R3S

T3 o
T4 B R R4 B

Aioud

Immediate Priority Ceiling Protocol

« High and low priority task share a

Tha~__ critical section
_ S « Ceiling priority of CS = Highest priority
Tiow among all tasks that can use CS

« CSis executed at ceiling priority

Thighest [

T e

Tmedium Ready !

T sl s] []

] Normal [54] Critical section

Example of ICPP

A

A

| R, ceiling Ry = 1 Execution of tasks is
i Ry ceiling Ry= 1 perfectly nested !

T3/ Rs ceiling R, = 1
T,
T 1 I.R4.[R3.[R2.
v/,
r I
Ts % BN

70
T4. R4

I

Aioud

OCPP vs. ICPP

« Worst case behavior identical from a scheduling point of view

« |CCP is easier to implement than the original (OCPP) as
blocking relationships need not be monitored

« |CPP leads to less context switches as blocking is prior to first
execution

« ICPP requires more priority movements as this happens with all
resource usages; OCPP only changes priority if an actual block
has occurred.

Response time analysis

R.
R%‘ZO@—l-B@—I-_Z_‘—ZOj
’ jehp(i) |15
Response
time
Corr][?muteatlon Preemption from
higher priority tasks
Blocking from lower "
priority tasks - '
(priority inversion) Pl B kzl usage(k, i)CS(k)

PC IPC B; = Ijﬁfrfusafge(k,i)c‘s(k)

Response Time Calculations & Blocking (contd.)

kfil usage(k,1)CS(k)
"
niax usage

PC IPC B; = b

Pl Bi=
(k,2)CS(k)

 Where usage is a 0/1 function:

usage(k, i) = 1
if resource k is used by at least one

process with a priority less than i, and at
least one process with a priority greater or equal to I.

Otherwise it gives the result O.

« CS(k) is the computational cost of executing the longest k-th
critical section called by a lower priority task .

* An example ...

Blocking time in PCP and IPCP

R1 | R2 | R3 | Bop | Beep
T1 20 5 5
12 | 5 I 101 20 | 10
73 5]_54 18 | 10
4 [l 5 |13 [10
t5 110 ! 3 |

Example: Shared resources

ES Task
—HO——’ — 5 Tasks

« Shared resources

4’0—’ — Results buffer

» Used by R1 and R2
 R1 (2 ms) R2 (20 ms)

T1
_4.0 >@ » — Communication buffer
X

Wme()\ » Used by C1 and C3
Br \Write() « C1 (10 ms) C3 (10 ms)
T2 : write_2()

Bc

T3

Example: Shared Resources

Task C T o WCRT WCRT D

PC
ES 5 50 1

IS 10 100

T1 ' 20 20+ +20 20+ +20 100
=70 =60

T2 40410440 40+10+40 130
=90 =90

T3 100+0+200 350
=300 =300

Blocking factor in the sufficient schedulability formula

 Let B, be the duration in which 7; is blocked by lower
priority tasks

» The effect of this blocking can be modeled as if t,'s
utilization were increased by an amount B/T,

« The effect of having a deadline D, before the end of
the period T, can also be modeled as if the task were
blocked for E=(T.-D,) by lower priority tasks

— as if utilization increased by E/T,

Scheduling with Offsets

« Enhanced model ...

« Each periodic task 7, is characterized by the
quadruple (T, D,, G, O,)

« The offset O, is the instant of the first request

» The requests of t; are separated by T, time units and
occur at time O, + (k- 1)T, (k=1, 2, ...).

» The execution of the k-th request of task t;, which
occurs at time O, + (k - 1)T,, must finish before or at

Scheduling with Offsets

« Synchronous model: all O.=0
 Asynchronous model: O, may be # 0, but the values
are given

 Offset free model: the values of the O, may be defined
to improve schedulability

Scheduling with Offsets

« The synchronous case is the worst case, hence it is
clearly pessimistic ...

« Example:
- consider the case (C, D, T)

T,=(3, 8, 8), T,=(6, 12, 12), T,=(1, 12, 12)

* The example is not schedulable in the synchronous case
(not even with RM priority assignment), given that task 3
misses its deadline.

Scheduling with Offsets

 But if you try O,=0, O,=0, O5;=10 the set becomes
schedulable !

SENEETIEED
I

2o

15 18
1y 4 : Loz

ﬁ::éléil:iif';;

53- | P T = 1T’ 18 19

Scheduling with Offsets

This brings the promise for an increase in schedulability

— Unless all periods are prime, in which case there is still a critical
instant!

« Unfortunately ...

 The RM/DM priority assignments are no more optimal!
— We need a way to find a (possibly optimal) priority assignment
« There is no critical instant

— the standard response time test is not valid anymore
— We need a (possibly efficient) schedulability test

* There is availability of a priority assignment method and
a schedulability test !
— but what is really needed is an offset synthesis procedure !

Scheduling with Offsets

« The (RM/DM) priority assignment is (in general) not
optimal.

« counterexample (O, C, D, T)
T1=(2, 2, 3, 4), Tz=(0, 3, 4, 8)

 if T, has priority higher than T, (as in RM/DM) deadline is
missed at time 4.

