An Introduction to Description Logic IV

Relations to first order logic

Marco Cerami

Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic

Olomouc, November 6th 2014

INVESTMENTS IN EDUCATION DEVELOPMENT

Marco Cerami (UP)

Description Logic IV

Preliminaries:

First order logic

Marco Cerami (UP)

< ロ > < 同 > < 三 > < 三

Syntax: signature and terms

A predicate signature s consists of:

- a countable set of predicate symbols P₁,..., P_n,..., each one with arity ≥ 1,
- a countable set of **function symbols** f_1, \ldots, f_n, \ldots , each one with its arity,
- a countable set of **constant symbols** c_1, \ldots, c_n, \ldots , that are 0-ary function symbols.

Given a countable set *Var* of individual variables, the set of **Terms** over a predicate signature is defined inductively as follows:

- every variable $x \in Var$ is a term,
- every constant $c \in \mathbf{s}$ is a term,
- if t_1, \ldots, t_n are terms and $f \in \mathbf{s}$ is an *n*-ary function symbol, then $f(t_1, \ldots, t_n)$ is a term.

Syntax: formulas

The set \mathcal{L}_s of Formulas over a given predicate signature s is defined inductively as follows:

- \perp and \top are formulas,
- if t_1, \ldots, t_n are terms and $P \in \mathbf{s}$ is an *n*-ary predicate, then $P(t_1, \ldots, t_n)$ is a formula (called **atomic formula**),
- if φ,ψ are formulas, then $\neg\varphi,\varphi\wedge\psi,\varphi\vee\psi$ are formulas,
- if $\varphi(x)$ is a formula and x a variable, then $\forall x \varphi(x)$ and $\exists x \varphi(x)$ are formulas.

A variable that does not fall within the scope of a quantifier is said to be a **free variable**, otherwise, it is said to be **bound**. A formula that has no free variable is a **closed formula**.

イロト 不得下 イヨト イヨト 二日

Syntax

Fragments

Interesting $\ensuremath{\textit{fragments}}$ of the set of first order formulas $\ensuremath{\mathcal{L}}$ are the following:

- $\ddot{\mathcal{L}}$ is the fragment where only binary and ternary predicates are allowed,
- \mathcal{L}^n is the set of formulas built up from a set of *n* variables.

We are indeed interested in the sets $\ddot{\mathcal{L}}^2$ and $\ddot{\mathcal{L}}^3$.

Semantics: structures and assignments

A first order structure **M** for a given signature **s**, is a structure $\mathbf{M} = (M, (P^{\mathbf{M}})_{P \in \mathbf{s}}, (f^{\mathbf{M}})_{f \in \mathbf{s}}, (c^{\mathbf{M}})_{c \in \mathbf{s}})$, where:

- *M* is a non-empty set, called **domain**,
- for each predicate symbol $P \in \mathbf{s}$ of arity n, P^{M} is an *n*-ary relation on M,
- for each function symbol $f \in \mathbf{s}$ of arity n, f^{M} is an *n*-ary function on M and
- for each constant symbol $c \in \mathbf{s}$, $c^{\mathbf{M}}$ is an element of M.

An **assignment** α is a mapping $\alpha: Var \longrightarrow M$. Each assignment extends univocally to an assignment on terms satisfying, for every terms t_1, \ldots, t_n and each *n*-ary function $f \in \mathbf{s}$, that

$$\alpha(f(t_1,\ldots,t_n))=f^{\mathsf{M}}(\alpha(t_1),\ldots,\alpha(t_n)).$$

To denote that assignment α assigns objects v_1, \ldots, v_n to variables x_1, \ldots, x_n , we will write $\alpha([v_1/x_1], \ldots, [v_n/x_n])_{\alpha}$, we will write $\alpha([v_1/x_1], \ldots, [v_n/x_n])_{\alpha}$.

Semantics: models

Given a structure **M** assignment α and a formula φ , we say that **M** and α satisfy φ (in symbols **M**, $\alpha \models \varphi$) if:

• if
$$\varphi = P(t_1, \dots, t_n)$$
 then
 $P^{\mathsf{M}}(\alpha(t_1), \dots, \alpha(t_n))$

• if $\varphi = \psi \wedge \chi$, then

 $\mathbf{M}, \alpha \vDash \psi \qquad \text{and} \qquad \mathbf{M}, \alpha \vDash \chi$

• if $\varphi = \neg \psi$, then

 $\mathbf{M}, \alpha \nvDash \psi$

• if $\varphi = \exists x_1, \ldots, \exists x_n \varphi(x_1, \ldots, x_n)$, then exists $v_1, \ldots, v_n \in M$ such that

$$\mathbf{M}, \alpha \vDash \varphi(\mathbf{v}_1, \ldots, \mathbf{v}_n)$$

Logic

Logic

• We say that a formula φ is **satisfiable** if there exists a structure **M** and an assignment α such that

$$\mathbf{M}, \alpha \vDash \varphi.$$

• We say that a formula φ is a **tautology** if for every structure **M** and an assignment α it holds that

$$\mathbf{M}, \alpha \vDash \varphi.$$

• We say that a formula φ is **entailed** by a set of formulas Γ if for every structure **M** and an assignment α it holds that

if $\mathbf{M}, \alpha \models \psi$, for every formula $\psi \in \Gamma$, then $\mathbf{M}, \alpha \models \varphi$.

