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Abstract—In this paper, the authors review some of the recent
advances in the theory of photonic crystals, drawing examples
from their own work in magnetooptical and dynamic photonic
crystals. The combination of theory and simulations shows that
these crystal structures exhibit rich optical physics effects and can
provide new ways to accomplish sophisticated optical information-
processing tasks.
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I. INTRODUCTION

INCE the pioneering works by Yablonovitch [1] and John

[2], the properties of photonic crystals have been inten-
sively studied for the past 20 years. Many important predicted
properties, including, for instance, the existence of the com-
plete photonic band gap [1], [2], the control of spontaneous
emission [1], and the construction of ultracompact light wave
circuits [3], have by now been experimentally demonstrated.
The band structures of perfect crystals, as well as the properties
of the defect states, have also been studied in great detail
and reviewed in articles and books [4]-[8]. Recent research
works have therefore focused on functionalizing photonic crys-
tal structures to exploit their remarkable properties to control
even wider ranges of active, nonlinear, and dynamic optical
properties.

In this context, here, we provide a brief review of some
of our own recent research activities aiming to advance the
theory of photonic crystals. The examples chosen here include
magnetooptical photonic crystals, considered in Section II,
which are important for on-chip signal isolation [9]-[11] and
dynamic photonic crystals, discussed in Section III, which open
the possibility for coherent optical pulse stopping and storage
[12]-[17]. In both cases, the use of photonic crystals provides
a path toward accomplishing crucial optical information-
processing tasks that are very difficult to achieve with
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conventional means. Also, in each case, the use of photonic
crystals leads to important new optical physics effects. In the
case of magnetooptics, we show that time-reversal symmetry
breaking in photonic crystal provides a fundamental protection
against the effect of disorder. Similarly, dynamic processes in
photonic crystal allow one to mold the spectrum of a photon
pulse almost at will while completely preserving coherent infor-
mation in the optical domain. Thus, from both the fundamental
physics and device application points of view, there is still a
great deal that can be accomplished in theoretical studies of
photonic crystals.

Earlier theoretical studies of photonic crystals have focused
on elucidation of the band diagrams and the modal properties
of passive dielectric photonic crystal systems. Here, we note
that, based on this knowledge, it is then possible to construct
analytic models with only a few dynamic variables, which are
nevertheless capable of describing complex optical processes
in photonic crystals in detail. The developments of analytic
theory will prove to be increasingly important as we try to
discover more remarkable properties in photonic crystals, as
well as in the model abstraction that is important for analysis
and synthesis of device functions.

II. MAGNETOOPTICAL PHOTONIC CRYSTALS

One of the most fundamental challenges to the creation of on-
chip large-scale integrated optics has been to provide signal iso-
lation and to suppress parasitic reflections between devices. In
this context, there is a very strong interest in the miniaturization
of nonreciprocal optical devices and their on-chip integration
[18]-[20]. Due to the weakness of magnetooptical effects,
conventional devices require a long propagation distance and
occupy a large footprint. Thus, it should be very fruitful to
explore the enhancement of magnetooptical effects in photonic
crystals [21]-[35] for the purpose of creating ultracompact
devices with enhanced functionalities.

From a fundamental point of view, the key feature of non-
reciprocal photonic crystals is the violation of time-reversal
symmetry and reciprocity. As a result, the band structures and
the transport properties of photons exhibit characteristics that
are completely different from conventional reciprocal systems.
Formulating the basic theoretical framework and developing
the mathematical techniques and simulation algorithms for such
systems are therefore of fundamental importance to understand
this new class of photonic crystal structures.

0733-8724/$20.00 © 2006 IEEE
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(a) and (b) Pair of doubly degenerate defect states in a 2-D photonic crystal. The crystal consists of an array of air holes introduced into a high dielectric

material. Red and blue represent large positive and negative magnetic fields, respectively. (¢) Domain structure that maximizes the magnetooptical coupling
between the two defect states in (a) and (b). Cyan and red areas represent regions with magnetization direction along positive and negative directions parallel to

the air holes, respectively.

