
Agile Software Development with Scrum
An Iterative, Empirical and Incremental Framework for
Completing Complex Projects

Dr. Andreas Schroeder

(based on slides of Dr. Philip Mayer and Annabelle Klarl)

CHAOS Report 2009

Completion of projects:

 32% success

 44% challenged

 24% impaired

Fail factors (excerpt):

 Incomplete requirements

 Changing requirements

 Little involvement of the customer

 Low support by the management

15.04.2012 Andreas Schroeder 2

2/3 of all projects
don’t satisfy their expectations

Sequential paradigm

 The Big Bang approach to software does NOT work:

 No interaction with the customer in the black cloud!

 The problem:

 Requirements might have been misunderstood or changed.

 The resulting system is not what the customer wanted.

15.04.2012 Andreas Schroeder 3

* After two years of coding

Iterative paradigm

 The iterative approach to software does not work either:

 Requirements are captured while product is unknown.

 Requirements Phase is exaggerated until no time for
implementing is left.

15.04.2012 Andreas Schroeder 4

Agile paradigm

Change is the only constant in SW development

 “Expect the unexpected!”
Agile methods build on the ability to react to change.

 “Get it working!”
Agile methods deliver working software frequently.

 “Please the customer!”
Agile methods build on openness and communication.

15.04.2012 Andreas Schroeder 5

The Agile Manifesto

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

© 2001, the above authors

this declaration may be freely copied in any form,

but only in its entirety through this notice.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James

Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve

Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas

15.04.2012 Andreas Schroeder 6

Why agile software
development?

Software development is like new product development,
not like manufacturing

 Manufacturing: building the same model again and again

 Software development: creating something new

We need:

 Research and Learning

 Creativity

 Subtle Control and Self-organization

15.04.2012 Andreas Schroeder 7

Examples for agile methods

A multitude of agile processes has been introduced

 Kanban www.kanbanblog.com/explained

 Help work to flow (= continuously deliver)

 Make work visible (= show what is going on)

 Limit work in progress (= promote quality, focus and finishing)

 XP (eXtreme programming) www.extremeprogramming.org

 Scrum www.scrum.org

 …

15.04.2012 Andreas Schroeder 8

http://www.kanban101.com/
http://www.extremeprogramming.org/
http://www.scrum.org/

Agile methods in SWEP

 Scrum (mainly)

 XP

 Head First Software
Development Process

 The Scrum process

 follows the agile manifesto

 is intended for groups of 7

 consists of simple rules
and is thus easy to learn

15.04.2012 Andreas Schroeder 9

Agenda Part I

 Scrum Overview

 The source of Scrum

 The three legs

 The big picture

 Scrum Roles

 About pigs and chickens

 Your friend in need: the Scrum Master

 To whom everybody listens: the Product Owner

 „We sink and swim together“: the Scrum Team

 Capturing and Managing Requirements

 Understanding the Customer: Release Planning Meeting

 Structuring Requirements in Product Backlog Items

 Priority and Estimation

15.04.2012 Andreas Schroeder 10

Agenda Part II

 Planning and Controlling the Process

 Deciding on Items for a Sprint

 Daily Scrum Meeting: know where you stand

 Pleasing the customer with a demo

 Learning from the process

 Development in detail

 Testing

 Managing Bugs

 Development in a Team

 Software Design

 Scaling Scrum

 Conclusion

15.04.2012 Andreas Schroeder 11

Part I/VI. Scrum Overview

15.04.2012 Andreas Schroeder 12

Part I –
The source of Scrum

Scrum in rugby

Strategy for getting the ball back into play

Scrum as an agile method

„a holistic or „rugby“ approach – where a team tries to go
the distance as a unit, passing the ball back and forth“

15.04.2012 Andreas Schroeder 13

www.andrewgoss.net/sport.html

Takeuchi, H. & Nonaka, I. The new new product development game. Harvard Business Review 64, 137-146 (1986).

http://www.andrewgoss.net/sport.html

Part I –
The three legs of Scrum

Scrum is grounded in empirical process control theory and is
therefore not guided by a fixed project plan, but by

 Transparency
„Everything can be seen by everybody.“

 Inspection
„The process is continuously monitored.“

 Adaption
„Feedback mechanisms are the heart of Scrum.“

15.04.2012 Andreas Schroeder 14

Part I –
The big picture

An iterative, empirical and incremental framework

15.04.2012 Andreas Schroeder 15

Part I –
Product Backlog and Sprints

 Product Backlog: Everything with respect to the product
or the process, that anyone is interested in, is represented
in the Product Backlog.

 Sprints: A Sprint is a short timeframe of about four weeks
for working on the Sprint Backlog - a fixed subset of the
Product Backlog, producing a working piece of software.

 Daily Scrum Meetings: The current progress of work and
any impediments are revealed in this daily time-boxed
meetings.

