An Effective Interactive Medical Image
Segmentation Method Using Fast GrowCut

Linagjia Zhu', Ivan Kolesov', Yi Gao?, Ron Kikinis®, and Allen Tannenbaum'

! Stony Brook University {liangjia.zhu, ivan.kolesov,
allen.tannenbaum}@stonybrook.edu
2 University of Alabama at Birmingham gaoyi@uab.edu
? Harvard Medical School kikinis@bwh.harvard.edu

Abstract. Segmentation of anatomical structures in medical imagery is
a key step in a variety of clinical applications. Designing a generic, auto-
mated method that works for various structures and imaging modalities
is a daunting task. In this paper, we present an effective interactive seg-
mentation method that reformulates the GrowCut algorithm as a clus-
tering problem and computes a fast, approximate solution. The method
is further improved by using an efficient updating scheme requiring only
local computations when new user input becomes available, making it
applicable to high resolution images. The algorithm may easily be in-
cluded as a user-oriented software module in any number of available
medical imaging/image processing platforms such as 3D Slicer. The effi-
ciency and effectiveness of the algorithm are demonstrated through tests
on several challenging data sets where it is also compared to standard
GrowCut.

1 Introduction

Segmentation has long been one of the most important tasks in medical image
analysis; see [1] and the references therein. Though numerous algorithms have
been proposed and published, the segmentation of general anatomical structures
across a variety of modalities remains a challenging task. Automatic segmen-
tation is attractive, but user intervention is inevitable in real applications. The
type of interaction differs; for instance, a user may make a series of clicks around
target boundaries [2] or draw sample regions [3-5] to guide the segmentation.
Processing speed and intuitiveness of the interaction are two critical properties
that must be considered in designing a useful interactive segmentation system.
The GrowCut algorithm is a widely used interactive tool for segmentation be-
cause of several key features: 1) natural handling of N-D images, 2) support
of multi-label segmentation, 3) on-the-fly incorporation of user input, and 4)
easy implementation. Starting from manually drawn seed and background pix-
els, GrowCut propagates these input labels based on principles derived from
cellular automata in order to classify all of the pixels. Since all pixels must be
visited during each iteration, the computational complexity grows quickly, as
image size increases. This implementation detracts from its applicability to the

segmentation of 3D images. The focus of this paper is to design an interac-
tive segmentation system that maintains the positive features of GrowCut while
improving its efficiency, making it applicable to medical volumes. GrowCut is
compared to other interactive methods in [4, 6].

In this paper, we reformulate GrowCut as a clustering problem based on
finding a shortest path that can be solved efficiently with the Dijkstra algorithm
[7]. However, the reformulation results in a static problem, changing the “dy-
namic” property of GrowCut. That is, editing is not allowed while running the
Dijkstra algorithm. As an alternative, an efficient method we call the adaptive
Dijkstra algorithm is introduced to incorporate user inputs; it updates only those
local regions affected by the new input. This formulation and its implementa-
tion are described in Section 2. Experimental results in Section 3 demonstrate
the efficiency and effectiveness of the proposed method. Conclusions follow in
Section 4.

2 Fast GrowCut

In this section, we outline the GrowCut algorithm [4], and present the fast ver-
sion. Accordingly, let P ¢ RN, N > 2 denote the image domain. For p € P,
denote by N(p) the Moore neighborhood of p, i.e., the 8 directly neighboring
pixels of p in 2D and 26 voxels of p in 3D. The influence of a point ¢ € N(p)
on p is defined as ¢(||Cqy — Cpl|2) € [0, 1], a monotonically decreasing function,
where C), and C, are feature vectors at points p and g, respectively. For scalar
images, C), is simply the intensity at point p. The strength 6, € [0,1] and la-
bel I, € {BG,FG,---} are associated with a point p to track the state of the
GrowCut process.

Initially, only seed pixels are labeled; the strength 6 is set to 1 for these
pixels and to 0 otherwise. The GrowCut algoritm, summarized in Algorithm 1,
terminates after a fixed number of iterations K or when no pixels change state.
Convergence is guaranteed when K is sufficiently large because the updating
process is monotonic and bounded [6].