A. Modal Analysis of Magnetooptical Resonators

At optical wavelengths, the property of a magnetooptical
material is typically characterized by a gyrotropic dielectric
tensor £ [36], 1.,

D:gE:sOE—i—jsaJ\;[xEE(so—i—s')E (1)

where € is the dielectric constant in the absence of magnetiza-
tion, €, measures the strength of the magnetooptical effects, and
M is the unit vector indicating the direction of magnetization.
When the magnetization is along the z-direction, the dielectric
tensor in (1) assumes the following form:

€0 +ie, O
Tie, € O (2)
0 0 o

—
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where the magnetization is assumed to be along the z-direction.
The off-diagonal elements in (2) have their signs dictated by
the direction of magnetization. The strength of magnetooptical
effects is measured by the Voigt parameter Q) = &,/¢g. For
most transparent materials, the Voigt parameter is typically less
than 1073 [36].

To theoretically describe modes in a magnetooptical photonic
crystal system, we start with the vector wave equations for
photonic crystals [4], where the magnetic field H in the steady
state at an angular frequency w is obtained by solving the
following eigenvalue equation:

OlH)=Vx & Vx|H)= (%)2 \H). 3)

In general, this equation can be solved numerically using
existing techniques for photonic crystal band structure calcula-
tions [37]. To highlight the essential feature of magnetooptical
photonic crystals, however, we take advantage of the fact that
the Voigt parameter is very weak to develop a perturbation
theory. Starting from (3) and expanding to first order in &,,
we have
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In (4), ©9 =V x 1/¢¢V x describes a photonic crystal in the
absence of magnetooptical effects. The effects of magnetoop-
tics can now be treated in terms of the coupling of eigenmodes

of ©g as induced by the perturbation V = —V x (¢/ /e3)V x.

For two normalized eigenmodes |H; 2) for ©g at eigenfre-
quencies wy 2, the coupling constant between them, as induced
by V, can be calculated as
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As a concrete example of some of the physical consequences
of magnetooptical coupling, we consider a two-dimensional
(2-D) crystal shown in Fig. 1 [9]. The structure consists of a
triangular lattice of air holes in bismuth—iron—garnet. The air
holes have a radius of 0.35a, where a is the lattice constant. The
corresponding nonmagnetic photonic crystal exhibits a large
band gap for TE modes that have electric field polarized in the
plane. Filling one of the air holes creates a pair of degenerate
dipole modes in the photonic band gap. These two modes can
be categorized as an even mode |e) [Fig. 1(a)] and an odd
mode |o) [Fig. 1(b)] with respect to a mirror plane of the crystal.

In the presence of magnetooptical materials, the two modes
le) and |o) couple with each other. The system is now described
by a2 x 2 matrix, i.e.,

w2 Veo
@<—Veo wQ). (©6)

o

Since the two modes are standing waves that possess real-
valued electric fields, the coupling constant V,,, as described
by (5), is purely imaginary. For this system, which has Cgy
symmetry, w, = w, = wyp. With the presence of magnetooptical
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materials in the cavity, the eigenmodes of the systems, denoted
as |+) and |—), now take the form of a rotating wave, i.e.,

|+) = le) £ ilo) ()
with the frequencies located at

[Veol
2(4)0 '

ws =wo & (®)

The above modal analysis reveals some of the most in-
teresting properties about magnetooptical photonic crystals in
general.

1) Time-reversal symmetry breaking. Since the two coun-
terrotating modes |£) are related by a time-reversal
operation, the frequency splitting between them clearly
indicates the breaking of time-reversal symmetry and
reciprocity.

2) Fundamental suppression of the effects of disorder by
time-reversal symmetry breaking. Even in the case where
we deviates from w,, for example, due to fabrication-
related disorder that breaks the threefold rotational
symmetry, as long as the magnetooptical coupling is
sufficiently strong, i.e., |Veo| > |we — wolwe, |€) % i]o)
remain the eigenstates of the system. Thus, in the limit
of strong magnetooptical coupling, the rotating waveform
of the eigenmodes is independent of the slight structural
disorders that would almost always occur in practical
devices.

3) Reconfigurability through domain engineering. Examin-
ing (5), we note that the strength of the magnetoop-
tical coupling is strongly influenced by the magnetic
domain structures. The cross product £, x E, changes
sign rapidly within the cavity. Thus, a cavity completely
covered by a uniform domain structure, in spite of the
presence of magnetooptical material, has a very weak
magnetooptical coupling strength and essentially behaves
as a reciprocal optical resonator. On the other hand, de-
signing the domain structures according to the sign of the
modal cross product can maximize the magnetooptical
coupling [Fig. 1(c)]. Alternatively, strong coupling can
also be achieved with the use of a single domain that
covers the center area of the cavity where the modal
cross product does not change sign. Rewriting the domain
structure alone, as can be accomplished by applying ex-
ternal magnetic field or local heating, can thus reconfigure
magnetooptical circuits.