15.04.2012 Andreas Schroeder 16

Part I –
Summary

Software development is about shipping software that
brings the customer’s ideas to life.

Which means:

 Shipping software: The software must be completed,
executable and delivered – on time and on budget.

 Customer’s Ideas: The customer has a vision of his product.
The developer must be flexible enough to extract that
image, implement it and nevertheless react to changes.

15.04.2012 Andreas Schroeder 17

Part II/VI. Scrum Roles

15.04.2012 Andreas Schroeder 18

Part II –
About pigs and chickens

A chicken and a pig are together when the chicken says,
 „Let‘s start a restaurant!“

The pig thinks it over and says,
 „What would we call this restaurant?“

The chicken says, „Ham n‘ Eggs!“

The pig says,

 „No, thanks. I‘d be committed, but you‘d only be involved!“

 Pigs: Everyone with total commitment to the project

 Chickens: Everyone else who is interested in the project

15.04.2012 Andreas Schroeder 19

Part II –
Scrum Master

The Scrum Master is responsible for the success of Scrum.

 Responsibilities:

 Institutes a Product Owner

 Forms a Scrum Team

 Assists all Planning Meetings

 Ensures that Scrum values, practices and rules are enforced

 Removes any impediments

 Although being a management role, the Scrum Master
should be your friend in need.

15.04.2012 Andreas Schroeder 20

Part II –
Product Owner

 The Product Owner is officially responsible for the product.

 Responsibilities:

 Represents the customer

 Maintains the Product Backlog
 Registers new Items

 Prioritizes Items

 Get the estimates for Items

 Makes the Product Backlog visible to everyone

 Developers only listen to the Product Owner.

15.04.2012 Andreas Schroeder 21

Part II –
Scrum Team (I)

The Scrum Team commits to achieving a Sprint Goal.

 7 (+-2) developers
 < 5 developers impose skill constraints

 > 9 developers induce complex coordination

 Responsibilities:
 Decides on a Sprint Goal in compliance with the Scrum

Master and the Product Owner

 Commits to turn the selected set of the Product Backlog into
a working product during a Sprint

 Has full authority how to achieve the Sprint Goal

15.04.2012 Andreas Schroeder 22

Part II –
Scrum Team (II)

“We swim and sink together”

 The whole team is responsible for the whole product

 Normally full time members

 No titles

 All-round developers
– or at least willing to assist each other

Team composition may only change at the end of a Sprint,
but experts can be invited to assist the development!

15.04.2012 Andreas Schroeder 23

Part II –
Chickens

 Everyone else who is interested in the project

 Customer

 Management

 Other Scrum Teams (working on the same project,
depending projects or totally different projects)

 Observers

 Chickens are not allowed to influence the work of the
Scrum Team during a Sprint!

15.04.2012 Andreas Schroeder 24

Part II –
Summary

 Pigs are committed to the project.

 The Scrum Master enforces the Scrum rules.

 The Product Owner manages the Product Backlog.

 The Scrum Team is committed to the Sprint Goal.

 Chickens are only involved into the project.

 Scrum Teams must not listen to chickens.

 Chickens are only allowed to consult.

15.04.2012 Andreas Schroeder 25

Part III/VI. Capturing and Managing
Requirements

15.04.2012 Andreas Schroeder 26

Part III –
Release Planning Meeting

 The Product Vision is the customer’s mental image about
his software.

 The goal of the Release Planning Meeting is
„How can we turn this vision into a winning product?“

 Overall features and functionalities

 Major risks

 Probable delivery date and cost

 But how do we extract the correct requirements from the
Product Vision?

15.04.2012 Andreas Schroeder 27

Part III –
Product Backlog Items

 In Scrum, requirements are captured in the form of
Product Backlog Items (PBI).

 For the SWEP, we use User Stories and Issues as PBIs.

 A User Story captures one thing (and one thing only) that
the software needs to do for the customer.
 A User Story has a title and a short description

 The description should fit on a DIN A6 index card (if it is too long, it
needs to be split in two)

 An Issue captures one thing that is hard to mold into a User
Story e.g. software quality issues like bugs and safety,
security or performance as well as documentation matters.

15.04.2012 Andreas Schroeder 28

Part III –
Capturing User Stories

 User Stories are customer-oriented.

 User Stories are written with and for the customer

 They must be written in a language the customer can
understand

 Techniques for capturing requirements

 Blueskying: brainstorming with the customer

 Role playing: developer acts as the new software

 Observation: developer watches the customer do the tasks
to be supported by the new software

15.04.2012 Andreas Schroeder 29

Part III –
Examples

 Good Story (customer-level):

15.04.2012 Andreas Schroeder 30

 Bad Story (too technical):

Part III –
Product Backlog

 All User Stories and Issues make up the Product Backlog.

 The Product Backlog is never complete!

 Everyone (pigs and chickens) may add items.

 The Product Backlog evolves during the project by adding or
changing requirements.