Algorithm 1 GrowCut

1: Initialize I, and 8, for Vp € P

2: while not reach termination conditions do

3: for Vp € P do
l;,“ = l;, ; 0;“ = 9;, > copy previous state
q" = argmaxgen (5 {9([|Cq — Cyll2) - ettz }
l;'*‘l — lflh 9;*1 = g(||Cq — Cpll2) -62* > update state at p

2.1 GrowCut as Clustering

From Algorithm 1, it is seen that Vp € P, I, in the steady state is determined
by lg«:

" = = argmax é‘;,%i‘,,){"(8)9([|Cqr = Cs[12)9([|C, = Caull2) -~ 9([[Cp = Co [[2)}
(1)

where S is the set of seed pixels, and H (s, p) is any path connecting pixel p and
seed s. This observation may be reached via proof by contradiction as was done
in [6].

It is known that the GrowCut algorithm converges slowly, especially when
applied to 3D medical images because it traces through the entire image domain
at each iteration [8]. The speed of GrowCut can be significantly increased if the
updating process is organized in a more structured manner. This goal can be
achieved by approximating the product defined Eq. (1) as discussed below.

Suppose z; € [0,1], g(0) =1, and ¢'(0) = —a < 0. Define Q(-) as

Qa1+ xn) = [gla). (2)

Applying the Taylor expansion and Weierstrass product inequality [9] to Eq. (2),
we see that:

Q(z1, -,y :ﬁ 1—ax;+0(x 2 Zn:(am,)
i=1

= (3)

:1—042%—&—0((;%)2

Thus, 1—a)., , z; gives an approximation to the lower bound of Q(z1, -, zy,).
Normalizing ||C, — C4l]2 to lie in [0,1] and applying the result of Eq. (3) to
Eq. (1), an approximate solution to the GrowCut algorithm is given as:

' =argmin min {[[Co, = Culla +[[Cp = Carlla + -+ +ICp = Co,lla}- (4)
s€S q;€H(s,p

Note that the inner part of Eq. (4) can be considered as the shortest weighted
distance from p to s, and the outer part as the clustering based on this distance.
One advantage of this formulation is that Eq. (4) can be solved very efficiently
with the Dijkstra algorithm [7]. The fastest implementation employs a Fibonacci
heap [10] and has a time complexity of O(|E| 4 |V]log|V|) = O(|V|(log|V]| +
|N])) where E and V are the edges and vertices in the graph, respectively. The
computational complexity of GrowCut is O(|V||N|K) > O(|V|(log|V| + |N])),
where K is the number of iterations. As a special case, when g(+) is an exponential
function, maximizing Eq. (2) is equivalent to minimizing its argument [6].

2.2 Adaptive Dijkstra Algorithm

If we employ the standard Dijkstra algorithm to solve Eq. (4), we lose the “dy-
namic” property of GrowCut, which is crucial for a fully interactive system.
Thus, we apply the Dijkstra algorithm adaptively that allows real-time interac-
tion. The algorithm is summarized in Algorithm 2 and illustrated in Fig. 1.

(a) Front propagation (b) New seed C (¢) Local update

Fig. 1. The adaptive Dijkstra algorithm. (a)Expansion of the front by updating the
neighbors (yellow square) of each point N on the front. (b) Addition of a new seed C
to the final segmentation from seeds A and B (blue and red). (c) Pixels updated (green
area) after adding seed C.

Initially, when starting a new segmentation, labels of the seed image are
assigned to the current label image labC'rt. It is assumed that the target labels
are positive integers. The current distance map distCrt is generated by setting
its values to 0 at label points and oo at all other points. distCrt is used to
initialize the Fibonacci heap fibHeap. Then, the algorithm always chooses the
point with the smallest distance in the heap to update its neighbors’ distance
and label information (lines 19-23), illustrated by Fig. 1(a). Once a point is
removed from the heap, its state is fixed. New neighbors are updated while they
are in the heap. This process continues until the heap is empty and the final
segmentation is reached; see Fig. 1(b). Finally, distCrt and labCrt are stored
(line 28) as distPre and labPre, respectively, to be used in the next round of
segmentation.

