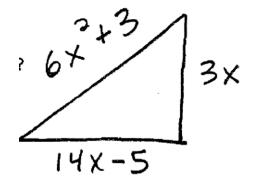
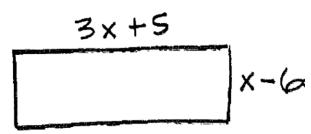
## Algebra I – Chapter 8 Test Review

Standards/Goals:

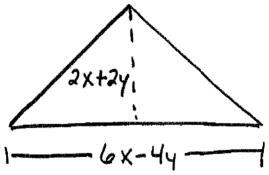

- ✓ <u>A.APR.1./C.1.d.:</u>
  - $\circ$  ~ I can determine the degree of a polynomial
  - $\circ$  ~ I can write a polynomial in standard form
  - $\circ~$  I can combine polynomials using addition and/or subtraction.
- ✓ <u>A.APR.1.:</u> I can multiply a monomial and a trinomial together.
- ✓ <u>A.SSE.1./C.1.e.</u>: I can factor a monomial from a polynomial.
- ✓ <u>A.APR.1./C.1.f.</u>: I can multiply monomials, binomials, trinomials, and polynomials using a variety of methods, including the FOIL method.
- ✓ A.SSE.1.a./E.1.b: I can factor trinomials that are in the form of  $x^2 + bx + c$ .
- ✓ <u>A.SSE.1.a./E.1.b:</u> I can factor trinomials that are in the form of  $x^2 + bx + c$ , when the lead coefficient is NOT a 1.
- ✓ <u>A.SSE.1.a/E.1.a.</u>: I can factor perfect square trinomials
  I can factor the difference of two squares.
- ✓ <u>A.SSE.1.a./E.1.b.</u>: I can factor polynomial expressions using grouping.
- #1. Consider this expression:  $3x + 5y 6x^3 18y + 12x^3$ 
  - a. Simplify the expression. Write the expression in standard form.
  - b. What is the *degree* of the expression?
- #2. Simplify the following:

(6p + 2n)[(-3p + 5n) - (8p - 2n)]


#3. What is the <u>degree</u> of the monomial  $5x^4y^5$ ?

#4. What is the **GCF** of the terms  $7d^3 + 21d^2 + 14d$ ?

#5. What expression represents the **perimeter** of this triangle?




- #6. A college campus has a rectangular flower garden with these dimensions. What expression describes the area of the flower garden?
- $A = I \cdot w$



#7. A landscape architect designed a triangular banner with these dimensions. What expression describes the area of the banner?

 $A = \frac{1}{2} b \cdot h$ 



#8. What is the complete factorization of the expression:  $x^2 - 25$ ?

#9. A person designed a box in the shape of a rectangular prism. Its width was 5xy. Its length is x + 2y and its height is x + 4y.

What expression describes the volume of the box? V = I·w·h #10. A rectangular paved area with a length of 4x and a width of 6x has been erected inside a rectangular field that has a length of 14x and a width of 9x.

a. What is the area of the field?

 $A = I \cdot w$ 

- b. What is the area of the part of the field that is NOT blacktop?
- c. What is the perimeter of the field and of the paved area?
- #11. Completely factor  $x^2 x 56$ .

#12. The area of a garden is given by the trinomial  $z^2 - 4z - 45$ . The garden's length is z + 5. What is the garden's width?

#13. The area of a rectangular swimming pool  $14x^2 + 16x - 24$ . The length of the pool is 2x + 4. What is the width of the pool? #14. What is the *factored form* of  $16x^2 - 100$ ?

#15. What is the *complete factorization* of  $3x^2y - 12xy - 135y$ ?

#16. What is the *factored form* of  $6x^3 + 2x^2 + 12x + 4$ ?

#17. The polynomial  $2\pi x^3 + 14\pi x^2 + 24\pi x$  represents the volume of a cylinder. The formula for the volume of a cylinder with radius 'r' and height 'h' is:  $V = \pi r^2 h$ .

Factor:  $2\pi x^3 + 14\pi x^2 + 24\pi x$ .

