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Summary

In this short course we will approach a topic which stands at the interface of
probability theory, real analysis, measure theory, numerical analysis, and sta-
tistical inference and computation. The models and methods we will consider
are employed by several and diverse scientific areas such as econometrics, en-
gineering, chemistry, statistical physics and biology. Thus, unavoidably we
will have to be selective.

The general setting is the following: there is a process X which evolves
continuously in time, so that X(¢) is the value of the process at time ¢.
We will postulate a class of stochastic models called diffusion processes for
describing the dynamics of X. Such processes are determined as solutions of
Stochastic Differential Equations (SDEs). The models will be specified up
to some unknown parameters, say ¢, and we will estimate # using likelihood
methods based on an observed sample path {X(¢);t € [0, 7]} for some given
time horizon 7.

The exposition begins (Chapter 1) by reviewing some basic concepts in
the context of Ordinary Differential Equations (ODEs). In Chapter 2 we
motivate the theory by presenting some real-life applications of differential
equations; the concept of the Stochastic Differential Equation will appear in
this section for the first time. In Chapter 3 we explain the construction of
SDEs. Then, in Chapter 4 we will show how to obtain a likelihood function
under such stochastic models and how to carry out statistical inference.

Our priority throughout the notes will be to illustrate the main concepts
intuitively, keeping mathematical proofs to a minimum. So, the presenta-
tion will be rather informal. The material has been selected with a view of
being general enough to bring out the main challenges of the topic but at
the same time introductory enough to require only a modest mathematical
background.

It is worth mentioning that statistical inference for diffusion processes is



a research topic of intensive current investigation.
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Chapter 1

Deterministic Modelling of
Time-Evolving Processes

Let X be a real-valued function, X : R — R. We will typically denote the
argument of X by s. An n-th order Ordinary Differential Equation (ODE)
for X is an equation which involves X, s, and the first n derivatives of X,
i.e. an equation of the form:

g XV Xx® XM X ) =0,

where g : R"*? +— R, and X® denotes the i-th derivative of X with respect
to (w.r.t.) s. When a function X satisfies this equation we say that it is
a solution of it. Differential equations play a fundamental role in pure and
applied mathematics.

We will be interested in the case where s denotes time. In this case
we will refer to {X(s);s € I}, for some given time interval I, as the path
of X. Moreover, we will concentrate on 1st order, autonomous (also called
time-homogeneous) ODEs; i.e. equations of the form:

W xn. (1

We will refer to f as the drift of the process. It is helpful to think of X (s) as
the position of a particle at time s, in which case (1.1) specifies the velocity
of the particle as a function of its location.



1.1 Solution of an ODE

Consider the ODE (1.1) with the additional restriction (initial condition)
that X (sg) = x¢ for the time instance so. For simplicity we may assume that
so = 0. The pair of the ODE and the initial condition is known as an initial
value problem:

dX

s f(X(s)), X(0)=ux0. (1.2)
Notice that the initial value problem is equivalent to finding a solution to
the integral equation:

X(t):onr/O F(X(s))ds. (1.3)

Definition 1. A solution of the initial value problem (1.2) on a open interval
I that contains the origin 0, is a differentiable function X with X (0) = x
and XW(s) = f(X(s)) for all s € I.

Example 1.1. Consider the initial value problem:

dX

e aX(s), X(0)=zy>0. (1.4)
s

This ODE can be used as an approximate model for the growth of a popu-

lation. In this case the constant « represents the rate of growth (birthrate

minus deathrate) of the population. The function:
X (s) = xoe™® (1.5)

is a solution of (1.4) since one can check that: XM (s) = azge® = aX(s),
and X (0) = zp. When « > 0 the solution tends to infinity, exponentially
fast as s — 0o, whereas it tends to 0 exponentially fast when o < 0. O

This example points to an interesting qualitative characteristic of (1.1).
Namely, the linear drift f(x) = ax corresponds to functions which change
exponentially with time, that is processes which change rapidly with time.
Then, sub-linear drifts will provide processes that cannot evolve faster than
exponentially. This property is rigorously described by Gronwall’s inequality.



Gronwall’s inequality
Consider the ODE (1.1) with f(z) < ax for some real «. Then,
for any s, with s <¢:

X(t) < X(s)et=9)

This result provides a first step towards understanding the effect of the drift
f on the dynamics of X.

Exercise 1.1. Prove Gronwall’s inequality.

1.1.1 Existence and Uniqueness of Solutions

We consider the initial value problem (1.2). Existence and uniqueness of a
solution will be implied by properties of the drift f. The following example
illustrates that existence of a solution is not guaranteed.

Exercise 1.2. i) Suppose that f(x) = 1, for x < 0, and f(z) = —1, for
x >0, and xo = 0. Show that the initial value problem does not have any
solutions. ii) Identify a solution for the initial value problem when f(x) = —1
forz <0, f(x) =1 forz >0 and xy = 0.

Therefore, if f is discontinuous solutions might not exist.

Uniqueness: Suppose that X and Y are two solutions of (1.2). We con-
sider the difference Z(s) = X (s) — Y (s), thus Z(0) = 0. For uniqueness of a
solution, it is required that Z(s) = 0 for all s. By assumption:

d|Z?)ds = 2Z(s) 2V (s) = 2Z(s)( f(X(5)) = F(Y(5))) -

We consider the following condition.

Lipschitz condition on a set A
There exist an 0 < L < oo such that for any z,y € A,

[f(x) = f(y)l < Lz —y].




Assuming that the Lipschitz condition holds on the real line R we have that
d|Z?/ds < 2L|Z|*. Gronwall’s inequality now yields |Z(s)|> < |Z(0)|%e*.
Since Z(0) = 0 we have that X(s) = Y(s) for all s. We just showed that
under the Lipschitz condition on f, there can be only one solution of (1.2).

Exercise 1.3. i) Prove (using the Mean Value Theorem) that when f is
differentiable, the Lipschitz condition on an interval A = (a,b) is equivalent
to fO being bounded on A. ii) Prove that if f satisfies the Lipschitz condition
for all x,y € R, then f(x) has a linear growth bound: |f(x)| < o|z| + 3, for
appropriate constants «, [3.

Notice that if f satisfies the Lipschitz condition only on A C R with
o € A, then the argument we used earlier can be adapted to establish that
can be only one solution on a time interval (—d,0) for some § > 0. To see
that, consider for example that A = (a,b). Since any solution X will be
continuous in s, there will be a 6 > 0 such that X (s) € (a,b) for all |s| < 6.
One can now follow the arguments above to show that there can be only one
solution on (-4, 6).

Consider the case when f() is continuous on a bounded interval which
contains zo. Due to continuity, (V) is also bounded on this interval. Exercise
1.3 now implies that f will satisfy the Lipschitz condition on that interval
and uniqueness on a time interval around 0 is guaranteed. For the case of
discontinuous fM, we present the following precautionary example.

Example 1.2. Let f(z) = /7 and 79 = 0. Notice that f() is not continuous
at xq since fM(xr) — oo, as | xp. Thus, it is impossible to establish
uniqueness for any time interval appealing to the argument we have given
above. In fact, this is a case when multiple solutions exist. The zero function
X(s) =0 is a solution, but so is the following function:

0, s <c,
X(s) :{ (s—c)?/4, s>c,

for any ¢ > 0. Notice the unpredictable behavior of the process: it waits at
0 until suddenly, at a time not determined by either its current value or its
drift, it starts increasing to infinity. O

Existence: The Lipschitz condition is also sufficient for showing existence
of a solution. We will not present the proof in any detail apart from mention-
ing its first step. The initial value problem is equivalent to finding a solution



to the integral equation

X(t) = xg —I—/O f(X(s))ds . (1.6)

We start with an initial guess for a solution, Xy(s) = x¢, and we obtain X3
via the equation above as Xi(t) = zg + fg f(Xo(s))ds = xg + tf(zo). We
iterate this scheme to obtain a sequence of guesses X;, 1 = 1,2, ... as follows:

X, (1) = x0+/0tf(Xn_1(s)), n>1.

Using the Lipschitz condition we show that the sequence X,,(t) converges (as
n — 00) to a function X (¢) which solves the ODE. This approach is known
as Picard’s iteration. It is useful to remember the following pathological
example.