 The Product Owner additionally assigns a priority to each
Product Backlog Item.

 Furthermore, he gets an estimate from the Scrum Team
how long it will take to implement it.

15.04.2012 Andreas Schroeder 31

Part III –
Prioritizing

The Product owner prioritizes the Product Backlog Items
in compliance with the customer.

 Important ones get a higher priority and must be
implemented first.

 Priorities should be taken out of the set of {10,20,30,40,50}
with 10 being most important .

 Priorities are added to the Product Backlog Items.

 Priorities for Product Backlog Items might change
depending on estimates or changing requirements.

15.04.2012 Andreas Schroeder 32

Part III –
Estimating (I)

 The Scrum Team estimates PBIs without the customer.

 Estimation means guessing the number of hours for
constructing each PBI.

 The User Story or Issue is split into tasks.

 A task specifies a piece of development to be carried out by
one developer.
 Like a User Story, it has a title and a description.

 Usually attached to a User Story.

 Estimate: How long will it take it get the task done?

 The combined estimates are the overall estimate for the PBI.

15.04.2012 Andreas Schroeder 33

Part III –
Task Examples

15.04.2012 Andreas Schroeder 34

Part III –
Estimating (II)

 The whole Scrum Team is responsible for the project.

 Everybody should, in principle, be able to implement each
functionality. Thus, estimation takes everybody into
account!

 Each estimate should include time for

 Design

 Code and Document

 Test and Review

 Integration and Delivery

 To arrive at a number everybody is comfortable with we
use Planning Poker.

 15.04.2012 Andreas Schroeder 35

Part III –
Planning Poker (I)

 Planning Poker

 A certain task is presented.

 Every developer thinks about the task and how long it will
take himself to implement it, all things considered.

 Every developer privately chooses a card from the deck with
cards for 0, ½, 1, 2, 3, 5, 8, 13, 20, 40 and 100 hours.

 All cards are simultaneously uncovered.

 High and low estimates are discussed.

 The estimation process is repeated until convergence.

 Note: A task should take about 6 hours to implement, so
that a User Story takes a couple of days.

15.04.2012 Andreas Schroeder 36

Part III –
Planning Poker (II)

 The goal is convergence.

 The team must come up with a single estimate.

 If the estimates differ a lot, this indicates (probably) hidden
assumptions and less confidence.

 Thus, a second goal is to uncover assumptions

 ...about what is part of a story and what is not

 ...about the skills required or the need to acquire them first

 ...about the complexity of the task

 This might require asking the customer for clarification.

 And, a third goal is to transfer knowledge.

15.04.2012 Andreas Schroeder 37

Part III –
Estimating (III)

 Meaningful estimation requires knowledge about

 … the existing codebase

 … the effort involved in using the libraries and technologies

 It is borderline impossible to come up with meaningful
estimates if these factors are completely unknown.

 Therefore, get familiar with the technologies before 29.04.

15.04.2012 Andreas Schroeder 38

Part III –
Summary

 Requirements are captured as Product Backlog Items.

 User Stories are customer-oriented.

 Issues capture more technical things.

 The Product Backlog is never complete.

 The Product Owner assigns priorities to the Items,
indicating which functionality should be implemented first.

 Product Backlog Items are split into tasks.

 Tasks, and thereby Product Backlog Items, are estimated.

 The aim is confidence by all developers

 ...and getting rid of assumptions.

15.04.2012 Andreas Schroeder 39

Part IV/VI. Planning and Controlling the
Process

15.04.2012 Andreas Schroeder 40

Part IV –
Agile paradigm

Change is the only constant in SW development

 Requirements, Estimates, and Priorities might change –
but this is considered in the process and dealt with in a
controlled way.

 Releases. Our process is based on releases which take
about three months.

 A release of the software is a self-contained set of functions.

 Sprints. Each release is split into Sprints which take about
four weeks.

15.04.2012 Andreas Schroeder 41

Part IV –
Sprint

 Fixed period of time: four weeks

 Fixed set of functionality to accomplish

 Sprint Goal

 Sprint Backlog

 During Sprint

 No interferences with the development work

 No additional functionality

 No new technologies

 Free timing for the Scrum Team

15.04.2012 Andreas Schroeder 42

Part IV –
Sprint activities

 Sprint Planning Meeting

 Assigning Product Backlog Items

 Determining Velocity

 Development work

 Holding Daily Scrum Meetings

 Updating Whiteboard and Burn-Down-Chart

 Sprint Review

 Demoing the piece of running software

 Sprint Retrospective

 Learning from the past

15.04.2012 Andreas Schroeder 43

Part IV –
Sprint Planning Meeting

 Fixed timeframe: eight hours (for a four week Sprint)

 Everybody may attend.

 The goal is to decide

 … what will be done

 … how it will be done

 That basically means assigning Product Backlog Items to
the Sprint as Sprint Backlog Items and planning how to
realize them.

