Algebra 1
Name: \qquad
Unit 3C - Test Review - answer key

Part One: Graphing Quadratics

Graph the following quadratic functions.

1) $f(x)=-x^{2}+6 x-8$
vertex: $x=\frac{-b}{2 a}=\frac{-6}{2(-1)}=\frac{-6}{-2}=3$

$$
y=-(3)^{2}+6(3)-8=1
$$

vertex @ $(3,1)$ - goes in middle of table

x	$f(x)$
1	-3
2	0
3	1
4	0
5	-3

3) $f(x)=\frac{1}{2}(x-6)^{2}+4$
$a=\frac{1}{2} \quad h=6 \quad k=4$
vertex @ $(6,4)$ - goes in middle of table

x	$f(x)$
4	6
5	4.5
6	4
7	4.5
8	6

5) $f(x)=(x+2)^{2}-1$
$a=1 \quad h=-2 \quad k=-1$
vertex @ $(-2,-1)-$ goes in middle of table

x	$f(x)$
-4	3
-3	0
-2	-1
-1	0
0	3

2) $f(x)=2 x^{2}-8 x+3$
vertex: $x=\frac{-b}{2 a}=\frac{8}{2(2)}=\frac{8}{4}=2$
$y=2(2)^{2}-8(2)+3=-5$
vertex @ $(2,-5)$ - goes in the middle of table

x	$f(x)$
0	3
1	-3
2	-5
3	-3
4	3

4) $f(x)=x^{2}-3$
$a=1 \quad h=0 \quad k=-3$
vertex @ ($0,-3$) - goes in middle of table
** can also find vertex using the method from \#s 1-2**

x	$f(x)$
-2	1
-1	-2
0	-3
1	-2
2	1

6) $f(x)=-4 x^{2}+8$
$a=-4 \quad h=0 \quad k=8$
vertex @ $(0,8)$ - goes in middle of table
${ }^{* *}$ can also find vertex using the method from \#s 1-2**

x	$f(x)$
-2	-8
-1	4
0	8
1	4
2	-8

Part Two: Characteristics of Graphs

Identify the listed characteristics for each graph.
7)

Domain: $(-\infty, \infty)$ or all real numbers

Range: $[-3, \infty)$

Vertex: (-1,-3)

Extrema/extrema value: minimum at $y=-3$

Axis of Symmetry: $x=-1$
8)

Y-Intercept: (0, 9)

X-Intercept(s): $(-3,0)$ and $(6,0)$

Solution(s): $x=-3$ and $x=6$

Extrema type: maximum

Domain: $(-\infty, \infty)$ or all real numbers
Range: $[-7, \infty)$
Vertex: (1,-7)
Axis of Symmetry: $x=1$
Y-Intercept: (0, -5)
X-Intercept(s): $(-1,0)$ and $(3,0)$
Extrema/extrema value: minimum at $y=-7$
Solution(s): $x=-1$ and $x=3$

Part Three: Average Rate of Change

Find the average rate of change indicated for each function below.
10) Find the average rate of change over the interval [0, 2].

$x=0 \rightarrow \underset{\substack{(0,3) \\ x_{1} y_{1}}}{(2,-1)}$
$A R O C=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-3}{2-0}=\frac{-4}{2}=-2$
11) Find the average rate of change over the interval $[-6,-2]$.

$A R O C=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-2}{-2--6}=\frac{2-2}{-2+6}=\frac{0}{4}=\mathbf{0}$

Part Four: Transformations of Quadratic Functions

Identify the transformations for each function below from the parent function $f(x)=x^{2}$.
12) $f(x)=-x^{2}+5$
$a=-1 \rightarrow$ reflection over x -axis
$h=0$
$k=5 \rightarrow$ translation up 5 units
14) $f(x)=-3(x-6)^{2}-2$
$a=-3 \rightarrow$ reflection over x -axis
and vertical stretch of 3
$h=6 \rightarrow$ translation right 6 units
$k=-2 \rightarrow$ translation down 2 units
16) $f(x)=4(x+3)^{2}+1$
$a=4 \rightarrow$ vertical stretch of 4
$h=-3 \rightarrow$ translation left 3 units
$k=1 \rightarrow$ translation up 1 units
13) $f(x)=2(x+4)^{2}$
$a=2 \rightarrow$ vertical stretch of 2
$h=-4 \rightarrow$ translation left 4 units
$k=0$
15) $f(x)=(x+1)^{2}$
$a=1$
$h=-1 \rightarrow$ translation left 1 units
$k=0$
17) $f(x)=-\frac{1}{2}(x-4)^{2}-3$
$a=-\frac{1}{2} \rightarrow$ reflection over x-axis vertical shrink of $1 / 2$
$h=4 \rightarrow$ translation right 4 units
$k=-3 \rightarrow$ translation down 3 units