« When priorities are reversed, deadlines are met ...

Scheduling with Offsets

« Feasibility test for asynchronous task sets:
« Given a set of offsets O,, O,, ... O,

« [Leung82] a task set is feasible if all deadlines are met in [s, 2P],
where s=max{O,, O,, ... O} and P =lcm {T,, T,, ... T}
— in practice it is sufficient to build the schedule and check all the busy
periods originating from a task release time in [s, 2P)

« For fixed priority tasks and D<T it is possible to further restrict the
interval [Audsley91]

THEOREM 7 Let S; be inductively defined by 51 = O4,

S; = max{0;,0; + [Si‘,_};o‘]T@} (i =2,3,...,n), then if the task set is ordered by

decreasing priorities and has a feasible schedule, it is periodic from S,, with period
P=lem{T}li=1,---,n}.

« This means that it is sufficient to check the interval [S,, S, +P]

Scheduling with Offsets

« Now we do have a test and the algorithm by audsley to
find an optimal fixed priority assignment for the case
D>T works in this case as well ...

« But...

« the most important case (offset free systems) requires a
procedure for setting up the offsets.

« The problem of finding the optimal offset assignment is
probably NP-complete [Goosens00]

« Approximate solutions are sought ...

Scheduling with Offsets

« An example: dissimilar offset assignment [Goossens00]

Algorithm 1 The dissimilar offset asdignment
12 G 4= {(i,4,20d(T;, Ty)) | 1 i <j < s
2 G <= ((i1,51,80d(Ts,, Tio)), (2 d2, 20d (T, T) - -),
with {(ig,jk,2ed(Ty,, Tjp) | k= 1,... , 252} = G, such that r < p =
ged(Ti, , T5.) = ged(T,, Ty,);
% {The vector G is a sorted version of the set G. In the following we shall use the
“dot notation” to denote the 3 fields of each entry of G, which are row, cof and
ged, respectively. }
: assgnment < n; {The remaining number of offset assignments. }
Mark + (fake, . .. false); {n components.}
k<1,
while assignment > () do
il —(Markg, cor) A Markg, row) then
Ogy. e <= rand(}; Og, eor <= Ogy ror + Gp-ged div 2;
assignment <= assignment — 2; Markg, pop = troe; Markg, .. = troe;
1: else if ~{Markg, cor) then
Og, ei = Og, row + Gr.god div 2;
13: assignment <= assignment — 1; Markg, .or = true;
14: else if —(Markg, roy) then
15: Og, .row = Og,. ot + Gp.ged div 2;
16: assignment < assigmment — 1; Markg, rop = true;
17: end il
1B: k<sk+1;
12: end while

2 5 2 a8 g o8

B

The MARS PATHFINDER

A Priority Inversion case

The Mars Pathfinder Case

e QOverview

e MARS PATHFINDER — ARCHITECTURE
e THE 1553 BUS

e THE PROBLEM

e A PRIORITY INHERITANCE SOLUTION

Mars Pathfinder was the
second mission in the
NASA Discovery program.

Mission started on
November 161" 1996 and
finished on September 27
1997.

The Mars Pathfinder Case

The system consists of two units:

cruiser / lander (fixed) hosting the navigation and ~ microrover (mobile) hosting :
landing functionality and the subsystems :

« ASI/MET for sensing meteorological « APXS: X-ra}y.s.,pectror_neter
atmospheric data « Image acquisition devices

« IMP for image acquisition

= Wind Seneor

L
MHMI-:IMM-(/ - T
EED_ fzmmm

Bvesijer Tor b s Pallefoaben) | FSLME | MRS T P Phaot e et i Targel
IMP Flat-Fletd Targots ~——— | '

Magnetic Targets

He "y - | AR E T S olermarold oers
awr i kA g e LB ET Pracsiamm
Tarnped Tabhe

'.ll_,a Sk - ._-))
i
‘_'_'_._,.'-"""'-F;- o . !
L] — Y |
TEA= PYanl caee Tl el
Target Assernbiees : AFEE Dople el

Mechanizm

System architecture

CPU
Risc RS6000

Cruise part:
interfaces to
propulsion, valves,
sun sensor and
star scanner

1553 bus

Interfaces to radio
and camera

Interface to 1553 bus

~__

Interface hardware
inherited from the
Cassini probe

Lander part: interfaces
to accelerometers,
altimetric radar and
ASI/MET

Architecture

- A CPU - A

< BUS 1553 >

The hardware interface of
the bus assumes a bus

_CRUISE |cycle time of 125 ms. (8 Hz) | _LANDER ~/
STAGE STAGE

EASI/ M E'Ij

Software Architecture

» Cyclic Scheduler @ 8 Hz
« The 1553 is controlled by two tasks:

— Bus Scheduler: bc_sched computes the bus schedule for the
next cycle by planning transactions on the bus (highest priority)