Example 1.3. Let f(z) = —2® and zg # 0. Here f is not Lipschitz on R.
It can be checked that

X(s) =wo/1/1+ 2523, s> —1/(223),

is a solution. However, X (s) explodes as s — —1/(2x3), therefore the solution
does not exist for all s. O

1.2 Prediction

An ODE describes the microscopic behavior of the process X, i.e. the motion
of the process in an infinitesimal time period: for small A we have

h
X(h) = 20+ / F(X(s)) ds ~ o + hf (o) (1.7)

A reason why ODEs appear so frequently in mathematical modelling is be-
cause in many contexts we have a very good idea (from physical arguments or
otherwise) about the microscopic behavior of a process on small time inter-
vals. The macroscopic behavior of the process is then implied by the solution
of the ODE. Note that it is usually impossible to obtain explicit solutions
(even when we know that they exist) for most of the ODEs used in practice.
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That is, one cannot obtain an analytical formula for X (s) as a function of
s and zy. Practitioners usually resort to numerical approximations of the
unavailable solutions which most times are sufficient for practical purposes.
If a solution is determined (explicitly or numerically) we can then predict
both the future (s > 0) and the past (s < 0) given the value of the process
at present.

1.3 Qualitative Analysis of the ODE

We will now assume that a unique solution exists for the initial value problem
(1.2). The structure of the drift f can provide important insight into the
shape of the solution of (1.2) even if the latter is not explicitly available.
The qualitative analysis of the ODE refers precisely to an investigation of
the drift to obtain information for the path of X.

The first step is to identify points z* such that f(z*) = 0; these are
called stationary points. If the process starts at x*, it never leaves it; this is
implied by the hypothesis for uniqueness a of solution. The stationary points
are distinguished into stable and unstable. Stable points attract particles
starting next to them, whereas unstable points force particles to move away
from them. More rigorously, stable are those stationary points for which f
is positive on their left and negative on their right (the other way around
for unstable points). If X starts between a stable and unstable point, it will
move away from the unstable point and towards the stable one without ever
(this follows again from uniqueness of solution) reaching it. Thus, plotting
the drift f(z) against x reveals useful information about the path of X under
any possible initial condition.

The above remarks are better understood through an example. In Figure
1.1 we have plotted an example drift function. The stationary points are
labeled as v, y1, y2. Assume that X starts at time 0 between g, y1, that is
Yo < 2o < y1. Since X' (0) = f(xo) < 0, X will start decreasing and move
towards yo. In fact, X(s) — sg as s — oo. Thinking similarly, one can
understand the behavior of X for any initial position xg.
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y

Figure 1.1: An example of a drift function. Circles indicate the stable stationary points
and squares the unstable ones.

1.4 Numerical Approximation of ODEs

Suppose that we wish to calculate X (¢) for some time ¢ > 0 (the case t < 0
is handled similarly). This will involve solving the initial value problem. As
we have already stated though, in many cases even if a solution exists and
is unique, it can be analytically intractable; that is we cannot express X (s)
in terms of s and x. In such cases, numerical methods can be employed to
approximate the value of X (¢). Such problems fall in area of mathematics
known as numerical analysis.

The simpler approximation method, known in the literature as the Fuler-
Maruyama scheme, build on an discretisation of the infinitesimal dynamics
of the ODE. In particular, for small time increment h one can have:

t+h
X(e+h) =X = [ fXEs X, (19
t
after assuming that the function s — f(X(s)) is approximately constant

on [t,t + h]. A helpful picture to have in mind is given in Figure 1.2. To
approximate the complete function {X(¢);¢ € [0,T]} for some given time
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Figure 1.2: Exact value and approximation of X (¢ + h) — X (¢). The exact value is
given by the shaded area. For small h, the Euler scheme approximates the shaded area
with the area of a rectangle of height f(X(¢)) and width h.

horizon T, one can divide the interval [0,7] into n pieces, each of length
h =T /n, and apply (1.8) on each of them separately. That is, if X denotes
the approximation of X:

X(ih) = X((i — D)h) + f(X((i = Dh))h, i>1,

with starting point X(0) = z. Note that the Euler scheme will not deliver
a continuous-time path, but only a finite collection of points. Typically,
successive points are connected with straight line to give the impression of a
continuous curve.

The Euler scheme is one of the many available for the approximation of
ODEs. Under conditions, it’s error diminishes linearly with h. Alternative
schemes can provide better approximations. The Euler method is nonetheless
the simplest one to comprehend and implement.
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Chapter 2

Differential Equations in
Practice

2.1 Epidemics

In 1927, Kermack and McKendrick presented a model for describing the
spread of a disease in a population. The model is simplistic and in the years
that followed formed the base for the construction of much more sophisti-
cated and accurate models. However, it can still provide an initial means for
the exploration of a disease. The model divides the population into three cat-
egories: Susceptible, Infectious, Recovered. Susceptibles are those who have
so far avoided the disease and can potentially get it in the future. Infectious
are those that carry the disease and can transmit it to others. Recovered
are those who carried the disease in the past but now recovered and can no
longer transmit it. The model is called SIR after the initials of the three
groups.

Let S(t), I(t), R(t) denote the number of people in each of the three groups
at time t. The model postulates that the size of the three groups evolve in
time as follows:

% =B—vS)I(t)—dS(t)
% = vSH)I(t) - dI(t)
% — gI(t)— dR(t) .

11



Disease Ry
SARS | 2.2to 3.6
AIDS 2toh

Smallpox | 3 to 5

Measles | 16 to 18

Malaria > 100

Table 2.1: The value of the basic reproductive ration Ry for various diseases.

Here, B denotes the birth rate, d the death rate, v the contact rate of the
disease and 1/g it’s infectious period. We will provide some reasoning for
this model.

First, note that it is determined in terms of differential equations: the
derivatives dS/dt,dI/dt,dR/dt, that is the rate of change for the size of
each group at time ¢, are given as a function of the current group sizes
S(t),I(t), R(t). Consider for instance the differential equation for dS/dt. The
number of susceptibles S(t) changes in time. It increases because of births;
this is incorporated in the equation in terms of the parameter B. Then,
S(t) decreases due to the number of objects that get the disease and pass
to the group of infectious; to incorporate that, the equation uses the term
—vS(t)I(t), with the minus sign indicating decrease, S(t)I(t) corresponding
to the interactions between the two groups S(t),I(t) and v referring to the
‘easyness’ with which the disease can pass from one object to another. One
can similarly understand the logic behind the other two equations.

Epidemiologists use a single parameter to provide an immediate index
for the strength of a disease. This parameter, called the ‘basic reproductive
ratio’, is defined as follows:

Ry=v/g . (2.1)

Intuitively, it could be thought of as the average number of susceptible people
infected by a single infectious individual in a lifetime. Table 2.1 shows the
estimated value of Ry for various diseases. When Ry < 1, the disease will
eventually disappear, whereas if Ry > 1 it will spread. Note that Ry can
change dynamically over time depending on measures taken by authorities
to control the spread of the disease or other considerations. In the case of
the Foot-and-Mouth virus spread in 2001 in the UK, the initial value for
Ry was 3.3; after the authorities imposed restrictions on the movement of

12



livestock and forced culling on infected farms, Ry fell to 0.65 and the disease
gradually disappeared!. The values in Table 2.1 correspond to a free spread
of a disease, before any prophylactic measures are introduced.

The basic reproductive ratio is also related with vaccination policies. It
can be shown that the percentage of the population that must be vaccinated
to eliminate a disease is:

1—-1/Ry .

So, this index offers an indication of whether a vaccination policy is economi-
cally feasible given the provided means. Otherwise, alternative policies must
be followed (culling, quarantine etc.)

