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This paper develops an online learning algorithm to find optimal control solutions for 
partially-unknown continuous-time systems subject to input constraints. The input 
constraints are encoded into the optimal control problem through a nonquadratic 
performance functional. An online policy iteration algorithm that uses integral 
reinforcement knowledge is developed to learn the solution to the optimal control problem 
online without knowing the full dynamics model. The policy iteration algorithm is 
implemented on an actor-critic structure, where two neural network approximators are 
tuned online and simultaneously to generate the optimal control law. A novel technique 
based on experience replay is introduced to retain past data in updating the neural network 
weights.  This uses the recorded data concurrently with current data for adaptation of the 
critic neural network weights. Concurrent learning provides an easy-to-check real-time 
condition for persistence of excitation that is sufficient to guarantee convergence to a near 
optimal control law. Stability of the proposed feedback control law is shown and its 
performance is evaluated through simulations. 

I. Introduction 
ellman's Principle of optimality has been widely used to design near-optimal controllers for both discrete-time 
and continuous-time systems, and it requires the solution of nonlinear and complicated Hamilton–Jacobi–

Bellman (HJB) equations. Traditional methods for solving the HJB equation are offline and require complete 
knowledge of the system dynamics [1]. In practical applications, it is often desirable to design controllers conducive 
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to real time implementation and able to handle modeling uncertainties. Adaptive control theory consists of tools for 
designing stabilizing controllers which can adapt online to modeling uncertainty. However, classical adaptive 
control methods do not converge to the optimal feedback control solution, as they only minimize a norm of the 
output error. Indirect adaptive optimal controllers have been designed that first identify the system dynamics, and 
then solve optimal design equations.  

Recently, reinforcement learning (RL) [2-4] as a learning methodology in machine learning has been used as a 
promising method to design of adaptive controllers that learn online the solutions to optimal control problems [1]. 
Considerable research has been conducted for approximating the HJB solution of discrete-time systems using RL 
algorithms. However, few results are available for continuous-time (CT) systems. Most of available RL algorithms 
for solving continuous-time optimal control problems are based on an iterative procedure, called policy iteration (PI) 
[5]. Using PI technique, the HJB nonlinear partial differential equation (PDE) is solved successively by breaking it 
into a sequence of linear PDEs that are considerably easier to solve. Beard [6] and Abu-Khalaf and Lewis [7] 
proposed iterative offline PI algorithms to solve the HJB equation. However, for real-time applications, online 
algorithms are often more desirable as can better handle sudden dynamic change, and do not require excessive 
offline data for training. 

To overcome the limitations of offline solution for real-time applications, some online PI algorithms were 
presented [8-13]. However, none of these existing online PI algorithms take into account the input constraints due to 
actuator saturation. In practical control systems, the magnitude of the control signal is always bounded due to 
physical input saturation. Saturation is a common problem for actuators of control systems and ignoring this 
phenomenon often severely destroys system performance, or even may lead to instability [7]. Another problem 
related to the existing PI algorithm is that to ensure convergence of the critic to a near optimal value, a persistence of 
excitation (PE) condition is required to be satisfied which is which is often difficult or impossible to check. This 
occurs as a result of inefficiency of using the available data during learning, that is, existing online RL algorithms 
have high sample complexity [3, 4].  In particular it is well known that online policy iteration based algorithms, such 
as TD-  are guaranteed to converge to an approximately optimal solution if and only if the markov chain induced by 
the closed loop system dynamics is guaranteed to revisit all states infinitely often (a condition known as ergodicity 
[14]). The ergodicity condition is closely related to that of persistency of excitation in traditional adaptive control. 