— Bus distribution: bc_dist collects the data transmitted on the bus
and distributes them to the interested parties (third priority level)
— A task controoling entry and landing is second level, there are
other tasks and idle time
* bc_sched must complete before the end of the cycle to setup the
transmission sequence for the upcoming cycle.
— In reality bc_sched and bc_dist must not overlap

bc_sched 2
bc dist g
L 1 BN N
other tasks *
Vo | L] |
3 o 3 t4 t5 0.125ms

What happened

« The Mars Pathfinder probe lands on Mars on July 4th
1997

« After a few days the probe experiences continuous
system resets as a result of a detected critical (timing)
error

Software architecture of the Pathfinder

bc_dist forwards the data received
from the bus to other tasks by using

IPC

Svt\;ilj?fg?d @ § < <> communication

1 (pipe)
Other tasks
reading data

IPC (InterProcess Communication mechanism)
« VxWorks provided POSIX pipes
« Files descriptors associated to the reading and writing sides of
the pipe are shared resources protected by mutexes
« ASI/MET called a select() for reading data from the pipe

The problem

« The task responsible for system malfunctions is AS/MET

« The ASI/MET task handles meteo data and transmits them using an
IPC mechanism based on pipe()

« Other tasks read from the pipe using the select() primitive, hiding a
mutex semaphore

e Tasks in the system
bc_sched maximum priority
bc_dist priority 3
several medium priority tasks
ASI/MET with low priority
« ASI/MET calls select() but, before releasing the mutex, is preempted
by medium priority tasks. bc_dist, when ready, tries to lock the

semaphore that controls access to the pipe. The resource is taken by
ASI/MET and the task blocks

 When bc_sched starts for setting the new cycle, it detects that the
previous cycle was not completed and resets the system.

The problem

The select mechanism creates a mutual exclusion semaphore to
protect the "wait list" of file descriptors

The ASI/MET task had called select, which had called pipeloctl(),
which had called selNodeAdd(), which was in the process of giving the
mutex semaphore. The ASI/ MET task was preempted and semGive()
was not completed.

Several medium priority tasks ran until the bc_dist task was activated.
The bc_dist task attempted to send the newest ASI/MET data via the
IPC mechanism which called pipeWrite(). pipeWrite() blocked, taking
the mutex semaphore. More of the medium priority tasks ran, still not
allowing the ASI/MET task to run, until the bc_sched task was
awakened.

At that point, the bc_sched task determined that the bc_dist task had
not completed its cycle (a hard deadline in the system) and declared
the error that initiated the reset.

The priority inversion

A ’ RESET
bc_sched
A locked A
bc_dist
A ;U
others %_
lock <
ASI/META*_-_F
0 t1 t2 13 t4 t5 0.125 s

« ASI/MET acquires control of the bus (shared resource)

* Preemption of bc_dist
* Lock attempted on the resource

* bc_sched is activated, bc_dist is in execution after the deadline
» bc_sched detects the timing error of bc_dist and resets the system

The Solution

After debugging on the pathfinder replica at JPL,
engineers discover the cause of malfunctioning as a
priority inversion problem.

Priority Inheritance was disabled on pipe semaphores

The problem did not show up during testing, since the
schedule was never tested using the final version of
the software (where medium priority tasks had higher
load)

The on-board software was updated from earth and
semaphore parameters (global variables in the
selectLib()) were changed

The system was tested for possible consequences on
system performance or other possible anomalies but
everything was OK

Pathfinder with PIP

bc_sched
A locked end
bc_dist ‘ Tl
others

lock nlock
ASVMETW
T

T
t4 t5 0.125s

0 t1 t2 13

Auougd >

ASI/MET is not interrupted by medium priority tasks since

iInherits bc_dist priority.

Should you use PIP?

See “Against priority Inversion” [Yodaiken] available from the
web

Critical sections protected by PIP semaphores produce a
large worst case blocking term

— chain-blocking

— The blocking factor is the sum of the worst case length of the

critical sections (plus protocol overhead)

PIP does not support nested CS with bounded blocking (very
difficult to guess where implementation of OS primitives such
as pipe operations implies CS)

Should you use PIP?

« Except for very simple (but long) CS, PIP does not provide
performances better then other solutions (non preemptive CS or
PCP)

« PIP has a costly implementation, overheads include:

- Managing the basic priority inheritance mechanism not only
requires updating the priority of the task in CS, but handling
a complex data structure (not simply a stack) for storing the
set of priorities inherited by each task (one list for each task
and one for each mutex)

. Dynamic priority management implies dynamic reordering
of the task lists

« For afull account ...
http://research.microsoft.com/~mbj/Mars_Pathfinder/Authoritative_Account.html

That’s all folks !

 Please ask your questions

« Backup slides 1- Anomalies and cyclic schedulers

Operating Systems background

» Shortening tasks

T:1 (O Ts: 3
. . TT: 7!
T2 O——O T8 1.1 O IS
Ts:?
Pl Ts
P2 Ts
3 T7
— T T T I ——
0 1 2 3 4 14 t

completion time=13

Operating Systems background

* Releasing precedence constraints

Pl
P2
P3

T:3 O T+:2 (O T4 O
22 O Ts:4 () Ts:4 ()
22 () Te: 4 () To:9 O
T, Te
T, | Ts T,
T_’% TS
1 | ! I I I I I
o 1 2 3 4 5 6 7

completion time=16