When updating the current segmentation, the new seeds added during the
latest user editing stage are compared to labPre, and only those points whose
labels are changed are selected as new seeds to update the current segmenta-
tion (lines 6-9). The distance distCrt from these new seeds is propagated if its
value is smaller than dist Pre, which may reassign labels based on the shortest-
path clustering rule. Otherwise, the algorithm either keeps the previous state or
terminates (lines 14-18). Finally, the distance and label information are locally
updated (lines 26-27), see Fig. 1(c), which significantly reduces the refinement
time.

2.3 Implementation

The proposed method was implemented based in 3DSlicer [11], which provides
a framework for interactive operations and visualization. Specifically, the al-

Algorithm 2 Adaptive Dijkstra

1: function ADIJKSTRA(img, seeds, labC'rt, distCrt, labPre, distPre, newSeg)
2: if newSeg then

3: labCrt = label(seeds);
4: distCrt(p) = 0 if p € S;distCrt(p) = co otherwise
5: else > initialize from current segmentation
6: if seeds(p) # 0 and label(seeds(p)) # labPre(p) then
T: labCrt(p) = label(seeds(p)); distCrt(p) = 0
8: else
9: labCrt(p) = 0;distCrt(p) = oo
10: Initialize fibHeap
11: while fibHeap is not empty do > segmentation/refinement loop
12: get p* with the smallest distance from fibHeap
13: if not newSeg then
14: if distCrt(p*) == oo then
15: break;
16: else if distCrt(p*) > distPre(p*) then
17: distCrt(p*) = distPre(p*); labCrt(p*) = labPre(p™)
18: continue; > update locally
19: for Vg € N(p*) do > regular Dijkstra
20: dist = distCrt(p*) + ||Cq — Cp+||2
21: if dist < distCrt(q) then
22: distCrt(q) = dist; labCrt(q) = labCrt(p™)
23: update fibHeap at q
24: if not newSeg then
25: for Vp,distCri(p) < co do > get updated points
26: labPre(p) = labCrt(p); distPre(p) = distCrt(p) © update local states
27: labCrt = labPre; distCrt = distPre
28: labPre = labCrt; dist Pre = distCrt > save current results

gorithm is part of Editor toolbox, allowing all editing tools in 3DSlicer to be
utilized. The whole implementation is delivered as a part of an open source
package available at [12].

3 Experimental Results

We compared the proposed method with a publicly available GrowCut imple-
mentation [8]. In this test, the lungs were segmented from an MR image. The
test was performed on a computer with Quad CPU 2.6GHz and 8G RAM. The
ROI size was 502 x 336 x 43 pixels, shown as rectangular boxes in Fig. 2. To
illustrate the efficiency of the proposed method, three rounds of editing were
used to segment the lungs. After each round of editing, the adaptive Dijkstra
algorithm was performed. As shown in Fig. 2, the update only happens locally,
around new user inputs. The Dice coefficient and volume overlap ratio are used to
show how accurately the proposed method approximates the GrowCut method.
Fig. 3 shows the final segmentation result. A detailed comparison is presented

in Table 1. According to these results, the proposed method is markedly faster
(~ 8.4x and 128x faster than the GrowCut module in 3DSlicer [8] for initial
segmentation and refinement, respectively), while maintaining a high approxi-
mation accuracy (97% in both measures). The differences (3% in both measures)
may arise from: 1) approximation in Eq. (1); 2) implementation of GrowCut in
3DSlicer uses a fixed number of iterations, which may be exhausted before con-
vergence. The proposed method consumed more memory (storing labPre and
distPre) to achieve the significant improvement in computation time.

Fig. 2. Effect of user interaction on lungs segmentation: (a) current segmentation, (b)
new seeds, (c) region updated by adaptive Dijkstra, and (d) new segmentation.

Fig. 3. Segmentation results from GrowCut [8] (green region) and the proposed method
(yvellow contour) in axial, coronal, and sagittal views, respectively.