Due to the requirements for PE-like conditions, existing PI algorithms are sample inefficient, that is, they require 
many samples from the real world in order to learn the optimal policy. In order to reduce sample complexity and use 
available data more effectively, experience replay technique [15-19] has been proposed in the context of RL. In this 
technique, a number of recent samples are stored in a database and they are presented repeatedly to the RL 
algorithm. However, there has been no result on how to use the experience replay technique to relax the PE 
condition in RL algorithms. In [20, 21], Chowdhary and Johnson introduced a related idea, called concurrent 
learning, for adaptive control of uncertain dynamical systems. They showed that the concurrent use of recorded and 
current data can lead to exponential stability of a model reference adaptive controller as long as the recorded data is 
sufficiently rich. They also showed that the richness of recorded data is guaranteed if it consists of as many linearly 
independent elements as the number of unknowns, this condition was termed the rank condition [20, 21]. However, 
their results were focused on direct adaptive control, and in particular, that work did not establish any optimality 
guarantees on the closed loop system. In this paper, we merge the ideas from concurrent learning adaptive control 
with the notion of experience replay in a policy-iteration based reinforcement learning framework to guarantee 
convergence to a near optimal control law subject also to the rank-condition. In that sense, not only does this paper 
contribute to the RL literature, as such guarantees are not available in existing experience replay literature [15-19], 
but it also contributes to adaptive control literature since direct adaptive optimal control has been argued to be 
equivalent to reinforcement learning [2]. 

In this paper we introduce the use of experience replay to the integral reinforcement learning (IRL) 0 approach 
and develop approximate online solutions for optimal control of CT systems in the presence of input constraints. 
Experience replay allows more efficient use of current and past data, and provides simplified conditions to check for 
PE-like requirements in real time. IRL allows applications to systems with unknown drift dynamics. A suitable 
nonquadratic functional is used to encode the input constraint into the optimization formulation. Then, an IRL 
algorithm is developed to solve the associated HJB equation online. The IRL allows development of a Bellman 
equation that does not contain the system dynamics. The optimal control law and optimal value function are 
approximated as the output of two NNs, namely an actor NN and a critic NN. To update the critic NN weights, the 
experience replay technique is employed. It is shown using the proof techniques from [20, 21], that using experience 
replay, or concurrent real-time learning, a simple and easily verifiable condition on the richness of the recorded data 
is sufficient to guarantee exponential convergence of the critic NN weights. The closed-loop stability of the overall 
system is assured.  
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II. Optimal Control of Constrained-input Systems 
A. Constrained optimal control and policy iteration 

In this section, the optimal control problem for affine-in-the-input nonlinear systems with input constraints is 
formulated and an offline PI algorithm is given for solving the related optimal control problem.  

Consider the system dynamics be described by the differential equation 

( ) ( ) ( )x f x g x u x= +&  (1) 

where nx∈ℜ  is a measurable system state vector, ( ) nf x ∈ℜ  is the drift dynamics of the system, ( ) 1ng x ×∈ℜ  is the 

input dynamics of the system, and ( )u x ∈ℜ  is the control input. We denote ( ){ }| ,u u u u x λΩ = ∈ℜ ≤  as the set of 

all inputs satisfying the input constraints, where λ  is the saturating bound for actuators. It is assumed that 

( ) ( )f x g x u+  is Lipchitz and that the system is stabilizable.  

It is assumed that the drift dynamics ( )f x  is unknown and ( )g x  is known. 
Define the performance index 

( )( ) ( )( ) ( )( )( )
t

V x t Q x U u dτ τ τ
∞

= +∫  (2) 

where ( )Q x  is positive definite monotonically increasing function and ( )U u  is a positive definite integrand 
function.  

Assumption 1: The performance functional (2) satisfies zero-state observability. 

Definition 1 (Admissible control) [6, 7]: A control policy ( )xµ is said to be admissible with respect to (2) on Ω , 

defined by ( )µ π∈ Ω , if ( )xµ   is continuous on Ω , ( )0 0µ = , ( ) ( )u x xµ=  stabilizes system (1) on Ω , and 

( )0V x  is finite 0x∀ ∈Ω . 

To deal with the input constraints, the following generalized nonquadratic functional can be used [7, 22]. 

( ) ( )( )1

0
2 tanh

u T
U u v Rdvλ λ−= ∫  (3) 

Using the cost functional (3) in Eq. (2), the value function becomes 

( )( ) ( ) ( )( )( )1
0

2 tanh
Tu

t

V x t Q x v Rdv dλ λ τ
∞

−= +∫ ∫  (4) 

Differentiating V along the system trajectories, the following Bellman equation is obtained 

( ) ( )( ) ( ) ( ) ( ) ( )( )1

0
2 tanh 0

u T TQ x v Rdv V x f x g x u xλ λ−+ +∇ + =∫  (5) 

where ( )( )V x V x x∇ = ∂ ∂ . The optimal value function ( )V x∗  satisfies the HJB equation [1] 