Factor each polynomial. #18.  $36fq^2 + 54f^2q^4$ 

#19.  $8s^8t^4 + 20s^4t^3$  #20.  $12a^2b^5 + 156a^2b^3$ 

#21. A pizza shop owner is monitoring the amount of cheese he uses each week. The polynomials below model the pounds of cheese ordered in the past, where *p* represents pounds.

# Mozzarella: $3p^3 - 6p^2 + 14p + 125$ Cheddar: $12.5p^2 + 18p + 75$

Write a polynomial that models the total number of pounds of cheese that were ordered.

Factor each trinomial: #22.  $121n^2 - 66n + 9$ 

#23.  $81x^2 - 18x + 1$  #24.  $25m^2 - 60m + 36$ 

 $#25.12n^2 - 36n + 27$ 

#26.  $180a^2 - 300a + 125$  #27.  $250k^2 - 200k + 40$ 

| <b>Determine the number that goes in</b><br>#28. $a^2 - 13a + 22 = (a - 2)(a - \Box)$ | <b>each box:</b><br>) #29. t <sup>2</sup> + 9t + 14 = (t + 2)(t + | □ )                           |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------|
| #30. d <sup>2</sup> + 11d + 30 = (d + 5)(d +                                          | ) #31. v <sup>2</sup> + 2v + 1 = (v + 1)(v +                      | □ )                           |
| #32. m <sup>2</sup> – 8m + 15 = (m – 5)(m – [                                         | ]) #33. n <sup>2</sup> + 9n + 18 = (n + 3)(n                      | + 🗌 )                         |
| <i>Factor each:</i><br>#34. s <sup>2</sup> – 5s – 24                                  | #35. w <sup>2</sup> + 2w – 8                                      | #36. z <sup>2</sup> + 3z – 40 |
| #37. d <sup>2</sup> – 4d – 12                                                         | #38. p <sup>2</sup> – 7p – 8                                      | #39. r <sup>2</sup> + 3r – 10 |
| #40. f <sup>2</sup> + 11f + 24                                                        | #41. c <sup>2</sup> + 12c + 27                                    | #42. d <sup>2</sup> + 6d + 5  |
| #43. e <sup>2</sup> + 15e + 54                                                        | #44. b <sup>2</sup> + 10b + 16                                    | #45. $x^2 + 7x + 10$          |

<u>#46. MULTIPLE CHOICE:</u> Which expression is a perfect square trinomial?

**A.**  $121x^2 + 66x + 9$  **B.**  $144x^2 + 60x + 25$  **C.**  $169x^2 + 208x + 16$  **D.**  $125x^2 + 200x + 16$ MULTIPLE CHOICE:

**#47.** F.1.b./A.SSE.2 What is the factored form of:  $2x^3 + 5x^2 - 12x$ ?

a. (x + 4) (2x - 3)b. x (x + 4)(2x - 3)c. (x - 4) (2x + 3)d. x(x - 4)(2x + 3)

#48. Factor the following:  $8x^2 - 128x^6$ 

#49. Define a variable, write an inequality, solve it, graph it and write its corresponding interval. **"Twelve is at most a number decreased by seven."** 

#50. Define a variable, write an inequality, solve it, graph it, and write its corresponding interval. **"Eighteen is at least a number increased by twenty-seven."** 

Find the domain of the following equations:

#51.  $y = \frac{6+x}{x-8}$  #52.  $y = \frac{x+10}{11+x}$ 

#53. The point (-7, -12) is on the graph of a linear equation. Another point on the graph of the same equation can be found by going 21 units up and 29 units to the right from (-7, -12).

- a. What is the *slope* of the line represented by the equation?
- b. Write the equation of the line in **point-slope form**.
- c. Write the equation in <u>slope-intercept form</u>.
- d. Write the equation in standard form.
- e. Consider the slope that you calculated. What would be the slope of a line *parallel* to that line?
- f. Consider the slope that you calculated. What would be the slope of a line *perpendicular* to that line?
- g. Write an equation in **<u>standard form</u>** that would be **<u>parallel</u>** to the equation you calculated.
- h. Write an equation in <u>slope intercept form</u> that would be <u>perpendicular</u> to the equation you calculated.