2.2 Finance: Option Pricing

We will now consider a context where the introduction of “chance” or ran-
domness in the evolution of a system seems inevitable: stock market. In 1997
Robert Merton and Myron Scholes received the Nobel prize in Economics for
developing a mathematical framework for the fair pricing of options. Their
work was presented several years earlier in the articles “The Pricing of Op-
tions and Corporate Liabilities” by Black and Scholes (1973), and “Theory
of Rational Option Pricing”, Merton (1973). (Fischer Black died before the
award of the Nobel). By the time they received the Nobel, it was already re-
alized that their work would be of dramatic impact on the way that complex
financial products were priced. Fundamental in the analysis presented in the
above papers is the notion of the Stochastic Differential Equation (SDE).
An option is a financial object providing the right (but not the obligation)
to execute, in the future, a financial agreement on some underlying security
(e.g. stock, currency, interest rate) arranged at present. The agreement
involves a buyer and a seller of the option. Assume for instance that the
underlying security is some stock and that the option gives the right to the
buyer to acquire the stock at some future time t = T at the execution price
K. This is the description of the Furopean call option. The problem is the
identification of the fair price of the option now (¢ = 0). Black and Scholes
answered this question in the context of a simple and (as understood later)
rather unrealistic model. Yet, they provided a framework of mathematical

!See the very interesting (and easy to read) report ‘Foot-and-mouth disease under
control in the UK’ published in Nature (2001)
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modelling and ideas which were subsequently applied in much more robust
contexts.

In the classical Black and Scholes model, the market is comprised of a
safe and a risky asset. The safe asset (e.g. bank investment), denoted by
Xo(t) is assumed to evolve deterministically in time according to an ODE:

dXo(t) = pXo(t)dt, Xo(0) =1, (2.2)

for some interest rate p. The risky asset (e.g. a stock) will necessarily evolve
randomly in time; Black and Scholes used an SDE to model it’s fluctuations.
They assumed that relative changes of the stock price over small time in-
crements are described via a combination of a deterministic and a random
component. That is, for small h:

X(t+h)— X(t)
Xi
for some parameter « providing a general trend for the stock price, and o

corresponding to the magnitude of the random fluctuations. For h — 0, the
above equation can be rigorously recognised as the following SDE:

dX(t) = a X(t)dt + 0 X(¢)dB(t), X(0) =z, (2.3)

= adt+ o x “random noise”

known in the literature as the geometric Brownian motion; the randomness
emanates from the presence of the Brownian motion B(t) in the equation.
We will make sense of this type of equations in the following section. For
the price of the European call option, with the stock X (¢) as it’s underlying
security, to be fair neither the buyer nor the seller of the option should be
making certain profit from exchanging it. Based on this principle, and using
the explicit mathematical modelling (2.2)-(2.3) for the market, Black and
Scholes found that the price of the option should be the following:

Eo e (X(T) - K)*]. (2.4)

We will avoid stating details about the meaning of this formula. Note only
that Eq [ -] refers to expectation w.r.t. to the random quantity X (7"). We
have only written the above expression to indicate it’s explicitness, which
came as a surprise for the option pricing people. Carrying out some calcu-
lations, one can obtain the following alternative expression for the option
price:

e—pT [e'¢)

oV2rT J,

(zexp{y + (p — o)1} — K) exp{—y*/(20°T) }dy ,
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where v = log(K/z) — pT+ 0T /2. For more details on the Black and Scholes
theory, see Chapter 12 of “Stochastic Differential Equations. An introduction
with applications” of Oksendal.
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Chapter 3

Modelling with Stochastic
Differential Equations

To realize the need for a stochastic analogue to (1.1), consider the case when
one investigates the evolution of the number of cells in an organism infected
by a virus. A candidate model could be the population growth model given in
(1.4). Assume now that, even if the rate of growth of the infected cells is “on
average” «, it is in fact not constant with time but fluctuates around a due to
changing unpredictable biological conditions inside the organism. Therefore,
we are in a situation where we have insufficient understanding of the effect
of the biological conditions to the growth rate to specify a deterministic
mathematical model describing it’s dynamical evolution. Or indeed, even if
we can speculate such a model it might be too complicated to analyze and
our analysis may become very sensitive to model misspecification.

On the other hand, a more parsimonious approach is to try to construct a
stochastic model according to which the growth rate at time ¢ is a+ “error”:

dX

v (a+ “error”) X (s), X(0)=umx. (3.1)

We would like a specification of the “error” terms so that their mean is 0,
therefore “on average” the growth rate is a. Notice that if the variance of
the “error” is 0 our model reduces to an ODE. The picture we have in mind
is given in Figure 3.1. There, we plot the solution of the ODE (1.4) with
xo = 2, and a = 0.8. The solution is given by the smooth curve which grows
exponentially at a constant rate a. We have superimposed three rough paths
with a stochastic behaviour, which imitate the dynamics prescribed in (3.1).
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The paths fluctuate around the deterministic solution, in a way that the
mean of the “error” is 0. Later in this section we will see that the rough
paths have been simulated according to a Stochastic Differential Equation
(SDE).

10

0.0 0.5 1.0 15 2.0

Figure 3.1: The solution (with the smooth line) of the linear ODE (1.4) with z¢ = 2,
a = 0.8 and three stochastic paths moving around it.

As a second motivating example, consider the data set of Figure 3.2.
This is a series of Eurodollar spot deposit rates recorded every ten days in
the period from 1973 to 1995 (see http://en.wikipedia.org/wiki/Eurodollar
for a definition of the Eurodollar rate). Notice the roughness and stochastic
behavior of the process.

Subsequently, one could imagine a general approach where uncertainty is
introduced in the microscopic dynamics of a time-evolving process. Can we
formally construct such models whose paths look like those in Figures 3.1
and 3.27 The purpose of this chapter is two-fold. Firstly, to demonstrate
that it is highly non-trivial to give a precise mathematical description of the
stochastic model we have intuitively postulated. Secondly, to give some clues
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Figure 3.2: Eurodollar deposit rates in the period 1973-1995 recorded every ten days.

and intuition as to how this is done.

A Note On Randommness:

To incorporate random fluctuations in the model, mathematics use the con-
cept of the stochastic process. This object is defined as a collection of random
variables, say {X(t);t € [0,T]}. So, X evolves in time in a random fash-
ion. To indicate randomness, we introduce a second argument w and write
X(t) = X(w,t), with w a given element of a sample space 2. Intuitively, €
corresponds to all possible outcomes of an experiment, and w € €2 to a par-
ticular realisation of the experiment. Repeating the experiment several times
results to various outcomes (wy,ws, ...) and different values for the process
X related with it. Each outcome is given a probability according to some
distribution P. In Figure 3.3, we show three paths corresponding to three
different realisations of the same random process X.

More rigorously, an experiment with random outcome corresponds to a
probability space (2, F, P) with 2 the sample space, F a o-algebra comprised
of collections of events and P a probability law. A random process is then an
appropriately defined (measurable) mapping X : (2, R;) — R. Sometimes
it is useful to think of the time instance ¢ as being fixed and w varying. Then
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one can calculate probabilities of the form:
PIX(#) € (0,1)]=P[{w: X(w,t) € (0,1)}]

or P[{X(t1) > 0}N{X(t2) < 0}], etc. Other times, it is of interest to exam-
ine path properties of the process, for example P[¢ — X (¢) is continuous| or
Psup,eo X (t) < 1]. In this case one should consider the complete paths
t — X(w,t) for any given w € 2. We will sometimes add the argument w
and write X (t,w) to emphasize the stochastic nature of the process. Most
times, though, we avoid it’s use for notational simplicity.

A

Figure 3.3: A stochastic process X. Three sample paths corresponding to three
different randomly chosen (according to P) w's.

3.1 A Stochastic Differential Equation

We will begin by looking at a stochastic analogue of the ordinary integral
equation (1.3). We will give meaning to an equation of the following form:

X(t) =z + /tf(X(s))ds +oB(t), t>0. (3.2)

19



There are three terms on the right-hand-side: the first two are the same as in
the deterministic integral equation (1.3). We want to construct appropriately
the third term to allow for randomness into the system. In terms of Figure
3.1, we want B(t) to capture the discrepancy between the smooth and the
rough path. At any time ¢, B(t) has to be a random variable; it’s variability
will introduce variability into the path of X. Hence B = {B(t); t > 0} will
be a stochastic process. In the light of the discussion for randomness above
we will sometimes write B(w,t) instead of B(t) to emphasize the random
nature of B. In this setting, ¢ is a positive scaling constant used to tune
the effect of B on X: choosing ¢ = 0 reduces (3.2) to the ordinary integral
equation (1.3).

