\qquad
\qquad
\qquad

Algebra 1 Chapter 10 Review

Multiple Choice

Identify the choice that best completes the statement or answers the question.
Simplify the radical expression.

1. $\sqrt{144}$
a. 12
b. $12 \sqrt{2}$
c. 6
d. $4 \sqrt{6}$

Simplify the radical expression by rationalizing the denominator.
2. $\frac{4}{\sqrt{21}}$
a. $\frac{4 \sqrt{21}}{21}$
b. $4 \sqrt{21}$
c. $21 \sqrt{4}$
d. $\frac{\sqrt{441}}{21}$
\qquad 3. A square garden plot has an area of $24 \mathrm{ft}^{2}$.
a. Find the length of each side in simplest radical form.
b. Calculate the length of each side to the nearest tenth of a foot.
a. $\frac{\sqrt{24}}{2} ; 2.45 \mathrm{ft}$
b. $2 \sqrt{6} ; 4.9 \mathrm{ft}$
c. $\frac{24}{4} ; 6 \mathrm{ft}$
d. $\sqrt{24} ; 5 \mathrm{ft}$

Find the length of the missing side. If necessary, round to the nearest tenth.
4.

a. 361
b. 19
c. 38
d. 14.9

Determine whether the given lengths can be sides of a right triangle.
5. $18 \mathrm{~m}, 24 \mathrm{~m}, 30 \mathrm{~m}$
a. no
b. yes
6. $7 \mathrm{~cm}, 40 \mathrm{~cm}, 41 \mathrm{~cm}$
a. no
b. yes

Determine whether the following statement is sometimes, always, or never true.

7. Two consecutive positive integers form part of a Pythagorean triple.
a. never
b. always
c. sometimes

Simplify the expression.

\qquad 8. $\sqrt{6}+2 \sqrt{6}$
a. $3 \sqrt{6}$
b. $-\sqrt{6}$
c. $3 \sqrt{12}$
d. $-\sqrt{12}$
9. $4 \sqrt{7}+8 \sqrt{63}$
a. $76 \sqrt{7}$
b. $12 \sqrt{63}$
c. $28 \sqrt{7}$
d. $28 \sqrt{63}$
10. $(6-\sqrt{11})(6+\sqrt{11})$
a. $36+\sqrt{11}$
b. $47+12 \sqrt{11}$
c. -85
d. 25
\qquad 11. $\frac{8}{\sqrt{6}-\sqrt{3}}$
a. $\frac{8 \sqrt{6}-8 \sqrt{3}}{3}$
b. $\frac{8(\sqrt{6}+\sqrt{3})}{9}$
c. $\frac{8 \sqrt{6}+8 \sqrt{3}}{\sqrt{27}}$
d. $\frac{8 \sqrt{6}+8 \sqrt{3}}{3}$
12. $\frac{\sqrt{2}+\sqrt{6}}{\sqrt{8}+\sqrt{6}}$
a. $\frac{\sqrt{12}+6-\sqrt{16}-\sqrt{48}}{-2}$
b. $\sqrt{3}-1$
c. $\frac{\sqrt{8}}{\sqrt{14}}$
d. $\frac{1}{\sqrt{4}}+1$
___ 13. Find an exact solution for $\frac{\sqrt{5}-1}{x}=\frac{\sqrt{5}}{2}$. Then find the approximate solution to the nearest tenth.
a. $\frac{10-2 \sqrt{5}}{5} ; 1.1$
b. $2-2 \sqrt{5} ;-2.5$
c. $-2 ;-2$
d. $\frac{2 \sqrt{5}-2}{\sqrt{5}} ; 1.1$
- 14. The formula $r=\sqrt{\frac{A}{P}}-1$ gives the interest rate r that will allow principal P to grow into amount A in two years, if the interest is compounded annually. Suppose you have $\$ 425$ to deposit into an account. Find the interest rate you would need to have $\$ 470$ in the account at the end of the second year.
a. 5.2%
b. 105%
c. 0.052%
d. 5.4%
15. Find the exact perimeter of the triangle.