## QualityCore<sup>®</sup> Reference Sheet Algebra I

| Equations of a Line                      |                                          |                                                                                       |
|------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------|
| Standard Form                            | Ax + By = C                              | A, B, and C are constants with                                                        |
| Slope-Intercept Form                     | y = mx + b                               | A and B not both equal to zero.<br>$(x_1,y_1)$ is a point.                            |
| Point-Slope Form                         | $y-y_1=m(x-x_1)$                         | m = slope<br>b = y-intercept                                                          |
| Quadratics                               |                                          |                                                                                       |
| Standard Form of a<br>Quadratic Equation | $ax^2 + bx + c = 0$                      | <i>a</i> , <i>b</i> , and <i>c</i> are constants, where $a \neq 0$                    |
| Quadratic Formula                        | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ |                                                                                       |
| Pythagorean Theorem                      |                                          |                                                                                       |
|                                          | $a^2 + b^2 = c^2$                        | b c a                                                                                 |
| Circles                                  |                                          |                                                                                       |
| Equation of a Circle                     | $(x-h)^2 + (y-k)^2 = r^2$                | center (h,k)                                                                          |
| Area                                     | $A = \pi r^2$                            | A = area<br>r = radius                                                                |
| Circumference                            | $C = \pi d$                              | C = circumference                                                                     |
|                                          |                                          | d = diameter<br>$\pi \approx 3.14$                                                    |
| Sequence and Series                      |                                          |                                                                                       |
| Arithmetic Sequence                      | $a_n = a_1 + (n-1)d$                     | $a_n = n^{\text{th}}$ term                                                            |
| Arithmetic Series                        | $s_n = \frac{n}{2}(a_1 + a_n)$           | n = number of the term<br>d = common difference<br>$s_n =$ sum of the first $n$ terms |
|                                          |                                          |                                                                                       |

#### Miscellaneous

| Distance, Rate, Time                               | D = rt                                                                                   | D = distance                                                                          |
|----------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Simple Interest                                    | l = prt                                                                                  | <i>r</i> = rate<br><i>t</i> = time                                                    |
| Compound Interest                                  | $\mathbf{A} = \mathbf{p} \left( 1 + \frac{\mathbf{r}}{\mathbf{n}} \right)^{\mathbf{n}t}$ | <i>I</i> = interest                                                                   |
| Direct Variation<br>(y varies directly with x)     | y = kx                                                                                   | p = principal<br>A = amount of money after t years<br>n = number of times interest is |
| Indirect Variation<br>(y varies indirectly with x) | $y = \frac{k}{x}$                                                                        | compounded annually<br><i>k</i> = variation constant                                  |

### Area and Volume of Polygons and Solids

| Triangle                | $A=\frac{1}{2}bh$          | A = area<br>b = base<br>h = height<br>V = volume<br>B = area of base<br>r = radius<br>$\pi \approx 3.14$ |
|-------------------------|----------------------------|----------------------------------------------------------------------------------------------------------|
| Parallelogram           | A = bh                     |                                                                                                          |
| Trapezoid               | $A=\frac{1}{2}(b_1+b_2)h$  |                                                                                                          |
| General Prism           | V = Bh                     |                                                                                                          |
| Right Circular Cylinder | $V = \pi r^2 h$            |                                                                                                          |
| Pyramid                 | $V = \frac{1}{3}Bh$        |                                                                                                          |
| Right Circular Cone     | $V = \frac{1}{3}\pi r^2 h$ |                                                                                                          |
| Sphere                  | $V=\frac{4}{3}\pi r^3$     |                                                                                                          |

#### Lines and Points

| Slope    | $m = \frac{y_2 - y_1}{x_2 - x_1}$                                                                                            | $(x_1,y_1)$ and $(x_2,y_2)$ are 2 points.<br>m = slope |
|----------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Midpoint | $\boldsymbol{M} = \left(\frac{\boldsymbol{x}_1 + \boldsymbol{x}_2}{2}, \frac{\boldsymbol{y}_1 + \boldsymbol{y}_2}{2}\right)$ | M = midpoint<br>d = distance                           |
| Distance | $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$                                                                                   |                                                        |