Let us return now to (3.2) and add w to all functions which will depend
on it:

X(w,t) =x0+ /0 f(X(w,s))ds+ ocB(w,t). (3.3)

Notice that X will be constructed via B, the former will also be a function
of two variables, (w, s) — X (w, s). That is, any solution of (3.3) will also be
a stochastic process. The question now becomes: what properties should B
have? A trivial first requirement is that B(w,0) = 0 for (almost) all w so
that x is the initial value of X. Working with the increments of X we have:

X(w,t+h)—X(w,t) = /t+ f(X(w,s))ds+ o(B(w,t+ h) — B(w,t))
~ hf(X(w,t))+o(B(w,t+h)— B(w,t)). (3.4)

The motion at time t should be centred around f(X(t)), so we require that
the expected value of the jump B(t + h) — B(t) is zero:

Property 1. E[B(t+h)— B(t)] =0 for all t, h.

We would also like that the disturbances in different time points be indepen-
dent and identically distributed, that is:

Property 2.  B(ty) — B(t1) is independent of B(ss) — B(s1) for all times
§1 < 89 < t1 < to.

Property 3. The distribution of B(t + h) — B(t) depends only on |h| (and
not on t).
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Properties 2 and 3 above translate mathematically our requirement that
the microscopic dynamics of X are perturbed by “pure error” which has
no predictable structure. Ideally, we would also require the property that ‘B
has (almost everywhere) differentiable sample paths’. That is, for any fixed
w, s — B(w,s) is differentiable in s. Were there such a process possessing
Properties 1-3 and having differentiable paths, then one could easily make
sense of the model (3.3) as the limit of (3.4) when divided by h and h — 0.
Unfortunately, it appears that there does not exist a stochastic process having
Properties 1-3 and, additionally, differentiable paths.

However, not all is lost. There does exist a stochastic process B having
Properties 1-3 and continuous sample paths. By continuous sample paths we
mean that the process can be constructed so that s — B(w, s) is continuous
in s for all w. Indeed, there exists only one such stochastic process, which is
the Brownian motion. We will review some basic properties of the Brownian
motion in the section that follows.

Notice that we have now made sense of the integral equation (3.2): the
noise B(t) appearing in the equation has been corresponded to a Brownian
motion. It remains to investigate conditions under which such an equation
has a solution. We have already discovered that a candidate solution cannot
have differentiable paths. It appears however that, under conditions on the
drift function f, there is a stochastic process X with continuous sample paths
that solves (3.2). The topic of the existence and uniqueness of a solution to
an SDE will be briefly addressed in Section 3.3. In retrospect, you can
appreciate the flexibility in working with an integral equation instead of a
differential equation: (3.3) still makes sense even when X is not differentiable
but only continuous. Still, many times we equivalently express (3.3) in terms
of an equation involving differentials:

dX(w,s) = f(X(w,s))ds + ocdB(w,s), X(w,0)=ux. (3.5)
Since both X and B are not differentiable, (3.5) makes sense only when

integrated w.r.t. s in which case it gives back (3.3). To derive (3.3) from
(3.5) we have used the intuitive rule:

/Ot dB(w,s) = B(w,t) — B(w,0) = B(w,t) .
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3.2 Brownian Motion: An Excerpt

The building block of our model is the Brownian motion, so it worth reviewing
some of it’s fundamental properties. This is not a course on Brownian motion:
we will only present what is completely necessary in our context. For more
details we refer the reader to the several textbooks available devoted to the
study of the numerous and fascinating properties of the Brownian motion.

Properties of B can be investigated in two directions. The first has to
do with the finite-dimensional distributions of B. That is, the distribution
of vectors of the form {B(sg), B(s1), ..., B(s,)} for given collections of time
instances 0 < sp < 81 < --- < s,. Some notation: N(u,X) denotes a
Gaussian distribution with mean p and variance ¥. We can now state the
following results:

1. P[B(0)=0] = 1.

2. The random vector (B(so), B(s1), . .., B(sy,)) follows a multivariate Gaus-
sian distribution with mean p and variance ¥ determined as follows:

§= (E [B(s;) ]), —0, ¥= (COV(B(SZ-), B(sj))). = (min{s;, 5;}) -

i i\j
3. From result 2. we obtain that, for ¢,s > 0:
B(t) — B(s) ~ N(0, |t — s]) .
Thus, Brownian motion has stationary increments.

4. Result 2. also implies that for any sg < s1 < s3:
B(so), B(s1) — B(so), B(s2) — B(s1) are independent .

Therefore, Brownian motion has independent increments, and the step
B(sy) — B(s1) is independent of all the past {B(s); s < s;}, for any
0 < s1 < 8o.

The second direction of investigation is to consider properties of the paths
s — B(w,s) for fixed w. In that respect a Brownian motion can be con-
structed in a way that all it’s sample paths are continuous, i.e. the map
s — B(w, s) is continuous for any w. At the same time, all sample paths of
B are nowhere differentiable.
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Simulation of Brownian Paths:

Can we stmulate Brownian paths on our computer? Note first that a complete
path {B(t); t € [0, 7]} entails infinitely many points, so one cannot expect to
generate such a continuous-time object. However, what is definitely feasible
is to simulate a skeleton of B, that is a finite subset of the complete continu-
ous path. So, one can instead simulate the vector {B(so), B(s1),...,B(sn)}
for some pre-specified time instances sg < sy < - - < s,, based on the finite-
dimensional properties of a Brownian motion described in results 1.-4. above.
Figure 3.4 shows a Brownian path simulated on a computer. We simulated
the locations B(i/10?), for i = 1,2,...10% and connected the consecutive
points with straight lines to resemble a continuous path.

o0 —

B(t)

O —

{ w w w w \
0 20 40 60 80 100

Figure 3.4: A Brownian path ¢t — B(w,t) on a computer.

The simulation is performed by exploiting the independency of the incre-
ments of the Brownian motion. For the case of the simulation of the vector
{B(s0), B(s1),...,B(s,)} we proceed as follows. We know the marginal dis-
tribution of the first point, B(sg) ~ N(0,s;). Then, for the fist increment,
B(s1) — B(sg) ~ N(0,s; — sp) independently of B(s) for any s < s5. Simu-
lating this two Gaussian variables will give us the Brownian path at s; since
B(s1) = B(so) + (B(s1) — B(sp)). Thinking iteratively, there is a general
algorithm (which could for example be implemented in R):
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1. Simulate Zy ~ N(0,1). Set B(w, o) = 1/50%0-

2. For i = 1: n, simulate Z; ~ N(0, 1).
Set B(w, s;) = B(w, $i—1) ++/Si — Si—1 Zi -

So, a Brownian path (meaning, a skeleton of it) is simulated using only stan-
dard Gaussian variates. Changing the Gaussian variates Z; essentially cor-
responds to simulating skeletons of paths which correspond to different w’s.
Therefore, if we want to simulate m different paths we run the algorithm m
times, changing the Z;’s we use at each run. If the Gaussian variates are inde-
pendent across the runs, we will obtain independent Brownian paths. Figure
3.5 shows three independent Brownian paths on [0,1]. The corresponding
skeletons have been simulated at very fine time-increments, s; —s; 1 = 1/ 10*
to provide a satisfactory approximation to the continuous underlying paths.
As in the case of Figure 3.4 we have joined the locations B(w, s;) over the
consecutive instances s; by interpolating straight lines. In Figure 3.6 we plot
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Figure 3.5: Three independent Brownian paths on [0, 1].

two dependent Brownian paths. Notice that the one path is the reflected ver-
sion of the other along the y = 0 horizontal line. We simulated these paths
by choosing two sets of Gaussian seeds, (Zy, ..., Z,) for the first skeleton and
(Z{,...,2]) for the second skeleton with Z] = —Z,.
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Figure 3.6: Two dependent Brownian paths on [0, 1].