Below, we show that these unique modal properties of magne-
tooptical photonic crystals lead to remarkable transport prop-
erties in ultracompact magnetooptical photonic crystal circuits
[10], [11].

B. Ultracompact Magnetooptical Circulator

Exploiting the rotating states inside a magnetooptical pho-
tonic crystal cavity, we design a four-port circulator as shown
in Fig. 2. The system consists of a bus and a drop waveguide,
both evanescently coupled to the resonator. Magnetooptical
materials are introduced in the cavity region, in a fashion as
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Fig. 2. Operation of a photonic crystal circulator constructed by coupling
the magnetooptical cavity as shown in Fig. 1 to two waveguides. Shown here
are steady-state field distributions when the incident light is in resonance with
the counterclockwise rotating state. Red and blue represent large positive and
negative fields, respectively. The arrows indicate the direction of the incident
light. The field between two dashed lines are plotted with a different saturation
such that fields in both waveguides and cavities can be seen.

discussed in the previous section, to create large magnetooptical
coupling between the cavity modes. The resulting cavity modes
become two circularly rotating modes in opposite directions
at different frequencies. When the magnetooptically induced
frequency splitting between the two rotating modes exceeds the
cavity linewidth that results from the cavity—waveguide cou-
pling, the device functions as an optical circulator that provides
optical signal isolation. Light incident from the waveguide in
the lower half of the structure, with a frequency coinciding with
the counterclockwise resonance in the cavity, is completely
transferred to other waveguide [Fig. 2(a)]. In the time-reversed
scenario, the incident light through the upper waveguide re-
mains untransferred since the clockwise rotating resonance in
the cavity has a different frequency [Fig. 2(b)]. The device
footprint is on the single-micrometer scale, and the device is
readily integrated with other planar components.

C. Suppression of Disorder Effects With Time-Reversal
Symmetry Breaking

In Section II-A, we have shown that the form of eigenstates
in a magnetooptical resonator is independent of disorder in the
strong magnetooptical coupling regime. Here, we explore this
modal characteristic in connection with transport properties by
considering the disorder tolerance of the circulator structure as
presented in the previous section.

To highlight the property of nonreciprocal devices, we have
in fact designed the circulator structure such that the device
functions as an ideal add—drop filter, when the off-diagonal part
of the matrix elements in the dielectric tensor is set to zero.
In such a reciprocal add—drop filter, the ideal 100% transfer
efficiency relies on creating rotating states from a linear su-
perposition of two degenerate standing-wave modes having the
same frequency and linewidth [38]. Preserving the degeneracy
condition of the standing-wave modes translates to stringent tol-
erance requirements. Small fabrication imperfections can easily
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Fig. 3. (a) Photonic crystal circulator structure with two waveguides side-

coupled to a cavity at the center. The green region at the center of the cavity
consists of magnetooptical material. In the absence of the disorder, in the form
of a small bump at the side the cavity, both the circulator structure and its
fictitious reciprocal counterpart, created by removing the off-diagonal part of
the dielectric tensor, give ideal transfer efficiency between the waveguides at
resonance. The black arrows represent the direction of transfer. (b) Comparison
of the transfer property of the circulator and its reciprocal counterpart in the
presence of the disorder.

split the frequencies of the standing-wave modes, resulting
in low transfer efficiency and strong back reflections in the
input waveguide. This is demonstrated in Fig. 3, where, as an
example of disorder, we introduce a small bump on the side of
the cavity. For the reciprocal structure, such a disorder reduces
the transfer efficiency between the waveguides from 100% to
25% and causes strong reflection in the incoming waveguide.
In the nonreciprocal structure, on the other hand, the peak
transmission efficiency remains very close to 100%, in spite
of the disorder [11]. We believe that exploring the interplay
between time-reversal symmetry breaking and disorder is a
particularly exciting area, which can potentially lead to regimes
of photon propagation that are completely absent in reciprocal
structures.