a. $68 \sqrt{x}$
b. $\sqrt{68 x}$
c. $5 x+x \sqrt{17}$
d. $68 x$

Solve the equation. Check your solution.
16. $4=\sqrt{m}-8$
a. 6
b. 144
c. $2 \sqrt{3}$
d. 12
17. $\sqrt{r+5}=11$
a. 126
b. 6
c. 17
d. 116
18. The velocity of sound in air is given by the equation $v=20 \sqrt{273+t}$ where v is the velocity in meters per second and t is the temperature in degrees Celsius. Find the temperature when the velocity of sound in air is 369 meters per second. Round to the nearest degree.
a. 507°
b. $6,535^{\circ}$
c. $7,081^{\circ}$
d. 67°

Solve the equation. Identify any extraneous solutions.
19. $w=\sqrt{7 w}$
a. 0 and 7 are solutions of the original equation.
b. 0 is a solution of the original equation. 7 is an extraneous solution.
c. 7 is a solution of the original equation. 0 is an extraneous solution.
d. -7 is a solution of the original equation. 0 is an extraneous solution.
20. The formula $v=\sqrt{64 h}$ can be used to find the velocity v in feet per second of an object that has fallen h feet. Find the velocity of an object that has fallen 25 feet. Round your answer to the nearest hundredth.
a. 800 feet per second
b. 320 feet per second
c. 200 feet per second
d. 40 feet per second
21. Graph the function $f(x)=-4 \sqrt{x}$.
a.

c.

b.

d.

Short Answer

22. The sales of a certain product after an initial release can be found by the equation $s=16 \sqrt{3 t}+25$, where s represents the total sales (in thousands) and t represents the time in weeks after release.
a. Make a table of values.
b. Graph the function.
c. Use the graph to estimate the sales 7 weeks after release.

Essay

23. In the diagram $y=\sqrt{17}$. Use the Pythagorean Theorem to find x. Express x as a radical expression in simplest form. Show your work.

24. Simplify $(2 \sqrt{5}+3 \sqrt{7})^{2}$. Show your work. Justify each step
25. Solve $\sqrt{3 x}-1=-4$. Check your solution. If there is no solution, write no solution. Show your work.

Algebra 1 Chapter 10 Review Answer Section

MULTIPLE CHOICE

1. ANS: A PTS: 1 DIF: L2 REF: 10-1 Simplifying Radicals

OBJ: 10-1.1 Simplifying Radical Expressions Involving Products
STA: CA A1 2.0 TOP: 10-1 Example 1
KEY: radical expressions | Multiplication Property of Square Roots | square root
2. ANS: A PTS: 1 DIF: L2 REF: 10-1 Simplifying Radicals

OBJ: 10-1.2 Simplifying Radical Expressions Involving Quotients
STA: CA A1 2.0 TOP: 10-1 Example 7
KEY: radical expressions | rationalize | radicand in the denominator
3. ANS: B PTS: 1 DIF: L3 REF: 10-1 Simplifying Radicals

OBJ: 10-1.1 Simplifying Radical Expressions Involving Products
STA: CA A1 2.0 KEY: word problem | problem solving | radical expressions | multi-part question
4. ANS: D PTS: 1 DIF: L2 REF: 10-2 The Pythagorean Theorem

OBJ: 10-2.1 Solving Problems Using the Pythagorean Theorem
STA: CA A1 $2.0 \mid$ CA A1 24.2 TOP: 10-2 Example 1
KEY: Pythagorean Theorem | right triangle
5. ANS: B PTS: 1 DIF: L2 REF: 10-2 The Pythagorean Theorem

OBJ: 10-2.2 Identifying Right Triangles STA: CA A1 $2.0 \mid$ CA A1 24.2
TOP: 10-2 Example 3
KEY: right triangle | converse of the Pythagorean Theorem | converse | Pythagorean Theorem
6. ANS: A PTS: 1 DIF: L2 REF: 10-2 The Pythagorean Theorem

OBJ: 10-2.2 Identifying Right Triangles STA: CA A1 $2.0 \mid$ CA A1 24.2
TOP: 10-2 Example 3
KEY: right triangle | converse of the Pythagorean Theorem | converse | Pythagorean Theorem
7. ANS: C PTS: 1 DIF: L3 REF: 10-2 The Pythagorean Theorem