( )
( ) ( )( ) ( ) ( ) ( ) ( )( )1

0
min 2 tanh 0

u T T

u
Q x v Rdv V x f x g x u x

π
λ λ− ∗

Ω∈
⎡ ⎤+ +∇ + =⎦⎢⎣ ∫  (6) 

The optimal control for the given problem is obtained by differentiating Eq. (6) and is given as 

( ) ( ) ( )11tanh
2

Tu x R g x V xλ
λ

∗ − ∗⎛ ⎞= − ∇⎜ ⎟⎝ ⎠
 (7) 

Using Eq.  (7) in Eq. (3), it yields 



 
American Institute of Aeronautics and Astronautics 

 
 

4 

( ) ( ) ( ) ( ) ( )( )2 2tanh ln 1 tanhTU u V x g x D R Dλ λ∗ ∗ ∗ ∗= ∇ + −     (8) 

where ( ) ( ) ( )11 2 TD R g x V xλ∗ − ∗= ∇ . Substituting ( )u x∗  (7) back into Eq. (5) and using ( )U u∗ (8), the following 
HJB equation is obtained  

( ) ( ) ( ) ( ) ( )( )* * 2 2, , ln 1 tanh 0TH x u V Q x V x f x R Dλ∗ ∗∇ = +∇ + − =  (9) 

In order to find the optimal control solution directly, first the HJB equation (9)  must be solved for  the optimal 
value function, then the optimal control input that achieves this minimal performance is obtained by Eq. (7). 
However, solving the HJB equation (9) requires solving a nonlinear PDE, which may be impossible to solve in 
practice. 

Instead of directly solving the HJB equation, in [7] an iterative PI algorithm is presented. The PI algorithm starts 
with a given admissible control policy and then performs a sequence of two-step iterations to find the optimal 
control policy. In the policy improvement step, the Bellman equation (5) is used to find the value function for a 
given fixed policy and in the policy improvement step, using the value function found in the policy evaluation step, 
the algorithm finds an improved control policy of the form Eq. (7). However, to evaluate the value of a fixed policy 
using the Bellman equation (5), the complete knowledge of the system dynamics must be known a priori. In order to 
find an equivalent formulation of the Bellman equation in policy evaluation step that does not involve the dynamics, 
we use the integral reinforcement learning (IRL) idea as introduced in [11]. Note that for any time t

 
and time 

interval 0T > , the value function (4) satisfies  

( ) ( ) ( )( )( ) ( )1
0

2 tanh
t Tu

t t T
t T

V x Q x v Rdv d V xλ λ τ−
−

−

= + +∫ ∫  (10) 

In [11], it is shown that Eq. (10) and Eq. (4) are equivalent and have the same solution. Therefore, Eq. (10) can 
be viewed as a Bellman equation for CT systems. Note that the IRL form of the Bellman equation does not involve 
the system dynamics. Using Eq. (10) instead of  Eq. (5) to evaluate the value function, the following PI algorithm is 
obtained. 

Algorithm 3.1: Integral Reinforcement Learning 
1. (policy evaluation) given a control input ( )iu x , find ( )iV x  using the Bellman equation 

( ) ( ) ( )( ) ( )1

0
2 tanh

it
u Ti i

t t T
t T

V x Q x v Rdv d V xλ λ τ−
−

−

⎛ ⎞= + +⎜ ⎟⎝ ⎠∫ ∫  (11) 

2. (policy improvement) update the control policy using 

( ) ( ) ( )1 11tanh
2

i T iu x R g x V xλ
λ

+ −⎛ ⎞= − ∇⎜ ⎟⎝ ⎠
 (12) 

The above PI algorithm only needs to have knowledge of the input dynamics. The online implementation of this 
PI algorithm is introduced in section III. 

B. Value function approximation and the approximated HJB equation 
In this subsection, we discuss the value function approximation to solve for the cost function V(x) in policy 

evaluation (11). Assuming the value function is a smooth function, according to the Weierstrass high-order 
approximation Theorem [23], there exists a single-layer NN such that the solution ( )V x and its gradient can be 
uniformly approximated as  

( ) ( )1( ) T
vV x W x xφ ε= +  (13) 

( ) ( )1( ) T
vV x x W xφ ε∇ =∇ +∇  (14) 

where ( ) mxφ ∈ℜ  provides a suitable basis function vector, ( )v xε  is the approximation error, 1
mW ∈ℜ  is a constant 

parameter vector, l  is the number of neurons.  
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Assumption 2 [9].  The NN reconstruction error and its gradient are bounded over a compact set. Also, the NN 
activation functions and their gradients are bounded. 