III. STOPPING LIGHT IN DYNAMIC PHOTONIC CRYSTALS
A. Introduction

In this section, we point out the fascinating new possibilities
when dynamic behaviors are introduced into the photonic crys-
tal systems. The idea of dynamic photonic crystal is to modulate
the property of a crystal while a photon pulse is inside the
crystal. In doing so, the spectrum of the pulse can be molded
almost arbitrarily with a small refractive index modulation,
leading to highly nontrivial information-processing capabilities
on chip. As examples of such capabilities, we show that the
bandwidth of a light pulse can be compressed to zero, resulting
in all-optical stopping and storage of light [12]-[17]. The
spectrum of a light pulse can also be inverted to give a time-
reversal operation [13], [14].

A fundamental difficulty in integrated optics has been that
different optical functionalities tend to require different mate-
rial systems. For example, the traditional way to accomplish
time-reversal through phase conjugation requires nonlinear op-
tical materials such as LiNbOg3 [39]. In addition, light stopping
has been demonstrated only in atomic gases under extreme
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conditions [40], [41]. On the other hand, small refractive index
modulations required to create dynamic photonic crystal can
be readily incorporated in standard optoelectronic systems.
Thus, the use of dynamic photonic structures, as we envision
here, may provide a unifying platform for diverse optical
information-processing tasks in the future.

B. Tuning the Spectrum of Light

Here, we provide a simple example to show how the spec-
trum of electromagnetic wave can be modified by a dynamic
photonic structure. Consider a linearly polarized electromag-
netic wave in one dimension. The wave equation for the electric
field is

2 2
L o+ e m =0 ©

Here, =(t) represents the modulation, and & is the background
dielectric constant. We assume that both &, and ¢(t) are inde-
pendent of position. Hence, different wavevector components
do not mix in the modulation process. For a specific wavevec-
tor component at kg, with electric field described by E(t) =
f(t)ei(“ﬂt*’““), where wg = ko/, /00, we have

>*f of

ﬁ+2iwoafw§f =0. (10

KZF — [0 + ()] o
By using a slowly varying envelope approximation, i.e., ignor-
ing the 92 f /0t term, and by further assuming that the index
modulations are weak, i.e., €(t) < &g, (10) can be simplified as

Z@i o E(t)wo
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which has an exact analytic solution, i.e.,

t

: e(t’) .

ft) < f(to) exp | —iwp ?dt (12)
to 0

where ? is the starting time of the modulation. Thus, the “in-

stantaneous frequency” of the electric field for this wavevector

component is
e(t)
t) = 1——.
w(t) = wo ( 5 50)

(13)

We note that frequency change is proportional to the mag-
nitude of the refractive index shift alone. Thus, the process
defined here differs in a fundamental way from traditional
nonlinear optical processes. For example, in a conventional sum
frequency conversion process, to convert the frequency of light
from w; to wo, modulations at a frequency wy — wy need to be
provided. In contrast, in the process described here, regardless
of how slow the modulation is, as long as light is in the
system, the frequency shift can always be accomplished. Below,
we will demonstrate some very spectacular consequences of
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Fig. 4. General conditions for stopping a light pulse. (a) Large-bandwidth
state that is used to accommodate an incident light pulse. (b) Narrow-bandwidth
state that is used to hold the light pulse. An adiabatic transition between these
two states stops a light pulse inside the system.

such frequency shift in the dynamic photonic crystal, in its
application for stopping a light pulse all optically.

The existence of the frequency shift in dynamic photonic
crystal structures was also pointed out in the studies of photonic
crystals in the presence of shock waves [42]. The shock waves,
effectively speaking, induce a large refractive index shift. In
practical optoelectronic or nonlinear optical devices, on the
other hand, the accomplishable refractive index shift is gener-
ally quite small. Thus, in most practical situations, the effect of
dynamics is prominent only in structures in which the spectral
feature is sensitive to small refractive index modulations. This
motivates our design on Fano interference schemes, described
below, which are employed to enhance the sensitivity of pho-
tonic structures to small index modulations.

C. General Conditions for Stopping Light

By stopping light, we aim to reduce the group velocity of a
light pulse to zero while completely preserving all the coherent
information encoded in the pulse. Such ability holds the key to
the ultimate control of light and has profound implications for
optical communications and quantum information processing.