15.04.2012 Andreas Schroeder 44

Part IV –
Planning User Stories

The Sprint Planning Meeting is
the main meeting for planning the Sprint!

 Which means...

 … estimate and pick User Stories,

 … discuss realization approach (with UML sketches),

 … split User Stories into reasonable tasks,

 … assign tasks to team members.

 But: How many Product Backlog Items fit into a Sprint?

15.04.2012 Andreas Schroeder 45

Part IV –
Assigning Items: Reality

 In principle, the available days are four weeks i.e. 20 working
days multiplied by the number of developers (e.g. 3):

 However: Estimates are based on ideal days or hours.
Unfortunately, the real world keeps intruding with

 Installing Software

 Team Communication

 Paperwork

 Hardware breakdowns

 Sickness and Holidays

15.04.2012 Andreas Schroeder 46

3 x 20 = 60 days

Part IV –
Velocity (I)

 Solution: The amount of available days is reduced by a
factor, the team velocity:

 That means, we can select Product Backlog Items with a
total estimate of 42 days for the Sprint – and not more!

 As an initial factor, a value of 0.7 is assumed.

 But, the velocity is unique for each team and must
therefore be monitored and changed over time:

15.04.2012 Andreas Schroeder 47

3 x 20 x 0.7 = 42 days

velocity = estimated days / required days

Part IV –
Velocity (II)

 How we will determine velocity

 Track Overhead time in the Redmine tracker

 Compute velocity based on available data

 Reasons

 Lab is no full-time job

 Flexible time management

 Empirical approach to velocity computation in our context

15.04.2012 Andreas Schroeder 48

V = Worked / (Worked + Overhead)

Part IV –
Controlling the Process

 During a Sprint, the Scrum Team works on Sprint Backlog
Items until they are „done“.

 Each team has its own Definition of Done.

 Ours implies full functionality, no known errors/bugs, clean
code, integration, tests, documentation.

 It is important to stay on track: If a User Story or task takes
longer or shorter than expected, or if additional problems
come up, the team must know about this.

 This information is gathered in Daily Scrum Meetings.

15.04.2012 Andreas Schroeder 49

Part IV –
Daily Scrum Meetings

 Daily at a fixed time and place: 15 minutes

 Everybody may attend, but only the pigs (Scrum Team,
Scrum Master and Product Owner) are allowed to speak.

 The goal is to see

 … what was done since the last meeting

 … what will be done before the next meeting

 … what obstacles are in the way

 That basically means that every team member has to
shortly report on these three questions.

15.04.2012 Andreas Schroeder 50

Part IV –
No Overhead!

 Some principles ensure that these meetings are productive
and informative for everybody.

 Start sharply at the designated time.
(regardless of who is present)

 Report shortly only relevant things.

 Report on the “what”, not on the “how”.

 Detailed discussion may continue afterwards.

 Stand-up during the meeting.

 The intention is to keep the finger on the pulse of the
project.

15.04.2012 Andreas Schroeder 51

Part IV –
Social responsibility

 All team members must actively attend.

 This enforces the social responsibility for everybody:

 Honest report what has been done

 Face-to-face promise what is done next

 Pressure on the management to solve problems

 Scrum builds on openness and honesty!

 Full transparency of all fails and delays, but also of any
progress and completion

 Only like that the Scrum Team is able to react to changes.

15.04.2012 Andreas Schroeder 52

Part IV –
Visualizing the progress

 The Whiteboard keeps track of the current progress.

 It shows

 … which Sprint Backlog Items must be implemented during
the Sprint

 … which tasks are in progress

 … which tasks have been completed during the Sprint

 … how fast the development progress is compared to the
plans for this Sprint

 Therefore, it must always be updated during the
Daily Scrum Meetings.

15.04.2012 Andreas Schroeder 53

Part IV –
The Whiteboard

15.04.2012 Andreas Schroeder 54

Part IV –
The Burn-Down Chart (I)

15.04.2012 Andreas Schroeder 55

The Burn-Down-Chart shows the remaining work,

NOT the actual required working time

Part IV –
The Burn-Down-Chart (II)

 The chart shows
 X-Axis: working days left until the end of the iteration

 Y-Axis: sum of task estimates yet to be done

 The straight line is the ideal burn-down rate:
This is how the tasks are planned against the time available.

 During Daily Scrum Meetings, the current status is added:
 The sum of the remaining task estimates are plotted on the intersection

with remaining days.

 If the point lies above the ideal burn down rate, the team is behind
schedule. Else, it is ahead of schedule.

 The chart needs to be updated when tasks change their
status, are added or removed or when estimates change.

15.04.2012 Andreas Schroeder 56

Part IV –
Problems

 It shows up on the chart if a task takes longer than
expected.
 The customer must be notified/asked for clarification.