OBJ: 10-2.1 Solving Problems Using the Pythagorean Theorem
STA: CA A1 $2.0 \mid$ CA A1 24.2
KEY: always sometimes never | Pythagorean Theorem | Pythagorean triple | reasoning
8. ANS: A PTS: 1 DIF: L2

REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.1 Simplifying Sums and Differences
STA: CA A1 $2.0 \mid$ CA A1 25.0
TOP: 10-3 Example 1 KEY: like radicals | combining like radicals
9. ANS: C PTS: 1 DIF: L2

REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.1 Simplifying Sums and Differences
STA: CA A1 $2.0 \mid$ CA A1 25.0
TOP: 10-3 Example 2
KEY: like radicals | combining like radicals | radical expressions
10. ANS: D PTS: 1 DIF: L2

REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.2 Simplifying Products and Quotients
STA: CA A1 $2.0 \mid$ CA A1 25.0
TOP: 10-3 Example 4
KEY: FOIL | radical expressions | Multiplication Property of Square Roots
11. ANS: D PTS: 1 DIF: L3

REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.2 Simplifying Products and Quotients
STA: CA A1 $2.0 \mid$ CA A1 25.0
TOP: 10-3 Example 5
KEY: radical expressions | rationalize | conjugates
12. ANS: B PTS: 1 DIF: L3

REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.2 Simplifying Products and Quotients
STA: CA A1 $2.0 \mid$ CA A1 25.0
TOP: 10-3 Example 5 KEY: conjugates | radical expressions | FOIL | rationalize
13. ANS: A PTS: 1 DIF: L2

REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.2 Simplifying Products and Quotients
STA: CA A1 $2.0 \mid$ CA A1 25.0
TOP: 10-3 Example 6
KEY: radical expressions | rationalize | radical equation | Multiplication Property of Square Roots
14. ANS: A PTS: 1 DIF: L3

REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.2 Simplifying Products and Quotients STA: CA A1 2.0|CA A1 25.0
KEY: radical equation | word problem | problem solving | Division Property of Square Roots
15. ANS: C PTS: 1 DIF: L4

REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.2 Simplifying Products and Quotients
STA: CA A1 $2.0 \mid$ CA A1 25.0
KEY: Pythagorean Theorem | radical expressions | Multiplication Property of Square Roots
16. ANS: B PTS: 1 DIF: L2 REF: 10-4 Solving Radical Equations

OBJ: 10-4.1 Solving Radical Equations STA: CA A1 2.0| CA A1 25.2
TOP: 10-4 Example 1
KEY: radical | radical equation | solving equations
17. ANS: D PTS: 1 DIF: L2 REF: 10-4 Solving Radical Equations

OBJ: 10-4.1 Solving Radical Equations STA: CA A1 2.0| CA A1 25.2
TOP: 10-4 Example 1
KEY: radical | radical equation | solving equations
18. ANS: D PTS: 1 DIF: L2 REF: 10-4 Solving Radical Equations

OBJ: 10-4.1 Solving Radical Equations STA: CA A1 $2.0 \mid$ CA A1 25.2
TOP: 10-4 Example 2
KEY: radical | radical equation | solving equations | word problem | problem solving
19. ANS: A PTS: 1 DIF: L2 REF: 10-4 Solving Radical Equations

OBJ: 10-4.2 Solving Equations With Extraneous Solutions STA: CA A1 $2.0 \mid$ CA A1 25.2
TOP: 10-4 Example 4
KEY: solving equations | radical equation | extraneous solutions
20. ANS: D PTS: 1 DIF: L3 REF: 10-4 Solving Radical Equations

OBJ: 10-4.1 Solving Radical Equations STA: CA A1 $2.0 \mid$ CA A1 25.2
TOP: 10-4 Example 2
KEY: radical equation | word problem | problem solving
21. ANS: B PTS: 1 DIF: L2

REF: 10-5 Graphing Square Root Functions
OBJ: 10-5.1 Graphing Square Root Functions
STA: CA A1 17.0
TOP: 10-5 Example 3
KEY: graphing | square root | radical expressions