There has been extensive work attempting to control the
speed of light using optical resonances in static photonic crystal
structures. Group velocities as low as 10~2¢ for pulse prop-
agation with negligible distortion have been experimentally
observed in waveguide band edges or with coupled resonator
optical waveguides (CROWSs) [43]-[47]. Nevertheless, such
structures are fundamentally limited by the delay—bandwidth
product constraint. The group delay from an optical resonance
is inversely proportional to the bandwidth within which the
delay occurs [48], [49]. Therefore, for a given optical pulse
with a certain temporal duration and corresponding frequency
bandwidth, the minimum group velocity achievable is limited.
In a CROW waveguide structure, for example, the minimum
group velocity that can be accomplished for pulses at 10-Gb/s
rate with a wavelength of 1.55 ym is no smaller than 10~2c¢. For
this reason, static photonic structures could not be used to stop
light.

To stop light, it is therefore necessary to use a dynamic
system. The general condition for stopping light [12] is illus-
trated in Fig. 4. Imagine a dynamic photonic crystal system
with an initial band structure possessing a sufficiently wide
bandwidth. Such a state is used to accommodate an incident
pulse for which each frequency component occupies a unique
wavevector component. After the pulse has entered the system,
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one can then stop the pulse by flattening the dispersion relation
of the crystal adiabatically while preserving the translational
invariance. In doing so, the spectrum of the pulse is compressed,
and its group velocity is reduced. In the meantime, since
the translational symmetry is still preserved, the wavevector
components of the pulse remain unchanged, and thus, one
actually preserves the dimensionality of the phase space. This
is crucial in preserving all the coherent information encoded in
the original pulse during the dynamic process.

D. Tunable Fano Resonance

To create a dynamic photonic crystal, one needs to adjust
its properties as a function of time. This can be accomplished
by modulating the refractive index either with electrooptic or
nonlinear optic means. However, the amount of refractive index
tuning that can be accomplished with standard optoelectronics
technology is generally quite small, with a fractional change
typically on the order of n/n = 10~%. Therefore, we employ
Fano interference schemes in which a small refractive index
modulation leads to a very large change of the bandwidth of
the system. The essence of Fano interference scheme is the
presence of multipath interference, where at least one of the
paths includes a resonant tunneling process [50]. Such interfer-
ence can be used to greatly enhance the sensitivity of resonant
devices to small refractive index modulation [15], [51], [52].

Here, we consider a waveguide side-coupled to two cavities
[53]. The cavities have resonant frequencies wa p = wg &
(6w/2), respectively. (This system represents an all-optical
analogue of atomic systems exhibiting electromagnetically in-
duced transparency (EIT) [54]. Each optical resonance here is
analogous to the polarization between the energy levels in the
EIT system [55].) For simplicity, we assume that the cavities
couple to the waveguide with equal rate of v, and we ignore the
direct coupling between the side cavities. Consider a mode in
the waveguide passing through the cavities. The transmission
and reflection coefficients ({4, and r4 B, respectively) with
a single-sided cavity can then be derived using the Green’s
function method [56] as

(14)
TAB= 7~ (15)

When two cavities are cascaded together, the transmission
spectrum can be derived as [57]

tat 1
T = <1|_*|‘TBA |) . . (16)
ATB 1—|—4<1”_:i:§) sin? 6

0 is one-half of the round-trip phase accumulated in the
waveguides: 0 = (1/2)Arg[rarge 2/8()1] where f(w) is
the waveguide dispersion relationship, and L, is the spacing
between the cavities.

The transmission spectra of one- and two-cavity structures,
calculated using (14)—(16), are plotted in Fig. 5. In the case
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Fig. 5. (a) Transmissions spectrum through a waveguide side-coupled to a
single-mode cavity. (b) and (c) Transmission spectra through a waveguide
side-coupled to two cavities. The spectra are calculated using (14)—(16). The
parameters for the cavities are wg = 2mw¢/Ly and v = 0.05wq. In addition,
the waveguide satisfies a dispersion relation 5(w) = w/c, where c is the speed
of light in the waveguide, and L1 is the distance between the cavities. In (b),
wA,B =woE1.5v7.In(c),was, B = wo £0.27.

of one-cavity structure, the transmission features a dip in
the vicinity of the resonant frequency, with the width of the
dip controlled by the strength of waveguide—cavity coupling
[Fig. 5(a)]. With two cavities, when the condition

20B(wo)L = 2nm a7
is satisfied, the transmission spectrum features a peak centered
at wy. The width of the peak is highly sensitive to the frequency
spacing between the resonances dw. When the cavities are
lossless, the center peak can be tuned from a wide peak when
dw is large [Fig. 5(b)] to a peak that is arbitrarily narrow with
dw — 0 [Fig. 5(c)]. The two-cavity structure, appropriately
designed, therefore behaves as a tunable bandwidth filter (as
well as a tunable delay element), in which the bandwidth can
be, in principle, adjusted by any order of magnitude with very
small refractive index modulation.