 The functionality must be reduced or some Sprint Backlog Items have to
be scheduled for the next Sprint.

 The reason taken into consideration for the next estimation (or velocity).

 Unplanned Issues like new ideas of the customer as well
as bugs or other maintenance work need to be considered.
 They become new Items with an estimate and a priority and are split

into manageable tasks.

 Items which concern the Sprint Goal are added to the Sprint Backlog –
other Sprint Backlog Items may be scheduled for the next Sprint.

 New Ideas and low priority Items are added to the Product Backlog.

15.04.2012 Andreas Schroeder 57

Part IV –
Sprint Review

 A Sprint comes to an end when time runs out.

 At this point, a running version of the software must be
available – if not all tasks/items were handled, these have
been pushed back before.

 In the Sprint Review of about four hours,

 … a demo is given to the customer.

 … is summarized what went wrong and what right

 … is discussed what was achieved

 Note: The Sprint Review should not be extensively
prepared, often PowerPoint slides are forbidden.

15.04.2012 Andreas Schroeder 58

Part IV –
Sprint Retrospective

 In the Sprint Retrospective, we want to learn from the past:

 Revisit estimates – why did they differ from the actual time?
What can be done better next time?

 Calculate the new velocity, but keep in mind that the team
velocity should only account for overhead, not as a buffer for
wrong estimates

 Revisit team composition, tools, methods of communication…

 The next iteration begins just like the last.

15.04.2012 Andreas Schroeder 59

velocity = estimated days / required days

Part IV –
Abnormal Sprint termination

 Very rarely, a Sprint must be cancelled earlier if

 … a Sprint Goal becomes obsolete
(e.g. the customer’s priorities change heavily)

 … the Sprint Goal is not achievable
(e.g. the Scrum Team cannot manage the selected Backlog)

 … too many impediments occur
(e.g. the Scrum Master and the management fail in
removing impediments)

 Note: Abnormal Sprint termination consumes resources
for re-grouping and re-planning.

15.04.2012 Andreas Schroeder 60

Part IV –
Summary

 Scrum is a Controlled Process to stay on top of the current
progress, problems and changes.

 During a Sprint,

 … the set of functionalities to implement does not change.

 … the current progress is always transparent.

 … impediments are immediately dealt with.

 Before the next Sprint,

 … the last Sprint is reviewed to enhance productivity.

 … priorities and estimates are re-adjusted.

 … new ideas and functionalities are taken into consideration.

15.04.2012 Andreas Schroeder 61

Part V/VI: Development in Detail

15.04.2012 Andreas Schroeder 62

Part V –
How to develop?

 The next section should introduce some useful means for
getting hands on the software.

 We shortly revisit:

 Testing

 Managing Bugs

 Productive Development in a Team

 Software Design

15.04.2012 Andreas Schroeder 63

Part V1 –
Testing

 Testing is one of the most important tasks in software
development.

 A test is an executable piece of code which automatically
executes part of the system and verifies the output

 For example, test code might start a new game and verify
afterwards that is has indeed been started.

 A test may have two results:

 Pass (Green): Everything went as expected.

 Fail (Red): The system failed to meet requirements.

15.04.2012 Andreas Schroeder 64

Part V1 –
Why Testing?

 A good test leads to confidence in code.

 Passing tests of a task should mean that

 … new implemented functionality really works as expected.

 … refactored functionality or added functionality did not
break any previously working code (called regression test).

 Thus, tests have to be written for, and as part of, tasks.

 There should be a test for each important functionality
realized by the task.

 A task is not fully implemented if there are no associated
tests.

15.04.2012 Andreas Schroeder 65

Part V1 –
How to write tests I

Ideas for writing tests:

 Main functionality (e.g. test that the main path works)

 Branch-Based Testing (e.g. check that there is a test for
every branch of every condition)

 Proper Error Handling (e.g. check that methods correctly
deal with null inputs, closed resources, failed connections)

 Working as Documented (e.g. if the documentation
defines rules for a method, test these rules)

 Resource Constraint Handling (e.g. check that the system
handles denied requests for resources such as database
connections)

 15.04.2012 Andreas Schroeder 66

Part V1 –
How to write tests II

Granularity of tests:

 Unit tests test the smallest testable part of the software
(e.g. a single method in Java).

 Integration tests test the interaction between components
(e.g. public interfaces).

 System tests test the software as a whole.

 System integration tests test whether the software is
correctly integrated into its environment.

15.04.2012 Andreas Schroeder 67

Part V1 –
Using Mocks

 Ideally, the code under test has no external dependencies.

 Unfortunately, this is mostly not the case.

 For example, a currency converter class might need a
database for retrieving exchange rates.

 To test such the currency converter class, the database
access object is replaced by a mock object.

 A mock object mimics a real object by implementing the
same interface and just returning constant values.