Before presenting the actor and critic update laws, it is necessary to see the effect of the reconstruction error on 
the HJB equation. Assuming that the optimal value function is approximated by Eq. (13) and using its gradients Eq. 
(14) in the Bellman equation (10) it yields 

( ) ( )( )( ) ( )( ) ( )1
10

2 tanh
t

u T T
B

t T

Q x v Rdv d W x t tλ λ τ φ ε−

−

+ + Δ ≡∫ ∫  (15) 

where  

( )( ) ( )( ) ( )( )x t x t x t Tφ φ φΔ = − −  (16) 

and ( )B tε is the Bellman approximation error and under Assumption 1 is bounded on the compact set Ω . Also, the 
optimal policy is obtained as 

( )1
1

1tanh
2

T T T
vu R g Wλ φ ε

λ
−⎛ ⎞= − ∇ +∇⎜ ⎟⎝ ⎠

	
   (17) 

Using Eq. (17) in Eq. (15), the following HJB equation is obtained. 

( )( )( )2 2
1 ln 1 tanh 0

t
T

HJB
t T

Q W f R D dφ λ ε τ
−

+ ∇ + − + =∫  (18) 

where ( ) 1
11 2 T TD R g Wλ φ−= ∇ , and HJBε  is the residual error due to the function reconstruction error. In [7], the 

authors show that as for each constant vector hε , we can construct a NN so that sup x HJB hε ε∀ ≤  . Note that in Eq. 
(18) and in the sequel, the variable x  is dropped for ease of exposition. 

III. Online Intergal Reinforcement Learning to Solve the Constrained Optimal Control Problem 
An online IRL algorithm based on Policy Iteration (PI) algorithm is now given. The learning structure uses two 
NNs, i.e., an actor NN and a critic NN, which approximate the Bellman equation and its corresponding policy. The 
offline PI Algorithm 3.1 is used to motivate the structure of this online PI algorithm. Instead of sequentially 
updating the critic and actor NNs, as in Algorithms 3.1, both are updated simultaneously in real-time. We call this 
synchronized online PI. This is the continuous version of Generalized Policy Iteration (GPI) introduced in [2].  

A.  Critic NN and tuning using experience replay 
This subsection presents tuning and convergence of the critic NN weights for a fixed admissible control policy, 

in effect designing an observer for the unknown value function for using in feedback. 
Consider a fixed admissible control policy u(x) and assume that its corresponding value function is 

approximated by Eq. (13). Then, the Bellman equation (15) can be used to find the value function related to this 
control policy. However, the ideal weights of the critic NN, i.e. 1W , which provide the best approximation solution 
for Eq. (15) are unknown and must be approximated in real-time. Hence, the output of the critic NN can be written 
as 

1
ˆ ˆ( ) TV x W φ=  (19) 

where the weights 1̂W  are the current estimated values of  1W  and then the approximate Bellman equation becomes 

( ) ( )( )( ) ( )( ) ( )1
10
ˆ2 tanh

t
u T T

t T

Q x v Rdv d W x t e tλ λ τ φ−

−

+ + Δ =∫ ∫ 	
   (20) 

Equation (20) can be written as 

( ) ( ) ( ) ( )1̂
Te t W t t p tφ= Δ +  (21) 

where  



 
American Institute of Aeronautics and Astronautics 

 
 

6 

( ) ( ) ( )( )( )1

0
2 tanh

t
u T

t T

p t Q x v Rdv dλ λ τ−

−

= +∫ ∫  (22) 

Note that the Bellman error e  in Eqs. (20) and (21) is the continuous-time counterpart of the Temporal 
Difference (TD) [2]. The problem of finding the value function is now converted to adjusting the parameters of the 
critic NN such that the TD e  is minimized.  