E. From Tunable Bandwidth Filter to Light-Stopping System

By cascading the tunable bandwidth filter structure as de-
scribed in the previous section, one can construct a structure
that is capable of stopping light [Fig. 6(a)]. In such a light-
stopping structure, the photonic band diagram becomes highly
sensitive to small refractive index modulation.

The photonic bands for the structure in Fig. 6(a) can be cal-
culated using a transmission matrix method. The transmission
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Fig. 6. (a) Schematic of a coupled-cavity structure used to stop light. (b) and
(c) Band structures for the system shown in (a), as the frequency separation be-
tween the cavities are varied, using the same waveguide and cavity parameters
as in Fig. 5(b) and (c), with the additional parameter L2 = 0.7L1. The thicker
lines highlight the middle band that will be used to stop a light pulse.

matrix for a waveguide side-coupled to a single resonator with
resonance frequency w; can be calculated as [56]

3/ (w — w;)
=37/ (w — w;) ) )

L—jv/(w—wi)

The transmission matrix through an entire unit cell in Fig. 6 can
then be determined as
T = Tclﬂchzﬂz (19)
e~ JBL:
where 7}, = ( 0
waveguide section of length L;. Here, (3 is the wavevector of
the waveguide at a given frequency w.

Since det(T") = 1, the eigenvalues of T" can be represented
as e’*! and e~**!, where L = L, + Ly is the length of the unit
cell, and k (when it is real) corresponds to the Bloch wavevector
of the entire system. Therefore, we obtain the band diagram of
the system as [14]

0 . . .
L, ) is the transmission matrix for a
e k2

%T’I“(T) = cos(kL) = f(w)

Cy
(w—wa)

C_
(w—wp)

= cos(BL) + (20)

where C. = ~ysin(BL)+ +2[2 sin(BL1) sin(BL2)/ (wa — wB)].
In the frequency range where |f(w)| < 1, the system supports
propagating modes, whereas |f(w)| > 1 corresponds to the
frequency ranges of the photonic band gaps.
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The band diagrams thus calculated are shown in Fig. 6, in
which the waveguide and cavity parameters are the same as
those used to generate the transmission spectrum in Fig. 5.
In the vicinity of the resonances, the system supports three
photonic bands, with two gaps occurring around w,4 and
wp. The width of the middle band depends strongly on the
resonant frequencies w4 and wp. By modulating the frequency
spacing between the cavities, one goes from a system with a
large bandwidth [Fig. 6(b)] to a system with a very narrow
bandwidth [Fig. 6(c)]. In fact, it can be analytically proved
that the system can support a band that is completely flat in
the entire first Brillouin zone [14], allowing a light pulse to
be frozen inside the structure with the group velocity reduced
to zero. Moreover, the gaps surrounding the middle band have
sizes on the order of the cavity—waveguide coupling rate v and
are approximately independent of the slope of the middle band.
Thus, by increasing the waveguide—cavity coupling rate, this
gap can be made large, which is important for preserving the
coherent information during the dynamic bandwidth compres-
sion process [12].

FE. Numerical Demonstration in a Photonic Crystal

The system presented above can be implemented in a pho-
tonic crystal of a square lattice of dielectric rods (n = 3.5)
with a radius of 0.2a (a is the lattice constant) embedded in air
(n =1) [14] (Fig. 7). The photonic crystal possesses a band
gap for TM modes with electric field parallel to the rod
axis. Removing one row of rods along the pulse propagation
direction generates a single-mode waveguide. Decreasing the
radius of a rod to 0.1a and the dielectric constant to n = 2.24
provides a single-mode cavity with resonance frequency at
we = 0.357 - (2wc/a). The nearest neighbor cavities are sepa-
rated by a distance of [; = 2a along the propagation direction,
and the unit cell periodicity is [ = 8a. The waveguide—cavity
coupling occurs through barrier of one rod, with a coupling rate
of v = w./235.8. The resonant frequencies of the cavities are
tuned by refractive index modulation of the cavity rods.