 We will use Mockito for mocking purposes.
(more details in the talk on technologies)

15.04.2012 Andreas Schroeder 68

Part V1 –
Testing in Scrum

 In Scrum, tests are an integral part of each Sprint – they
are NOT deferred to the end of the project!

 Tests can be written by hand or using Test Frameworks.

 The most well-known one for Java is JUnit.

 The advantage is a good infrastructure and an existing test-
runner with reporting functionality
(more details in the talk on technologies)

 All tests should be automatable. This ensures that they
can be run again and again if new functionality is added.

15.04.2012 Andreas Schroeder 69

Part V1 –
Code-and-Test

 The standard method for writing tests is Code-and-Test.

 The code for the task is written.

 Immediately afterwards, the tests for the task are written.

 This ensures that each task has tests.

 But, it also holds the danger of designing tests according to
the code and not to the requirements.

 JUnit uses a bar for showing passed and failed tests:

 Red Bar: At least one test failed.

 Green Bar: All tests passed.

 The aim is to keep the bar green.

 15.04.2012 Andreas Schroeder 70

Part V1 –
Test-Driven Development

 In agile methods, Test-Driven-Development (TDD) is used.

 The test code for the task is written.

 Afterwards, the simplest code is written to get the test pass.

 At last, the code is refactored.

 TDD leads to

 … more testable code as testing drives the implementation

 … more reasonable tests as tests are designed according to
the requirements

 The aim is red – green – refactor. All tests fail initially,
Then, the code should work and at last it is cleaned up.

15.04.2012 Andreas Schroeder 71

Part V1 –
When did we test enough?

 Testing is, in principle, a never-ending activity.

 The main criteria for moving on is confidence. That is

 … the feeling that the tests adequately cover the
functionality implemented in a task

 ...or reaching a certain code coverage with the tests.

 Code Test Coverage is the percentage of code tested.

 Tools like EclEmma for Eclipse calculate this percentage
based on the test cases.

15.04.2012 Andreas Schroeder 72

Part V1 –
Summary

 Software development does not work without tests!

 Tests are executable requirements.

 Tests ensure that existing functionality still works after
changes (regression testing).

 Testing gives developers confidence for boldly moving
forward to the next task.

 A task is implemented if the tests pass (but not yet done!)

 See Definition of Done

15.04.2012 Andreas Schroeder 73

Part V1 –
Afterthought

Fear leads to anger, anger leads to
hate, hate leads to suffering.

15.04.2012 Andreas Schroeder 74

No tests lead to fear.

Part V2 –
Managing Bugs

 It is a simple, but inevitable fact of life that bugs happen.

 In agile methods, bugs are accepted like that
– nothing to be (too) ashamed of.

 A bug is therefore treated like a normal Backlog Item

 A bug report is made => a new Item for the Sprint Backlog

 The task is given an estimate and a priority (as usual).

 It is scheduled (as usual).

 A bug task is attached to an existing User Story or a new
Issue is created for it

15.04.2012 Andreas Schroeder 75

Part V2 –
A bug report

A bug report should consist of:

 Summary – one sentence

 Steps to Reproduce – from a well-defined state of the
system, what needs to be done to reproduce the bug?

 What was expected, and what did happen – to ensure
everybody knows what was perceived as a problem

 Version, Platform, Location Information – bugs may be
different in different versions, on different platforms or on
different URLs

 Severity and Priority – how disastrous is the bug? How
soon should it be fixed?

15.04.2012 Andreas Schroeder 76

Part V2 –
Testing for Bugs

 Bugs have a nasty habit of reappearing.

 Therefore,

 Like a usual task, a bug-fixing task MUST include a test which
reproduces the exact circumstances the bug was found in.

 The test is added to regression testing (as usual) to ensure
the bug does not occur again.

 Finally: When fixing a bug, look out for similar issues in the
code.

15.04.2012 Andreas Schroeder 77

Part V2 –
Summary

Bugs are nothing to be ashamed of.

Bugs are treated like normal Backlog Items.

 They are written down and either attached to a User Story
or a new Issue is created.

 They are estimated, prioritized, and scheduled.

 Tests are written.

15.04.2012 Andreas Schroeder 78

Part V3 –
Productive Development

Productive development in a team means

 … using an IDE for managing and controlling code,
dependencies and libraries

 … using version control to merge the work of multiple
developers in a controlled fashion

 … using continuous integration for ensuring up-to-date,
tested builds (manually or automated)

 … performing code reviews for ensuring high code quality
and bug-freedom

15.04.2012 Andreas Schroeder 79

Part V3 –
Using IDEs

 An integrated development environment offers much
more than just a code editor...

 Integrated build system (background building)

 Refactoring support (includes changing references)

 Integrated documentation
(source code of the entire Java API and libraries)

 Code Navigation
(jump to definition, references, call hierarchy, etc.)

 Integrated test runners (JUnit and others)

 Version Control support (CVS, Subversion...)

 An IDE makes programming productive!