Part Five: Vertex, Axis of Symmetry, and Extrema

For the following functions, identify the vertex, axis of symmetry and extrema.
18) $f(x)=x^{2}-6 x+1$
vertex: $x=\frac{-b}{2 a}=\frac{6}{2(1)}=\frac{6}{2}=3$

$$
y=(3)^{2}-6(3)+1=-8
$$

vertex: $(3,-8)$
axis of symmetry: $x=3$
extrema: minimum (since a is +)
20) $f(x)=3(x+4)^{2}-1$
$a=3 \quad h=-4 \quad k=-1$
vertex: $(-4,-1)$
axis of symmetry: $x=-4$
extrema: minimum (since a is +)
19) $f(x)=-2 x^{2}+12 x$
vertex: $x=\frac{-b}{2 a}=\frac{-12}{2(-2)}=\frac{-12}{-4}=3$
$y=-2(3)^{2}+12(3)=18$
vertex: $(3,18)$
axis of symmetry: $x=3$
extrema: maximum (since a is -)
21) $f(x)=-2(x-3)^{2}+5$
$a=-2 \quad h=3 \quad k=5$
vertex: $(3,5)$
axis of symmetry: $x=3$
extrema: maximum (since a is -)

Part Six: Converting Between Different Forms of Quadratics

Convert the following quadratic functions from vertex form to standard form.
22) $f(x)=-0.5(x+4)^{2}-2$
$f(x)=-0.5(x+4)(x+4)-2$
$f(x)=-0.5\left(x^{2}+4 x+4 x+16\right)-2$
$f(x)=-0.5\left(x^{2}+8 x+16\right)-2$
$f(x)=-0.5 x^{2}-4 x-8-2$
$f(x)=-0.5 x^{2}-4 x-10$
23) $f(x)=3(x-1)^{2}+4$
$f(x)=3(x-1)(x-1)+4$
$f(x)=3\left(x^{2}-1 x-1 x+1\right)+4$
$f(x)=3\left(x^{2}-2 x+1\right)+4$
$f(x)=3 x^{2}-6 x+3+4$
$f(x)=3 x^{2}-6 x+7$

Convert the following quadratic functions from standard form to vertex form.
24) $f(x)=2 x^{2}+8 x-6$
$a=2 \quad b=8 \quad c=-6$
vertex: $x=\frac{-b}{2 a}=\frac{-8}{2(2)}=\frac{-8}{4}=-2 \rightarrow \mathrm{~h}$
$y=2(-2)^{2}+8(-2)-6=-14 \rightarrow k$
$f(x)=a(x-h)^{2}+k$
$f(x)=2(x--2)^{2}-14$
$f(x)=2(x+2)^{2}-14$
25) $f(x)=-x^{2}+6 x+3$

$$
a=-1 \quad b=6 \quad c=3
$$

vertex: $x=\frac{-b}{2 a}=\frac{-6}{2(-1)}=\frac{-6}{-2}=3 \rightarrow \mathrm{~h}$
$y=-(3)^{2}+6(3)+3=12 \rightarrow k$
$f(x)=a(x-h)^{2}+k$
$f(x)=-1(x-3)^{2}+12$
or $f(x)=-(x-3)^{2}+12$

Part Seven: Applications of Quadratic Functions

Solve the following word problems.
26) A person standing at the edge of a building throws a baseball vertically upward.

The quadratic function $f(x)=-16 x^{2}+64 x+32$ models the baseball's height above the ground, $\mathrm{f}(\mathrm{x})$ in meters, x seconds after it was thrown.
a) From what height was the baseball thrown?
starting value \rightarrow y-intercept (plug in 0 for x)
$f(0)=-16(0)^{2}+64(0)+32=32$ meters
b) When did the baseball hit it's maximum height?
x-value of vertex
$x=\frac{-b}{2 a}=\frac{-64}{2(-16)}=\frac{-64}{-32}=2$ seconds
c) What was the baseball's maximum height?
y-value of the vertex \rightarrow plus in the x-value of the vertex (2) to find the y-value
$f(2)=-16(2)^{2}+64(2)+32=96$ meters
d) A bird is flying 100 feet above the ground - is the bird in danger of being hit? No - the baseball reaches a maximum height of only 96 meters so it will not hit the bird
e) When did the baseball land?

Jennifer hit a golf ball from the ground and it followed the projectile $h(t)=-16 t^{2}+100 t$, where t is the time in seconds, and h is the height of the ball.
a) When did the ball hit it's maximum height?
x-value of vertex
$x=\frac{-b}{2 a}=\frac{-100}{2(-16)}=\frac{-100}{-32}=3.125$ seconds
b) What was the maximum height? y-value of the vertex \rightarrow plus in the x-value of the vertex (3.125) to find the y-value $f(2)=-16(3.125)^{2}+100(3.125)=156.25$ meters
c) When did the golfball land?