We simulate the entire process of stopping light for N = 100
pairs of cavities with finite-difference time-domain (FDTD)
method, which solves Maxwell’s equations without approxima-
tion. The dynamic process for stopping light is shown in Fig. 7.
We generate a Gaussian pulse in the waveguide. (The process is
independent of the pulse shape.) The excitation reaches its peak
at t = 0.8%pass, Where t,,45 is the traversal time of the pulse
through the static structure. During the pulse generation, the
cavities have a large frequency separation. The field is concen-
trated in both the waveguide and the cavities [see Fig. 7(b), t =
1.0¢pa¢s], and the pulse propagates at a relatively high speed of
vy = 0.082c. After the pulse is generated, we gradually reduce
the frequency separation A to zero. During this process, the
speed of light is drastically reduced to zero. As the bandwidth
of the pulse is reduced, the field concentrates in the cavities [see
Fig. 7(b), t = 5.2tpass]. When zero group velocity is reached,
the photon pulse can be kept in the system as a stationary
waveform for any time duration. In this simulation, we store the
pulse for a time delay of 5.0¢,,ss and then release the pulse by
repeating the same index modulation in reverse [see Fig. 7(b),
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Fig. 7. Light-stopping process in a photonic crystal simulated using FDTD

methods. The crystal consists of a waveguide side-coupled to 100 cavity pairs.
Fragments of the photonic crystal are shown in (b). The three fragments
correspond to unit cells 12-13, 55-56, and 97-98. The dots indicate the positions
of the dielectric rods. The black dots represent the cavities. (a) Dashed green
and black lines represent the variation of w4 and wp as a function of time,
respectively. The blue solid line is the intensity of the incident pulse as recorded
at the beginning of the waveguide. The red dashed and solid lines represent the
intensity at the end of the waveguide in the absence and presence of modulation,
respectively. tpass is the passage time of the pulse in the absence of modulation.
(b) Snapshots of the electric field distributions in the photonic crystal at the
indicated times. Red and blue represent large positive and negative electric
fields, respectively. The same color scale is used for all the panels.

t = 6.3tpass]. The pulse intensity as a function of time at the
right end of the waveguide is plotted in Fig. 3(a) and shows the
same temporal shape as both the pulse that propagates through
the unmodulated system and the initial pulse recorded at the
left end of the waveguide. Thus, the pulse is perfectly recovered
without distortion after the intended delay.

G. Future Prospects of Dynamic Photonic Crystal System

In the all-optical light-stopping scheme presented above, for
a small refractive index shift of 6n/n = 10~* achievable in
practical optoelectronic devices, and assuming a carrier fre-
quency of approximately 200 THz, as used in optical communi-
cations, the achievable bandwidths are on the order of 20 GHz,
which is comparable to the bandwidth of a single-wavelength
channel in high-speed optical systems. The storage times are
limited only by the cavity lifetimes, which may eventually
approach millisecond timescales as limited by residual loss
in transparent materials. The loss in optical resonator systems
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might be further counteracted with the use of gain media in
the cavities or with external amplification. With such perfor-
mance, the capabilities for on-chip stopping light should have
important implications for optical communication systems. As
an important step toward its eventual experimental demon-
stration, the required EIT-like two-cavity interference effects
have recently been observed in a microring cavity system on a
silicon chip [57]. The general concept of introducing dynamics
into photonic crystal systems could also be very promising
for creating new optical signal processing functionalities far
beyond the capabilities of static systems.

IV. CONCLUDING REMARKS

In this paper, we provide a glimpse of recent developments
in the theory of photonic crystals, drawing examples from
our own recent work on magnetooptical as well as dynamic
crystal structures. These developments highlight two general
trends in the theoretical work in this field. On one hand, using
computational electromagnetic techniques such as the FDTD
methods [58] in combination with modern large-scale com-
puting architectures, almost any complex optical processes in
photonic crystal can now be simulated through exact numerical
solutions of Maxwell’s equations. On the other hand, with
the band structures and modal properties of passive dielectric
photonic structures largely mapped out, one can now create
analytic models with only a few dynamic variables based on
these modal properties to describe the essential physics of opti-
cal processes in photonic crystals. These developments in both
theory and simulations, in the context of very rapid progress
in experimental fabrications of photonic crystals, are leading to
ways of controlling light that are truly unprecedented.
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