15.04.2012 Andreas Schroeder 80

Part V3 –
Version Control

 Problems arise when multiple developers work on the
same source code:

 Changes happen to the same file which must be merged.

 Changes might need to be rolled back because of a faulty
implementation (e.g. overridden or conflicting features)

 Traceability is needed to be able to determine the origin of
an artifact (e.g. the developer can be asked for clarification)

 Version Control Systems exist to address these problems

 … and even more.

15.04.2012 Andreas Schroeder 81

Part V3 –
How version control works

 We use the distributed version
control system Git for which a
client is included in Eclipse. It
consists of

 … multiple local copies of a
repository which developers
might use to work on the source
code and which provide the full
functionality of a revision
control system

 … often, one copy is marked as
the official repository

15.04.2012 Andreas Schroeder 82

Part V3 –
Version control best practices

 Committing a new revisions should only be done

 ... if the code compiles.

 ... after running all test cases

 ... with a commit message which precisely says what has
been changed or newly implemented (with a reference to
the issue tracker task)

 Before pushing to the official repository, perform an
update (pull) and run all test cases again to ensure
nothing was broken.

15.04.2012 Andreas Schroeder 83

Part V3 –
Building Code

 Eclipse already contains mechanisms for building software

 This includes compiling java source code, ...

 ... an export mechanism as an executable JAR file

 ... and building arbitrary other elements with ant scripts.

 Ensuring that all tests pass is still the responsibility of the
developer.

 In small and simple projects, this can be done manually.

 For larger, more complex projects, a dedicated system for
compiling and testing might be necessary that performs
automatically regular builds and test runs.

15.04.2012 Andreas Schroeder 84

Part V3 –
Continuous Integration

 A continuous integration system reacts to commits or on a
timer and performs

 … checking out all code

 … building the project

 … running all tests

 The result of the CI run (e.g. compilation or tests failed) is
placed on a website or mailed to all developers.

 Well known CI tools:

 CruiseControl (little bit old-fashioned)

 Hudson/Jenkins

15.04.2012 Andreas Schroeder 85

Part V3 –
Reviewing Code I

 Peer code reviewing means getting your code checked by
your peers before assuming an issue is fixed.

 Code reviews are the single biggest thing that improve
code quality. The average defect detection rate is 55 – 60%
(vs. 25% for Unit Testing)

 Peer code reviews entail increased productivity

 Less time spent with reproducing and fixing bugs

 Increases knowledge transfer about the code base

15.04.2012 Andreas Schroeder 86

Part V3 –
Reviewing Code II

Pass-around Review

 The developer commits code to version control
and informs the chosen reviewer via Mail or IM.

 The reviewer checks the changes, asks questions, discusses
with the author, notes problems and bugs found.

 The developer responds and addresses the issues, and
commits changes to version control.

 The review is completed.

15.04.2012 Andreas Schroeder 87

Part V3 –
Reviewing Code III

Pair Programming

 Two developers collaboratively writing code

 One has the keyboard and codes – the “pilot”

 One checks code on the fly and reflects about alternative
approaches – the “co-pilot”

 Roles switch constantly back and forth

 Pilot and co-pilot constantly discuss the code, and the
review is performed on the fly.

15.04.2012 Andreas Schroeder 88

Part V3 –
Summary

Productive development in a team means

 … using an IDE for managing and controlling code,
dependencies and libraries

 … using version control to merge the work of multiple
developers in a controlled fashion

 … using continuous integration for ensuring up-to-date,
tested builds (manually or automated)

 … performing code reviews for ensuring high code quality
and bug-freedom

15.04.2012 Andreas Schroeder 89

Part V4 –
Good Design

 Good software design is a science of its own e.g.

 … it must match the software type (business, embedded, ...)

 … it must follow the company style

 But: There are rules which apply everywhere

 Visualize complicated parts

 Keep it simple

 Readable Code

 Re-Use (Design Patterns, Libraries)

 SOLID / DRY

 Refactor

15.04.2012 Andreas Schroeder 90

Part V4 –
Visualize complicated parts

 The Unified Modeling Language (UML) is a visual design
tool for software.

 The static parts, in particular class diagrams, are a great
tool for planning (parts of) the software.

 Idea: Focus on the overall structure, not on every detail

 Diagrams also serve as documentation of the software for
new developers.

 On a higher level of abstraction, even the customer can get
some insights into the architecture of the software.

15.04.2012 Andreas Schroeder 91

Part V4 –
Keep it simple

 The job of developers is implementing the task at hand
… and nothing more.

 This means:

Implement the simplest thing that could possibly work!

 The aim is not to get caught up in „what might be needed
in the future“.

 Instead, implement the task at hand, and implement it
well.

15.04.2012 Andreas Schroeder 92

Part V4 –
Readable Code

 This is (obviously) WRONG:

It was hard to write, it should be hard to read!