3.3 Solutions of SDEs

As a solution to the two equivalent expressions (3.3), (3.5), one should un-
derstand a stochastic process X, whose value at time ¢, X(t), is expressed
in terms of xg, ¢t and the Brownian path B, and whose time-evolution is
described by (3.3). So now the solution will also depend on the Brownian
motion, whereas in the ODE setting it only depended on the initial condition
and the time argument. From the expression (3.3), one should expect that
X (t) will only depend on the past of B, {B(s);s < t}, i.e. the path of B up
to any time t will fully specify the path of X up to ¢t. In probabilistic terms,
this is formally stated as ‘X being adapted to the filtration generated by B’.

Example 3.1 (Constant drift). Consider the SDE:
dX(s) = pds +odB(s), X(0)=uzg, (3.6)

i.e. the drift is constant, f(z) = p. The solution of this SDE is the stochastic
process:
X(t) =z0+pt+0B(t). (3.7)

This is trivially verified by writing the equation in it’s formal integral form.
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Notice that in this case we get an exact expression for the increments of X:
X({t+h)—X(t)=hp+o(B(t+h)—B(t)) .

In Figure 3.7 we plot on the same graph a path of the constant drift SDE
with = 3, 0 = 4 (path X;) and another path for p =3, 0 = 1 (path Xj);
on the same graph we have plotted the Brownian motion B that drives the
two paths.

20

10

-10

Figure 3.7: Paths of solutions of (3.6). The first, X;, corresponds to the parameter
choice u = 1, 0 = 4; the second, X9, to u = 1, 0 = 1. Both paths are driven
by the Brownian motion B. We have also included the mean value of the solutions,
E[X (t)] = pt (straight line).

Notice that the fluctuations of the Brownian path imply the corresponding
fluctuations for X. More generally, the distribution of B implies a distri-
bution for X. In the context of this example SDE the relationship between
the two processes is apparent: X is a linear transformation of B. In partic-
ular, we readily get that the finite-dimensional distributions of X are also
Gaussian. In more general SDEs the distribution of X can be more involved.

O

26



Notice that, whereas the SDE describes the microscopic dynamics of X,
the solution of the SDE describes the characteristics of the process at longer
time horizons. Given the solution we can make probabilistic assessments
of the state of the process at any time t. For instance, in the case of the
constant drift SDE (3.6) we know that X (t) ~ N(ut,0?t). We can use this
information to make predictions.

The SDE (3.6) is one of the few SDEs admitting an explicit solution. In
Section 3.7 we will see that we need an appropriate calculus for solving such
SDEs, in the same way that we use ordinary calculus (integration by parts,
chain rule) to solve ODEs. On the other hand, we can numerically approxi-
mate the solution after appropriately adjusting the Euler scheme of Section
1.4 in the stochastic context at hand. Before that one needs to investigate
existence and uniqueness of solution. Such considerations are approached in
a similar manner as for ODEs. The Lipschitz condition again naturally arises
as a condition which ensures uniqueness, and Picard’s iteration is used to es-
tablish existence. A major difference is that since we now work with random
variables we will need to use expectations and a different limit theory. We
refer to Oksendal’s book for details (see p.70).

3.4 Numerical Approximation of SDEs

We henceforth take for granted that there is a unique solution X of (3.3). We
aim to develop a reasonable discrete-time approximation of X which can be
readily used for simulation purposes on a computer. In Example 3.1, sample
paths of X were easy to obtain since the solution of the SDE was simply a
linear transformation of a Brownian motion. We will now be interested in
cases where such solutions are not analytically available.

As with the Euler scheme for the approximation of ODEs, the basis of
our method will be the approximation of the infinitesimal dynamics of the
SDE. In particular, for a small time increment h we have that:

t+h
X(t4h) - X(1) = / F(X())ds + o(B(t + 1) — B())
t
~ hf(X(t)+o(B(t+h)—B(t)).
So, assuming that we are given the location X (), we have the approximation:

X(t+h)— X)) "7 N(hf(X(t),0%h) . (3.8)
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One can now proceed similarly as in the case of an ODE. Assume that the
objective is the approximation of X (7") for some time instance 7. For some
large enough integer n, we divide the interval [0,7] into n pieces of equal
length h = T'/n. We then apply iteratively the approximation (3.8) on each
of the subintervals [(i — 1)T'/n,iT/n|, for i = 1,2,...n. Analytically, we set:

X(ih) = X((i = 1)) + f(X((i = Dh) h+ oVh Z; (3.9)

with starting point X (0) = z; also, {Z;} is a collection of independent stan-
dard Gaussian variables. One can now use the discrete-time process X to
approximate sample paths of the continuous-time process X on a computer.
The above numerical method is called the stochastic Fuler scheme.

Example 3.2 (Ornstein-Uhlenbeck process). Consider the SDE:
dX(s) =a(p— X(s))ds +adB(s), X(0)=uxg, (3.10)

for constants o, u € R, 0 > 0. As in the case of an ODE, one can infer about
the behavior of the solution of the SDE by examining the drift function. In
fact, the Ornstein-Uhlenbeck process belongs to the family of mean-reverting
models: when a > 0, sample paths of X will revert towards the mean p, with
a modelling the speed of reversion. When a < 0, sample paths will eventually
escape to (plus or minus) infinity. In terms of the discussion about stationary
points in Section 1.3, u is a stable stationary point when o > 0 and unstable
otherwise. In Figure 3.1 we plotted sample paths of the Ornstein-Uhlenbeck
process started at xy = 2, for parameter values (o, u,0) = (0.8,0,0.04).
Also, Figure 3.8 presents sample paths for various parameter values (always
with a > 0) and starting values on the time horizon [0,20]. The Ornstein-
Uhlenbeck SDE can be analytically solved; the mean of the solution is:

BIX(1)] = e (zo — ) + (3.11)

which in it’s turn solves the linear ODE corresponding to ¢ = 0. The smooth
lines in Figure 3.8 show the solutions of this ODE for the various selections
of u, a and xg.

Notice the contrast between ODE and SDE illustrated in Figure 3.8.
When xy # u the drift pushes X to move towards u. However, due to the
stochasticity introduced by B, the path of X does not move monotonically
towards g, as in the deterministic case, but rather fluctuates around it. In
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Figure 3.8: Sample paths of the Ornstein-Uhlenbeck process on [0,20]. The parameter
values (o, u, o) are (0.3,1, 1) for the first three graphs and (0.03, 1, 1) for the last one.
With solid lines we have superimposed the corresponding ODE solutions for o = 0.

general, when X is far from p the drift is strong and dictates the dynamics of
the process; then the effect of stochasticity is small. On the contrary, when
X is close to i, the random perturbations dominate the dynamics. O

Example 3.3 (Double-well). Consider the SDE whose drift is given by the
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following function:

f@) =2 (ﬁ _ 2) | (3.12)

This drift defines two stable stationary points, +1 and -1, and one unstable
stationary point, 0. Figure 3.9 shows the graph of f. You can check that f
satisfies the Lipschitz condition on R. In the deterministic case (o = 0) the

o
o |
n
X o
n
o
o
‘T‘,
-4 -2 0 2 4
X

Figure 3.9: The drift (3.12) of the double-well process.

path will stabilize around the stable point closer to xg, i.e. to +1 if 2y > 0
or to —1 if zg < 0. When stochasticity is introduced (o # 0) the behavior
of the paths becomes more complex. There will be periods where X moves
around one of the stable points, but now there will also be transitions from
the one stationary point to the other. The frequency of these transitions will
be determined by the value of o. Figure 3.10 (top panel) shows simulated
sample paths of the double-well process on the time horizon [0, 200] for three
different values of ¢, all paths having started at the stable point +1. Notice
that when o = 1, X moves around both stable points making a few transitions
between them. These transitions become less frequent if ¢ = 0.8 whence the
path X is more concentrated around the stable solutions. When o = 0.5 we
observe no transitions on [0,200] and X moves only around +1. The bottom
panel of Figure 3.10 plots histograms of the locations of the sample paths
(more precisely, of the locations of the discrete-time Euler approximation
used to draw the graphs). O
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Figure 3.10: Top panel: Sample paths of the double-well process on the time interval

[0,200] with 0 = 1 (top), 0 = 0.8 (middle) and o = 0.5 (bottom). Bottom panel:

Frequencies for locations visited by each of the three paths above.
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Example 3.4 (Non-Lipschitz case). It is interesting to consider a case where
the drift does not satisfy a Lipschitz condition. This is to illustrate that the
Lipschitz condition is sufficient but by no means necessary condition for the
existence and uniqueness of a solution of an SDE. We will revisit the drift
function we first discussed in Section 1.1:

flz)=—2".