SHORT ANSWER

22. ANS:
a.

Week	Sales
1	53
2	64
3	73
4	80
5	87

b.

c. about $\$ 100,000$

PTS: 1 DIF: L3 REF: 10-5 Graphing Square Root Functions
OBJ: 10-5.1 Graphing Square Root Functions
STA: CA A1 17.0
TOP: 10-5 Example 3
KEY: graphing | square root | multi-part question | word problem | problem solving

ESSAY

23. ANS:
[4] Find the height $A C$ of the triangle.

$$
\begin{aligned}
A C^{2}+1^{2} & =(\sqrt{17})^{2} \\
A C^{2}+1 & =17 \\
A C^{2}+1-1 & =17-1 \\
A C^{2} & =16 \\
\sqrt{A C^{2}} & =\sqrt{16} \\
A C^{2} & =4
\end{aligned}
$$

Find x.

$$
\begin{aligned}
A B & =5+1 \\
A B & =6 \\
x^{2} & =4^{2}+6^{2} \\
x^{2} & =16+36 \\
x^{2} & =52 \\
\sqrt{x^{2}} & =\sqrt{52} \\
x & =\sqrt{4 \cdot 13} \\
x & =2 \sqrt{13}
\end{aligned}
$$

[3] answer not in simplest radical form OR one computational error
[2] two computational errors
[1] more than two error OR wrong sides used in equations

PTS: 1 DIF: L4 REF: 10-2 The Pythagorean Theorem
OBJ: 10-2.1 Solving Problems Using the Pythagorean Theorem
STA: CA A1 $2.0 \mid$ CA A1 24.2
KEY: Pythagorean Theorem | right triangle | radical expressions | extended response | rubric-based question
24. ANS:
[4]

$$
\begin{aligned}
&(2 \sqrt{5}+3 \sqrt{7})^{2} \\
&=(2 \sqrt{5}+3 \sqrt{7})(2 \sqrt{5}+3 \sqrt{7}) \\
& \text { definition of square } \\
&=4 \sqrt{25}+6 \sqrt{35}+6 \sqrt{35}+9 \sqrt{49} \\
& \text { Use Foil. } \\
&=4 \sqrt{25}+12 \sqrt{35}+9 \sqrt{49} \\
&=4(5)+12 \sqrt{35}+9(7) \text { Combine like radicals. } \\
&=20+12 \sqrt{35}+63 \\
&=12 \sqrt{35}+83 \text { Aimplify } \sqrt{25} \text { and } \sqrt{49} . \\
&=1 \text { Add. }
\end{aligned}
$$

[3] answer not in simplest radical form OR one computational error
[2] two computational errors.
[1] more than two errors OR wrong sides used in equations

PTS: 1 DIF: L3 REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.2 Simplifying Products and Quotients STA: CA A1 2.0| CA A1 25.0
TOP: 10-3 Example 4
KEY: FOIL | radical expressions | extended response | rubric-based question
25. ANS:
[4]

$$
\begin{aligned}
\sqrt{3 x}-1 & =-4 \\
\sqrt{3 x} & =-4+1 \\
\sqrt{3 x} & =-3 \\
(\sqrt{3 x})^{2} & =(-3)^{2} \\
3 x & =9 \\
x & =\frac{9}{3} \\
x & =3
\end{aligned}
$$

Check

$$
\sqrt{3 x}-1=-4
$$

$$
\sqrt{3(3)}-1=-4
$$

$$
\sqrt{9}-1=-4
$$

$$
3-1=-4
$$

$$
2 \neq-4
$$

$\sqrt{3 x}-1=-4$ has no solution
[3] no conclusion stated OR one computational error
[2] wrong procedure OR two computational errors
[1] no work shown OR more than two computational errors
PTS: 1 DIF: L3 REF: 10-4 Solving Radical Equations
OBJ: 10-4.2 Solving Equations With Extraneous Solutions STA: CA A1 $2.0 \mid$ CA A1 25.2
TOP: 10-4 Example 5
KEY: radical equation | extraneous solutions | solving equations | extended response | rubric-based question