 Code should be designed to be easy to read.

 “Speaking“ and “Readable” Code:
 Use long, self-explanatory variable and method names.

 Use the formatter to ensure everything looks the same.

 Prefer code to documentation.

 But: Use JavaDoc if the code contains pitfalls
 i.e. it is not obvious why it was written this way

15.04.2012 Andreas Schroeder 93

Part V4 –
Re-Use

 Do not reinvent the wheel!

 Mostly, there are already
solutions for your problems:

 Check for applicable design
patterns

 Check the (Java) API

 Check for external libraries

 Talk to your team!

 15.04.2012 Andreas Schroeder 94

Part V4 –
SOLID/DRY

 Single Responsibility
Principle

 If a task is split across
several classes, all of
them need to change if
the task changes.

 Result: maintenance
nightmare

 Solution: only one
responsibility per class

 Aim: high cohesion and
low coupling

 Don‘t Repeat Yourself

 If a bug is found in copied
code, it needs to be
changed everywhere.

 Result: maintenance
nightmare (again)

 Solution: Use
inheritance/delegation to
pull out common code

 Aim: Find generic
functionality
(Hint: copy&pasted code)

15.04.2012 Andreas Schroeder 95

Maintaining the code is easier as one only has to look in one place

Part V4 –
Refactor

 One of the best things about IDEs is refactoring support.

 Due to design purposes, code may change:
 Elements change their meaning.

 Elements have to be moved.

 Elements have to be split or merged.

 Never refrain from restructuring and renaming your code to fit
the current view of the system.
 Refactoring take care of all references automatically.

 The aim is having no burdens of the past.
(“this field is called xy because, at the beginning, we thought...“)

 And the tests ensure that the code still works.

15.04.2012 Andreas Schroeder 96

Part V4 –
Summary

 Visualizing, Creating simple and readable Code, Re-Using,
SOLID/DRY, and Refactoring are tools waiting to be
applied.

 But: Do not go too far!

 Even a “Perfect Design“ is obsolete tomorrow.

 Aim for “good-enough design“.

 Unfortunately, only experience helps to find the right
balance.

15.04.2012 Andreas Schroeder 97

Part VI/VI: Scaling Scrum

15.04.2012 Andreas Schroeder 98

Part VI –
More than 9 Developers

 Sometimes, we need more than 9 developers:

 Time constraints

 Scope of project

 HOWEVER:
> 9 developers in one Scrum Team induce complex
coordination

How do we scale Scrum to larger projects?

15.04.2012 Andreas Schroeder 99

Part VI –
Several Scrum Teams

To scale Scrum, we implement several Scrum Teams:

 Each Scrum Team is an own unit which means…

 … it has its own Sprint Goal (and therefore Sprint Backlog).

 … it has its own team dynamics.

 The Scrum Teams collaborate in the same project by…

 … working on the same Product Backlog.

 … sharing their progress in Scrum of Scrums Meetings.

15.04.2012 Andreas Schroeder 100

Part VI –
How to extend Scrum (I)

 Sprint Planning Meeting

 Each Scrum Team gets its own Sprint Goal.

 Each Scrum Team (one after another) selects its own Sprint
Backlog according to its Spring Goal.

 Daily Scrum Meeting

 Each Scrum Team organizes its own Daily Scrum Meeting
where all other Scrums Teams act as chickens.

 Scrum of Scrums Meeting

 Each Scrum Team designates two representatives.

 Representatives of every Scrum Team meet to discuss their
work focusing on areas of overlap and integration.

15.04.2012 Andreas Schroeder 101

Part VI –
How to extend Scrum (II)

 Sprint Review

 Each Scrum Team presents its results independently.

 The results are presented integrated into the whole product
(and not separated from the results of other Scrum Teams).

 Sprint Retrospective

 Each Scrum Team reviews the last Sprint independently.

15.04.2012 Andreas Schroeder 102

Part VI –
Summary

To scale Scrum, we implement several Scrum Teams where

 … each Scrum Team pursues its own Sprint Goal,

 … but all Scrum Teams collaborate in completing the same
project vision

Minimize interactions and dependencies between teams!

Maximize cohesion within each team!

15.04.2012 Andreas Schroeder 103

Conclusion

15.04.2012 Andreas Schroeder 104

Values in Scrum

 Commitment

 The Scrum Team has full authority how to do the work.

 The whole Scrum Team is responsible for the whole product.

 Openness

 Everything is visible to everyone.

 Courage

 Do your best, don’t give up!

 Respect

 Respect everyone’s strengths and weaknesses!

 Provide help and do your best!

15.04.2012 Andreas Schroeder 105

The Scrum process for SWEP

 This talk has presented an
agile method based on
Scrum, XP and the HFSD
process.

 Please make yourself
familiar with the process in
the reminder of the week!

15.04.2012 Andreas Schroeder 106

+ scrum.org