Below, two examples are used to illustrate the proposed method for multi-
label segmentation. The first is a commonly used example for brain tumor and
ventricle segmentation; see Fig. 4. In this example, user inputs are mainly in the
axial and coronal views, where background seeds roughly enclose the two target
labels. The segmentation was performed within an automatically determined
ROL. In the second example, the blood pool is segmented from a cardiac CT
image (Fig. 5). In this test, four chambers are labeled separately; user labels were
mainly drawn in the axial and coronal views. Seeds were also marked around
the valve between the right ventricle and the atrium in the sagittal view in

Table 1. Original GrowCut vs. the proposed implementation for lungs segmentation.

Time (seconds) Similarity
Method 1st round[2nd round[?)rd round Memory (MB) Dice[Vol‘ Overlap
GrowCut|8] 210 255 269 200
Proposed 25 2 2 522 7% 7%

order to get a better delineation in places where no clear boundary is defined
(see Fig. 5(a)). As seen in these results, only a few user inputs are required to
compute the segmentations.

Fig. 4. Brain tumor and ventricle segmentation. (a) Seed image and (b) segmentations
in axial, coronal, and sagittal views, respectively. (c) Segmented targets in 3D view.

4 Conclusions

In this paper, we presented an effective and efficient 3D medical image segmen-
tation method. It provides a fast approximation to the GrowCut approach by
reformulating the original problem of maximization of a product as the mini-
mization of a summation, which allows for a very efficient implementation using
Dijkstra. Results demonstrate the accuracy and speed improvement of the pro-
posed method. In some future work, we plan to investigate more rigorously how
close the proposed method approximates the original GrowCut. Further, we want
to introduce a smoothing procedure into the interactive approach in order to re-
fine the multi-label segmentation. Regarding the latter point, we are exploring
the incorporation of the methodology proposed in [5] in which level sets are
interactively utilized.

Fig. 5. Heart blood pool segmentation. (a) Seed image and (b) segmentations in axial,
coronal, and sagittal views, respectively. (¢) Segmented targets in 3D view.

Acknowledgements

This research was supported by the National Center for Research Resources
under Grant P41-RR-013218,the National Institute of Biomedical Imaging and
Bioengineering under Grant P41-EB-015902 of the National Institutes of Health
through the Neuroanalysis Center of Brigham and Women’s Hospital, and the
National Alliance for Medical Image Computing, funded by the National Insti-
tutes of Health through the NIH Roadmap for Medical Research, under Grant
Ub4 EB005149.

References

1. Suri, J.: Computer vision, pattern recognition and image processing in left ventricle
segmentation: The last 50 years. Pattern Analysis and Applications 3(3) (2000)
209-242

2. Mortensen, E.N., Barrett, W.A.: Interactive segmentation with intelligent scissors.
Graphical Models and Image Processing 60(5) (September 1998) 349-384

3. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region
segmentation of objects in N-D images. In: International Conference on Computer
Vision. (2001) 105-112

4. Vezhnevets, V., Konouchine, V.: “growcut” — interactive multi-label N-D image
segmentation by cellular automata. In: Proc. Graphicon. (2005) 150-156

5. Karasev, P., Kolesov, 1., Fritscher, K.D., Vela, P., Mitchell, P., Tannenbaum, A.: In-
teractive medical image segmentation using PDE control of active contours. IEEE
Transactions on Medical Imaging 32(11) (2013) 2127-2139

6. Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G.: Tumor-Cut: Segmen-
tation of brain tumors on contrast enhanced MR images for radiosurgery applica-
tions. IEEE Transactions on Medical Imaging 31(3) (2012) 790-804

7. Dijkstra, E.W.: A note on two problems in connexion with graphs. NUMERISCHE
MATHEMATIK 1(1) (1959) 269271

10.

11.
12.

Veeraraghavan, H., Miller, J.: 3D Slicer. https://www.slicer.org/slicerWiki/
index.php/Modules:GrowCutSegmentation-Documentation-3.6

Honsberger, R. More Mathematical Morsels (1991) 244-245

Fredman, M., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM (JACM) 34(3) (July 1987) 596-615
3D Slicer. http://www.slicer.org/

Fast GrowCut. http://wiki.slicer.org/slicerWiki/index.php/
Documentation/4.3/Modules/FastGrowCut/