Observe that 0 is a stable stationary point. In Section 1.1 we saw that the
solution of the ODE with this drift is X (s) = zo/+/1 + 2523, s > —1/(222).
In Figure 3.11 we plot the solution for xy = 1. We have already seen that
the solution explodes as s | —1/(2x3). An interesting interpretation (or
consequence) of this exploding behavior is that, even if the initial location
is large, X will move close to the origin extremely fast. For instance, if #; is
the time that X reaches 1, then one can easily find that ¢; = (1 — 1/23)/2
which is not larger than 1/2 irrespectively of how large xy might be.

~

©o |

0 2 4 6 8 10
Figure 3.11: The solution of the ODE with and drift f(x) = —x3, started at 29 = 1.

We now examine the behavior of the corresponding SDE with the same
drift. Figure 3.12 shows sample paths of the process started from three
different locations, xo = 1, zop = 5 and zy = 20. As a first remark, the
process moves around 0, which is not surprising given that 0 is a stable
stationary point. Notice also the extremely rapid returns of X to values near
0 from any initial value. For example, contrast Figure 3.12 with Figure 3.8.

O
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Figure 3.12: Sample paths of the SDE with drift f(z) = —23, ¢ = 1, and three
different starting values, xo = 1 (top), zp = 5 (middle) and zy = 20 (bottom).

3.5 Towards a More Robust Model
The model we have so far constructed:
dX(s) = f(X(s))ds+ odB(s), X(0)=xg, (3.13)

though capable of describing many natural processes, needs to be appropri-
ately generalized. Such a generalization is motivated both by mathematical
and practical statistical considerations. We will now illustrate both these
arguments. Recall that the model we have so far considered implies (see
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section 3.4) that for small h:

E[X({E+h) - X(@) [ X(@)] = f(X(#)h,

Var [ X(t+h) — X(t) | X(t)] ~ o?h . (3.14)

We begin with the mathematical considerations. Assume that X is the
solution of the above SDE. Let Y be a stochastic process defined as a trans-
formation of X, that is Y'(¢) = g(X(¢)) for some sufficiently regular function
g : R — R. Then, it is not true in general that Y also has a similar rep-
resentation as X, that is Y cannot be expressed as the solution of an SDE
of the type we have so far considered. Consider the following example. Let
X(t) = B(t), i.e. X is the solution corresponding to f =0, 0 = 1 and xy = 0.
Take g(z) = e”, so that Y (t) = e®®). Then, for small h:

Y(t+h)—Y(t) = exp{B(t+h)} —exp{B(t)}
exp{VhZ 4+ B(t)} —exp{B(t)} [fora Z ~ N(0,1)]
= ep{BO)}Hexp{VhZ} 1)
= Y()(exp{VhZ} — 1)
Y(t)(VhZ +hZ?/2) |by expanding the exponentiall

Q

So, in this case:

E[Yt+h)-Y@®) Y]~ —=h (3.15)
h

Var[Y(t+h) — Y () | Y(1)] ~ Y (1)

The conditional expectation is linear in Y'(¢), as in the case of the Ornstein-
Uhlenbeck model of Example 3.2. There is however a striking difference
between the infinitesimal dynamics of Y in (3.15) and those in (3.14): the
conditional variance of Y (¢t + h) — Y (t) depends on Y (t). Dependence of the
variance of the increments on the value of the process is a feature that is not
allowed in our model (3.13). The expressions in (3.15) in fact point towards
a continuous-time model of the type,

dY(s) = @ds +Y(s)dB(s) . (3.16)

Note that our current theory is insufficient to attach a well-defined math-
ematical meaning to this expression, since if we integrate both sides w.r.t.
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time, we get:

Y(t) = o +/0 Yés)ds+/0 Y (s)dB(s) . (3.17)

Therefore, to make sense of (3.16) we need first to make sense of integration
w.r.t. Brownian motion. This will be the subject of the next section.

Models like (3.16) are not required only due to mathematical complete-
ness, but arise rather naturally for dealing with practical modelling issues.
Recall the Eurodollar data set of Figure 3.2. A careful examination of these
data suggests that the variability of the process depends on it’s current lo-
cation. When the Eurodollar rate is high, it varies wildly, whereas when it is
low it’s variability diminishes. One should expect that a model which allows
state-dependent variance would be more appropriate than (3.13) to describe
such data.

Therefore, for both mathematical and statistical reasons, an extension
of the model we have currently at hand is required. We wish to preserve
the same structure, where the drift dictates the motion of the process, but
allow for a term which controls the local variability of the motion. Hence,
we advocate a model which writes as follows:

X(t) = 20+ /0 F(X(5))ds + /0 (X (5))dB(s) | (3.18)

where now o : R — R, is a non-constant function. So, we need to understand
integration w.r.t. Brownian motion. Note that up to now we managed to
avoid such an issue by restricting ourselves to the special case where o is a
constant function, in which case (3.18) reduces to (3.13).

3.6 Integration and Bounded Variation

To attach a formal mathematical meaning to (3.18) we will need to appro-
priately define integrals of the type:

/0 g(w,s)dB(w, s), (3.19)

where the integrator is the Brownian motion B and the integrand is a stochas-
tic process g. Such an object is called a stochastic integral. A specific case of
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interest is for g(w, s) = o(X (w, s)) when one retrieves the stochastic integral
in (3.18). The integration in (3.19) cannot be carried out using standard
calculus, for various reasons:

1. The result of the integral will depend on w, so it will be a random
variable. Consequently, probability theory will intervene at some point
to attach meaning to, and manipulate, such integrals.

2. In general, g and B will be stochastically dependent. Working with
dependent random variables can be difficult. It turns out that, to
define a stochastic integral, ¢ must be confined within a specific family
of stochastic processes.

3. A third reason why (3.19) lies outside ordinary calculus is more subtle
and relates to the concept of variation.

We begin our discussion with the last point. Let us recall the construction
of the well-known Riemann integral:

b
Riemann integral: / g(s)ds

for real-valued continuous functions, g : R — R. (It is not necessary to
restrict to continuous functions, but it does simplify things). The integral
can be obtained as the (unique) limit of approximating sums of the type:

Zg(si)Ati : (3.20)

We have set At; =t;, —t;_y wherea =t <t; <---<t,1<t,=0bisa
partition of [a,b]; s; is any point in the interval [t;_1,t;]. See also Figure 3.13.
More precisely, one should think of a sequence of partitions indexed by n:

a=t" <t <. <l <l =

so that a limit of (3.20) for n — oo can make sense. We adopt such a
strategy for the sequel, but suppress further use of the superscript (n). We
are assuming that sup,{At;} — 0 as n — oo, i.e. the partition gets finer
as we increase n. We will be making this assumption for all sequences of
partitions mentioned in the rest of the section without further notice.
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Figure 3.13: The surface of the shaded area corresponds to f; g(s)ds. An approx-
imation is given by the area covered by the rectangular boxes, using a partition
0=ty <ty <ty <tz <ty=0b. In this figure we have taken s; = t;.

Riemann integration can be generalised to Riemann-Stieltjes integration
which can calculate the integral of g w.r.t. an arbitrary increasing function F":

b
Riemann-Stieltjes integral: / g(s)dF(s) . (3.21)

Similarly to the Riemann integral, (3.21) is defined as the limit (n — oo) of
approximating sums of the form:

D 9(s)AF, (3.22)

over a partition a =ty < --- <t, =b of [a,b], where we have set:

As above, s; is any point of the interval [t;_1,¢;]. In this generalisation F’
needs not be continuous. Note that the Riemann integral is the special case
of the Riemann-Stieltjes integral where F' is the identity mapping.
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Example 3.5. Let X be a random variable with distribution function F'.
Then it’s expected value is given by the Riemann-Stieltjes integral expression
[ _xdF(z), provided the integral exists (i.e. provided limy_. ffk xdF(x)
exists). Notice that this compact notation caters for both continuous and
discrete random variables. O

Riemann-Stieltjes integration obeys all the familiar rules of Riemann inte-
gration. Also, it can be further generalised. We can define the integral of g
w.r.t. functions F' of bounded total variation.