()

Translating Description Logic into first order logic

(日) (同) (三) (三)

Translation of the signatures

Given a description signature $\mathbf{D} = \langle N_I, N_C, N_R \rangle$, we define the first order signature $\mathbf{s}_{\mathbf{D}} = N_I \cup N_C \cup N_R$, where

- N₁ is the set of **constant** symbols,
- $N_C \cup N_R$ is the set of **unary and binary predicate** symbols.

For every concept name $A \in N_C$, every role name $R \in N_R$ and every $x, y \in Var$, we define the translations of **concept and role names**, respectively, into the set of atomic first order formulas in the following way:

$$\tau^{x}(A) := A(x)$$

$$\tau^{x,y}(R) := R(x,y).$$

Translation of complex concepts in \mathcal{ALCO}

This translation can be inductively extended over the set of complex concept in \mathcal{ALCO} in the following way:

$$\tau^{x}(\neg C) := \neg \tau^{x}(C)$$

$$\tau^{x}(C \sqcap D) := \tau^{x}(C) \land \tau^{x}(D)$$

$$\tau^{x}(C \sqcup D) := \tau^{x}(C) \lor \tau^{x}(D)$$

$$\tau^{x}(\forall R.C) := \forall y(\neg \tau^{x,y}(R) \lor \tau^{y}(C))$$

$$\tau^{x}(\exists R.C) := \exists y(\tau^{x,y}(R) \land \tau^{y}(C))$$

$$\tau^{x}\{a_{1}, \dots, a_{n}\} := \{a_{1}, \dots, a_{n}\}(x)$$

< 3 > < 3 >

Soundness of the translation

Marco Cerami (UP)

< 3 > < 3 >

Inclusion in $\ddot{\mathcal{L}}^2$

 \mathcal{ALC} concepts can be expressed by means of $\ddot{\mathcal{L}}^2$ formulas. Indeed, there are needed just **two variables**.

• In the case of **nested quantifiers**, e.g.

 $\forall R. \exists R. \forall R. A$

we have that the translation is

$$\forall y(R(x,y) \rightarrow \exists x(R(y,x) \land \forall y(R(x,y) \rightarrow A(y))))$$

and, since the inner variable "y" is **closed**, when a value of the outer quantifier " \forall " has to be calculated, this variable **falls outside its scope**.

A B F A B F

• In case of conjugated quantified concepts, e.g.

$$(\forall R.A) \sqcap (\exists R.B)$$

we have that the translation is

$$(\forall y)(R(x,y) \rightarrow A(y)) \land (\exists y)(R(x,y) \land B(y))$$

where each appearance of variable "y" is closed **inside the scope of a different quantifier** and, for this reason, it does not fall inside the scope of the other quantifier.

Translation of axioms

A concept inclusion axiom C ⊑ D can be translated in the following form:

$$\forall x(\tau^{x}(C) \to \tau^{x}(D))$$

• A **concept assertion axiom** *C*(*a*) can be translated in the following form:

 $\tau^{x}(C)[a/x]$

• A role assertion axiom R(a, b) can be translated in the following form:

$$\tau^{x,y}(R)[a/x,b/y]$$

Translation of the reasoning tasks

- Since every reasoning task is reducible to **knowledge base consistency**, it is enough to translate this task.
- A **TBox** $T = \{C_i \sqsubseteq D_i : 0 \le i \le n\}$ is satisfiable iff the formula

$$\forall x \bigwedge_{i=0}^n \tau^x(C_i) \to \tau^x(D_i)$$

is satisfiable.

• An **ABox** $\mathcal{A} = \{C_j(a_i) : \langle i, j \rangle \in I\} \cup \{R_j(a_i, b_k) : \langle i, j, k \rangle \in J\}$ is satisfiable iff the formula

$$\bigwedge_{\langle i,j\rangle\in I} \tau^{x}(C_{j})[a_{i}/x] \land \bigwedge_{\langle i,j,k\rangle\in J} \tau^{x,y}(R_{j})[a_{i}/x,b_{k}/y]$$

is satisfiable.