In the following, a real-time learning algorithm based on the experience replay technique is applied for updating 
the critic NN weights. In contrast to traditional learning algorithms, in which only instantaneous Bellman equation 
error is used to update the critic weights, recorded data are used concurrently with current data for adaptation of the 
critic NN weights. Using this learning law, a simple condition on the richness of the recorded data is sufficient to 
guarantee exponential parameter estimation errors convergence.  

The proposed experience replay-based update rule for the critic NN weights stores recent transition samples and 
repeatedly presents them to the gradient-based update rule. In can be interpreted as a gradient-descent algorithm that 
not only tries to minimize the instantaneous Bellman error, but also the Bellman equation error for the stored 
transition samples obtained by the current critic NN weights. These samples are stored in a history stack. To collect 
a history stack, let jt , j=1,…,l.  denote some recorded times during learning. Let 

( ) ( )( ) ( )( )j j j jt x t x t Tφ φ φ φΔ = Δ = − −  (23) 

and   

( ) ( ) ( )( )( )1
0

2 tanh
j

j

t
Tu

j j
t T

p p t Q x v Rdv dλ λ τ−

−

= = +∫ ∫  (24) 

denote ( )tφΔ  and ( )p t  
evaluated at time jt , j=1,…,l  and  

( )1̂j j je W t pφ= Δ +  (25) 

is the Bellman equation error at time jt  
using the current critic NN weights. Note that using  Eqs. (15), (21) and (25) 

we have 
( ) ( )1

T
j j B je W t tφ ε= Δ +%  (26) 

( ) ( ) ( ) ( )1
T

Be t W t t tφ ε= Δ +%  (27) 

where ( )B jtε  is the reconstruction error obtained by Eq. (15) in time jt and 1 1 1̂W W W= −% . The proposed learning 

gradient descent algorithm for the critic NN is now given as 

( ) ( )
( ) ( )( )

( ) ( ) ( )( ) ( )
( )( )1 1 1 1 12 2

1

ˆ ˆ ˆ
11

l
T j T

j jT T
j j j

t
W t p t t W t p W t

t t

φφ
α φ α φ

φ φφ φ =

ΔΔ
= − + Δ − +Δ

+ Δ Δ+ Δ Δ
∑&  (28) 

Remark 2. Note that in this experience replay tuning law the last term depends on the history stack of previous 
activation function differences. Furthermore, note that the updates based on both current and recorded data use the 
current estimate of the weights 

Using Eqs. (26), (27) and (28), and notations ( ) ( ) ( ) ( )( )1 Tt t t tφ φ φ φΔ = Δ +Δ Δ and ( ) ( )1 T
sm t tφ φ= + Δ Δ , the critic 

NN weights error dynamics becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

1 1

l l
B jT BT

j j j
s sj j

tt
W t t t W t t

m m

εε
α φ φ φ φ α φ φ

= =

⎡ ⎤⎡ ⎤
⎢ ⎥= − Δ Δ + Δ Δ + Δ + Δ⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑&% %  (29) 

Condition 1. Let 1,..., lZ φ φ⎡ ⎤= Δ Δ⎣ ⎦  be the history-stack. Then, Z in the recorded data contains as many linearly 

independent elements 1mφ ×Δ ∈ℜ  as the dimension of the basis of the uncertainty. That is ( )rank Z m= . 
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Remark 3: Condition 1 is related to PE condition.  However, instead of a traditional PE condition, which is often 
difficult or impossible to check online, this condition is easy to check online [20, 21].  

It was shown in [20, 21] that the rank-condition in Condition 1 and a concurrent learning NN weight update law 
that uses current and recorded data concurrently (similar to Eq.(29)) leads to exponential stability of the closed loop 
system in the Model Reference Adaptive Control framework. In the following, we show that an experience replay 
enabled NN weight update law can lead to exponential weight convergence in PI algorithm provided that Conditions 
1 is satisfied. The results presented in this paper make a significant contribution to RL literature, because existing 
work in experience replay [15-19] does not provide such guarantees nor uses the notion of a rank condition on the 
history-stack. 

Theorem 1: Let the online critic tuning law is given by the weight update law of Eq. (28). If the recorded data 
points satisfy Condition 1, then 
(a) for ( ) 0,B t tε = ∀ , 1̂W  converges exponentially to 1W . 

(b): For bounded ( )B tε , i.e. ( ) maxsup x B t tε ε∀ ≤ ∀ , 1W% converges exponentially to a residual set.  