Definition 2. Consider the function F : [a,b] — R. For any p > 0, the limit
VPI[FE, a,b] = lim,, VP [F, a,b], where:

PIF, a,b) = Z|AF|P

is defined over a partition of [a,b], is called the p-th variation of F. VWW[F, a, b]
is called total variation and V®[F,a,b] quadratic variation. We say that a
function is of bounded variation if it’s total variation on any compact interval
la, b] is finite.

Exercise 3.1. Show that (trivially) if F is increasing on |a,b| then it is of
bounded total variation on that interval.

Exercise 3.2. Show that if F': R — R satisfies the Lipschitz condition on
la, b] then it is of bounded total variation on that interval.

Functions of bounded variation appear naturally in the context of Riemann-
Stieltjes integration because of their connection with increasing functions. It
can be proved that any function F' of bounded variation can be written as
the difference of two monotonically increasing functions:

F(s) = Fi(s) — Fx(s), Fi, F; increasing.

Then, the integral of g w.r.t. F'is defined as:

/abg(S)dF(S) = /abg(S)dFl(s) - /abg(s)sz(S) :

where the two terms on the right-hand side are standard Riemann-Stieltjes
integrals. Even in this general framework, when ¢ is continuous and F' is of
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bounded variation, we can make sense of ff g(s)dF(s) as the (unique) limit
of approximating sums Y., g(s;)AF;, calculated using partitions of [a, ],
where s; is any point inside each interval [t;_q,t;].

Therefore, one may naturally think of defining the stochastic integral
(3.19) as a Riemann-Stieltjes integral. Such a direction would require the
Brownian paths to be of bounded variation. Unfortunately, this is not the
case. From the properties of the Gaussian distribution one can find that:

E[|B(t+h)—B(t)|]:\/g\/E.

So, the Brownian path in small time-increments h varies wildly: it’s incre-
ments are of the order v/h. Indeed, we have the following theorem.

Theorem 3.1.

1. All sample paths of the Brownian motion on [0, t] have the same quadratic
variation t. That is, for all w € Q:

lim » " |B(w,ti) = Blw,ti1)|* =t . (3.23)

i=1

2. The total variation of all Brownian paths on [0,t] is infinite. !

Proof.
We will use the shorthand notation:

ABZ = B(w,tl) — B(u),ti_l) .

1. We will prove a slightly different statement, namely that the following is

true: ,
lim E <Z |AB;|? —t) —0.

i=1

Firstly, we expand the square inside the expectation to get three terms
(>2(AB;)?*)?+t2—2t > (AB;)?. We further expand the square in the first term
to get >, (AB;)* + 37, (AB;)*(AB;)*. Taking the expectation of the four

'For these results to hold, it is required that the sequence of partitions considered is in-
creasing, that is the partition corresponding to n = n; is a subset of the one corresponding
to n = ny when ny < ns.
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terms we get 3>, (At;)? + 37 At;At; — t?. Notice that t* = (37, At;)*.
Thus, we can simplify the previous expression as 2, (At;)%. Notice that
YA = SALAL = Y A — Yt At — 22 —12/2 = 0, as

At; — 0, i.e. as n — oo. Thus, we have proved the result.

2. We will show that continuous functions of bounded non-zero quadratic
variation have necessarily infinite total variation. Assume that F' is a con-
tinuous real-valued function of non-zero quadratic variation on [a, b]. Notice
first that, under the assumption of increasing sequence of partitions (see foot-
note), the triangular inequality implies that VTSI)[F ,a, b] is increasing with n.
Thus, v, [F, a, b] will either converge to some finite real or diverge to infinity.
From the definition of the quadratic and total variation we get that:

V2 a,0] < sup |AF| x VIV [F, a, 1]
Notice however, that every continuous function on a closed interval is also
uniformly continuous on it. Using this, the fact that sup, At; — 0 implies

that:
sup [AF;| — 0.

So, if the total variation is finite, the quadratic variation will be 0. Equiv-

alently, non-zero quadratic variation implies that the total variation is infi-
nite. 0

Now we know that our integration problem does not fit into the ordinary
calculus. So, what might go wrong?

Example 3.6. Consider the stochastic integral:

/OtB(w,s)dB(w,s). (3.24)

For a given partition of [0, ¢], the following sums correspond to two reason-
able, Riemann-Stieltjes type, approximations of (3.24):

In(u)) = i B(w, tz—l)ABz y Jn(w) == i B(w, tl)ABl . (325)

These sums have the same structure as (3.22) and correspond to two different
choices of the intermediate times s;: I, (w) chooses s; = t;_1 whereas J,(w)
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chooses s; = t;. One would expect that as n — oo, [,(w) and J,(w) would
both converge (in some mode) to the same limit which would correspond to
the value of the integral (3.24). However:

To(w) = Z B(w, t)AB

n n

= Y (ABi+ Bw, ti1))AB; = Y (AB)? + I,(w) .

i=1 i=1

Thus, I,(w) — Ju(w) — t as n — oo using Theorem 3.1! Hence, Brownian
motion varies in small time-increments so rapidly that the choice of the in-
termediate time in the integral approximating sum affects the value of the
limit. This is remarkably different from the Riemann-Stieltjes integration
where we know that such choice is irrelevant and a unique limit exists for
any s; € [t;_1,t;]. One can prove that:

B [(IH<W>-MMTW—§)2] -0

which suggests the random variable B(w,t)?/2—t/2 as a canditate calculation
of the stochastic integral (3.24). Of course, in ordinary calculus we know that
f(f F(s)dF(s) = F(t)?/2. You can already see that standard calculus rules
brake down in the context of stochastic integration. O

It should be obvious by now that a different calculus is required to define
integrals of the form (3.19). One possibility is to define the integral as the
limit of sums of the type I,,(w) defined in (3.25). This leads to what is
known as the [to’s stochastic integral. It’s properties can then be studied
using martingale theory. Similarly, one can define stochastic integrals w.r.t.
more general stochastic processes X; for instance (3.19) can be generalised
to:

[ st spixes),

where X is the solution of (3.18) by considering appropriate limits as n — oo,
of sums of the type

Z g(u), tz—l)AXz .
i=1
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Unfortunately, it is beyond the scope of this course to delve into the beautiful
theory of stochastic integration. We refer to the book of Oksendal for further
reading.

3.7 Stochastic Calculus - Ito’s Formula

Similarly to ordinary calculus, identification of stochastic integrals relates
with the consideration of appropriate derivatives. Let X = {X(¢);¢ > 0} be
the diffusion process determined as the solution of the general equation:

dX(s) =b(X(s))ds+o(X(s))dB(s), X(0)=uz. (3.26)

Let g : [0,00) X R — R be a function one time differentiable in the first
argument, twice continuously differentiable in the second, and consider the
stochastic process:

Y(s) = g(s, X(s)) -

The celebrated [té’s formula dictates that Y'(s) is also a diffusion process
and provides the SDE solved by Y'(s). From a practical perspective, it gives
the means for making sense of the infinitesimal differences dY (s) and, then,
for calculating stochastic integrals. Analytically, Ito’s formula states the
following:

Ito’s Formula:

dY (s) = d,g(s, X (s))ds + g (s, X(s))dX (s) + %9”(87 X()(dX(5))* .

The expression is similar to the one from ordinary calculus, apart from the
second-derivative term on the right-hand side usually called Ito’s correction.
One can substitute dX(s) in the above equation with it’s equal from (3.26).
When doing so, the quadratic term (dX (s))? will give quantities of the type
(dB(s))?, ds - dB(s), (ds)?. The following rule should then be applied:

(dB(s))* =ds; (ds)*=0; dB(s)-ds=0.