A B F A B F

Translation of different role constructors

The translation of roles in the language \mathcal{ALCROI} extends the one for \mathcal{ALCO} in the following way:

$$egin{aligned} & au^{x,y}(\neg R) & := & \neg au^{x,y}(R) \ & au^{x,y}(R \sqcap S) & := & au^{x,y}(R) \wedge au^{x,y}(S) \ & au^{x,y}(R \sqcup S) & := & au^{x,y}(R) \lor au^{x,y}(S) \ & au^{x,y}(R^-) & := & au^{y,x}(R) \end{aligned}$$

Properties of the translation of complex roles

- As for *ALCO*, also the **soundness** of the translation for complex roles in *ALCROI* is proved by means on a translation **between the respective semantics**.
- Again, it is easy to prove that **only** $\ddot{\mathcal{L}}^2$ **formulas** can be obtained.
- A **role inclusion axiom** *R* ⊑ *P* can be translated in the following form:

$$\forall x \forall y (\tau^{x,y}(R) \to \tau^{x,y}(P))$$

Translation of role composition

• The translation of roles in the language $\mathcal{ALCROI}(\circ)$ extends the one for \mathcal{ALCROI} in the following way:

 $\tau^{x,y}(R \circ S) := \exists z (\exists y (y = z \land \tau^{x,y}(R)) \land \exists x (x = z \land \tau^{x,y}(S)))$

• For **longer chains** of composed roles, the composition is defined as a binary operation:

$$au^{x,y}(R_1 \circ R_2 \circ R_3 \ldots \circ R_{n-1} \circ R_n) =$$

 $\tau^{x,y}(\tau^{x,y}(\ldots\tau^{x,y}(R_1\circ R_2)\circ R_3)\ldots\circ R_{n-1})\circ R_n)$

- Since the inner variable "z" is closed, when a value of the outer quantifier "∃" has to be calculated, this variable falls outside its scope.
- Hence, the translation of ALCROI(○) can be expressed by means of L³ formulas.

Marco Cerami (UP)

Description Logic IV

6.11.2014 19 / 25

Translation of cardinality restriction

This translation of roles in the language ALCON and ALCOQ can be made as an extension of the one for ALCO in two ways:

 by allowing an unbounded number of variables, so translating:

$$\tau^{x_1,\ldots,x_n}(\geq nR) \quad := \quad \exists x_1\ldots \exists x_n(R(x,x_1),\ldots,R(x,x_n))$$

by allowing an **bounded quantifiers**, so obtaining the F.O. fragment C² and translating:

$$au^{x,y}(\geq nR)$$
 := $\exists_{\geq n}y(R(x,y))$

But both ways are essentially equivalent and go **beyond** \ddot{C}^2 .

Summary

DL	FOL
ΑΔСΟ	$\ddot{\mathcal{L}}^2$
ALCROI	$\ddot{\mathcal{L}}^2$
$ALCROI(\circ)$	$\ddot{\mathcal{L}}^3$
ALCON	$\ddot{\mathcal{C}}^2$
ALCOQ	$\ddot{\mathcal{C}}^2$

3 6.11.2014 21 / 25

<ロ> (日) (日) (日) (日) (日)

Translating first order logic into Description Logic

Marco Cerami (UP)

Description Logic IV

 (∃)
 ∃
 ()
 ()

 6.11.2014
 22 / 25

A B F A B F

< A

Translating FOL into DL

- In general it is **not possible** to obtain a syntactical translation of the full first order logic into any DL language.
- Indeed, there are some **FOL formulas** that cannot be defined by any DL language:
 - ▶ formulas with predicates with arity ≥ 2 cannot be used in DL concepts, since there are just unary and binary predicates,
 - formulas with more than one free variable cannot be expressed as DL concepts, since these express just unary relations in the domain set,
 - formulas with global quantification cannot be expressed as DL concepts, since these only quantify on the successors of a given node.

< 回 ト < 三 ト < 三 ト

Translating fragments into DL

In A. Borgida, On the relative expressiveness of Description Logics and predicate logics it is proved that the fragments $\ddot{\mathcal{L}}^2$ and $\ddot{\mathcal{L}}^3$ can be indeed translated into \mathcal{ALCROI} and $\mathcal{ALCROI}(\circ)$ with some modifications:

• the following two role constructors are introduced:

identityid $\{\langle v, v \rangle \colon v \in \Delta^{\mathcal{I}}\}$ cross-product $C \times D$ $\{\langle v, w \rangle \colon v \in C^{\mathcal{I}}, w \in D^{\mathcal{I}}\}$

• Roles are treated as concept, in the sense that they can appear outside complex concepts or axioms.

Now:

- the restriction of the signature to $\ddot{\mathcal{L}}$ allows to restrict to formulas with just **binary and unary predicates**;
- the restriction of the language to \mathcal{L}^2 or \mathcal{L}^3 allows to restrict to formulas with just **two or three variables**;
- the modifications to the DL languages above provided allow to translate formulas with up to three free variables;
- the global quantification can be treated through the use of a universal role, which, in languages with role constructors, can be obtained as R ⊔ ¬R.