Example 3.7. We will use [t0’s formula to find the integral:
t
/ B(s)dB(s) .
0
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Consider the process Y (s) = (B(s))?. Applying It6’s formula in this context,
with g(z) = 2%, and X (s) = B(s), gives the following:

d(B(s))? = 2B(s)dB(s) + (dB(s))? ,

so, using the rule (dB(s))? = ds, and integrating, we find that:

¢ 1/ 1/ B(t)? t
B(s)dB(s) == [ d(B(s))?—= [ ds= — =
| Bane) =5 [Fawep -5 [as= 20—
Exercise 3.3. Use Ito’s formula to prove that:

/Otf(S)dB(S) — f(O)B() _/0 F(5)B(s)ds

Exercise 3.4. Use Ito’s formula to solve the following differential equation:

O

dX(s) = pX(s)ds+cX(s)dB(s) .

(Hint: Divide both sides with X; then use Ito’s formula to see that the left-
hand side is equal to d(log X (s)) plus a constant.)
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Chapter 4

Likelihood Inference

4.1 Introduction

We will now consider carrying out statistical inference for diffusion models.
We will initially confine ourselves to the following family of (scalar) SDEs:

dX(t) = f(X(£):0)dt + o dB(t), X(0) = . (4.1)

for unknown parameters o and 6 = (6;,...,6,,) to be estimated based on
observed data; ¢ is assumed known. For instance, in the case of the Ornstein-
Uhlenbeck diffusion in Example 3.2: m = 2,6; = a,6, = p. Notice that 6
relates with the drift and o with the variance of the process. We will see that
this distinction between drift and variance parameters is crucial for inference
purposes.

We assume possession of data corresponding to an observed sample path
X ={X(t);t € [0,T]} of the process described by the model (4.1). In prac-
tice of course we cannot have continuous-time data, only very high frequency
ones. Thus, the actual data will be:

XM = (X(t), X(t1),..., X(t,))

for some given time instances 0 =ty < t; < --- < t,_1 < t, =T. We will
sometimes write X; instead of X (¢;) to simplify the mathematical expressions.
Following the notation we have already established, we set:

Ati=t;—ti1; AX;=X;,— X;_1.
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For simplicity, and without loss of generality, we assume that the data are
equidistant, so At; = T'/n. We can thus omit the index i and write just At.

We mentioned in Section 3.3 that the joint distribution of X thus
the likelihood function, is unavailable when (4.1) does not have an explicit
solution. However, we can use the Euler approximation to write down an
approximate likelihood, say L (6, o), which will be an increasingly accu-
rate approximation of the exact one as At — 0 (or equivalently n — 00).
Following the Euler scheme:

L™, 0) exp{— 2At (Xi — Xi1 — f(Xi1;0)At)*} (4.2)

H V2mo? At

We can now consider the log-likelihood:

n

1
(n) o - 2
0" (0,0) =c—nlogo YN ZE: (AX; — f(Xi_1;0)At)

202 At —

:c—nloga—i{M—l—Zﬂ i—1;0 At—2Zf i1 AX}.

We can now find the value of the parameters that maximise the likelihood
function. The equations:

o) 0 o0(n)
80' - 89]

=0,j=1,2...m,

yield the following expressions:

1 ] — 2 &
0? = 5 I (AX) 4 Z f(Ximy; 0)° At = = Z F(Xi:0)AX;
=1
n 5 (4.3)
Zf(Xi—l;e)aejf i—1; At—280 Xi—1;0)AX; =0,

the first coming from the derivative w.r.t. ¢ and the rest (for j = 1,...,m)
from the derivative w.r.t. 6;. The solution of equations (4.3) w.r.t. o, 6 is the
maximum likelihood estimator (MLE) of the unknown parameters.

Notice that, as n — oo:
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n

T
Z f(Xi;0)°At; — / f(X(s);0)ds
i=1 0

T
S AKX 0)AX, — / F(X(5): 0)dX (s) .
i=1 0

So, the terms 1/n > | f(X (ti—1);0)*At; and 1/n >0 f(X (ti-1);0)AX; ap-
pearing in (4.3) converge to zero as n — oco. Therefore, for large n, we can

omit these terms from the score function, and get the following, familiar in
the literature, approximate MLE of o:

n 1/2
. (1 )
a:<?EXA&)) . (4.4)

i=1

Notice that here that the term “approximate MLE” refers to two different
approximations: the approximation of the true log-likelihood of X™ by the
log-likelihood corresponding to an Euler approximation of the dynamics, and
the approximation of the score function by the simpler estimating equation
where the O(1/n) terms have been omitted.

Example 4.1 (Constant drift). We consider the constant drift diffusion first
introduced in Example 3.1:

dX(s) =0ds+odB(s), se€[0,T]. (4.5)

In this case, the Euler approximation of the likelihood of a discretely observed
data set coincides with the real likelihood function.

Exercise 4.1. Show that the MLE of 8 and o obtained by solving equations
(4.3) are

o TIL(AXP1(X(T) - w)’

T n T
4.
é_X(T)—Io ( 6)
= —F

Show that using (4.4) instead, yields (clearly) the same estimate for 0, but
6% =3 (AX)?T.
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A first observation is that (zg, X (7")) are sufficient statistics for 0. It is inter-
esting that from all the path X only two points are used for the estimation
of 6, and in particular the estimate is the same regardless how large n is.
Inference for o has very different characteristics.

Exercise 4.2. Show that if X is generated from the process (4.5) then

Z?=1(AXZ')2
T

(Hint: use Theorem 5.1.)

So, Zl%w is a consistent estimator of o2 as n — 0o. The information for
o increases as n increases, and at the limit we get infinite information for o.
On the contrary, the information about 6 is finite, as the following exercise
asks you to show.

— o2, almost surely.

Exercise 4.3. Find the Fisher information for 0. Show that the information
about 6 does not increase with n, but with T.

O

The situation described in this example illustrates a common charac-
teristic of statistical inference procedures for SDEs. Namely, the variance
parameters can be perfectly estimated from a path X = {X(s);s € [0,7T]}
(or estimated with very small sampling variance from high frequency data).
On the other hand the same path X contains only finite information about
the drift parameters. The information about drift parameters increases with
T, the time horizon, not with n, the fineness of the partition.

Exercise 4.4. Consider the Ornstein-Uhlenbeck diffusion.:
dX(s) =a(p— X(s))ds + cdB(s) .

Solve the estimating equations (4.3) using (4.4), to provide estimates for the
parameters a, [, 0.

4.2 The General Case

Consider now the case of non-constant diffusion coefficient:

dX(t) = f(X(1);0)dt + o(X(t);9)dB(t), X(0) =,
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where the unknown parameters # € R™, ¢ € R!, for positive integers m, [,
are to be specified given the observations

X™ = (X(t), X(t1),..., X (tn))

over a sample path of X.

Working as in the case of constant o, one can obtain an approximate
likelihood function similar to the one in (4.2) with the only difference that
o should now be replaced by o(X;_1;7). The estimating equations (4.3),
appropriately adjusted, would then provide the means for finding the MLEs
of the unknown parameters. In this general context, however, such equations
will be scarcely analytically solvable. Instead, the expressions look simpler if
one assumes directly that the data are of high frequency, so that the following
result can be used directly.

Z(AXZ-)Q—>/O (X (t);)dt .

This limit constitutes an apparent generalization of (4.2) obtained there for
the case of constant o. From a practical point of view, an estimator of ¢ can
be determined via the solution (with ¢ being the unknown) of the equation:

n

D (AX;) = Zﬁ(xi_l; V)AL (4.7)

1=1

Given an estimate of 1, the estimating equations for # are then to the ones

in (4.3), though considerably more difficult to solve. Analytically, working

as in the previous section, an estimator of # will be determined by solving:
n (X 9)%f(Xi—1; 0) "o f(Xio1;6)

26,
2 0?(Xi—1;¢) A= o} (Xi-1;9) 2

i=1 i=1

X;=0. (48

Example 4.2. A popular SDE in econometrics is the following:

dX(t) = a(p — X (1)) + o /X ()dB(t) ,

called the CIR model after the initials of Cox, Ingersoll, Ross, that advocated
the use of the diffusion for modelling the evolution of interest rates in a paper
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in Econometrica in 1985. Solving equation (4.7) for this specific SDE where
HOW:

provides the following estimator of o:

2 S (AXG)? Y X
7= T / n '
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