Proof: (a): Consider a Lyapunov function as 

( ) ( )1
1 1 1

1
2

TV W t W tα −= % %  (30) 

Differentiating Eq. (30) along the trajectories of Eq. (28), and considering ( ) 0B tε = , we have 

( ) ( ) ( ) ( )1 1
1

l
T T T

j j
j

V W t t t W tφ φ φ φ
=

⎡ ⎤
= − Δ Δ + Δ Δ⎢ ⎥

⎢ ⎥⎣ ⎦
∑& % %  (31) 

If the condition 1 is satisfied, then 
1

0
l

T
j j

j

φ φ
=

⎡ ⎤
Δ Δ >⎢ ⎥

⎢ ⎥⎣ ⎦
∑  and hence 0V <& . This concludes that ( )1W t%  converge to 

zero exponentially fast. 

(b): Viewing Eq. (29) as a linear time-varying system, the solution 1W%  is given by  

( ) ( ) ( ) ( )
0

1 0 1 1 0, 0 ,
t

GBt
W t t t W t dα τ ε τ= + ∫φ φ% %  (32) 

where ( ) ( ) ( )
1

l
B jB

GB j
s sj

tt
t
m m

εε
ε φ φ

=

= Δ + Δ∑  with the state transition matrix defined as 

( ) ( ) ( )0
1 0

1

,
,

lT T
j j

j

t t
t t t

t
α φ φ φ φ

=

⎡ ⎤∂ ⎢ ⎥= − Δ Δ + Δ Δ
∂ ⎢ ⎥⎣ ⎦

∑φ
φ  (33) 

From proof of part (a), it can be concluded that ( )0,t tφ  is exponentially stable provided that condition 1 is satisfied. 
Therefore, if condition 1 is satisfied, we obtain 

( ) ( )22
1 1 1 0

t tt
GBW t e e dη τηη α ε τ− −−≤ + ∫%     (34) 

for some 1 2, 0η η > . Since ( ) maxsup x B tε ε∀ ≤ and  ( )( ) 1st mφΔ <  , Eq. (34) can be written as 

( )
2 1

1 1 max
2

1t l
W e η α

η ε
η

− +
≤ +%  (35) 

The first term of the above equation converges to zero exponentially fast and this completes the proof of (b).   
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B. Tuning of the actor NN and the online PI algorithm 
This section presents our main results. To solve the optimal control problem adaptively, an online PI algorithm 

is given which involves simultaneous and synchronous tuning of the actor and critic NNs.  
As mentioned, in policy improvement step (12) of Algorithm 3.1, the actor finds an improved control policy 

according to the current estimated value function. Assume that 1̂W  are the current estimation for the optimal critic 
NN weights. Then according to Eq. (12) one can update the control policy as 

1
1 1

1 ˆtanh
2

T Tu R g Wλ φ
λ

−⎛ ⎞= − ∇⎜ ⎟⎝ ⎠
 

 

(36) 

However, the above standard policy improvement does not guarantee the stability of the system. Therefore, to assure 
stability, the following nonstandard policy update law is used 

1
1 2

1 ˆˆ tanh
2

T Tu R g Wλ φ
λ

−⎛ ⎞= − ∇⎜ ⎟⎝ ⎠
 

 

(37) 

where 2Ŵ  are considered as the current estimated values of the unknown optimal weights 1W . 
Define the actor NN estimation errors as 

2 1 2
ˆW W W= −%  

 

(38) 

Assumption 3. ( )g x  is bounded by a constant. 

We now present the main theorem which provides the tuning laws for the actor and critic NNs that assure 
convergence of the proposed PI algorithm to a near optimal control law, while guaranteeing stability. Define 

( ) ( ) ( )( )2 2
2

ˆ ˆ ˆ ˆˆ tanh ln 1 tanhTU W D R Dσ ψ ς λ λ= ∇ + −  

( ) ( )1
2

ˆ ˆˆ1 2 T TD R Wλ ψ ς φ−= ∇  

Theorem 2: Given the dynamical system (1) . Let the tuning for the critic NN be provided by 

( )
( )

( )
( )1 1 1 1 12 2

1

ˆ ˆ ˆ ˆ ˆ
1 1

j

j

tt l
jT T

j
T Tjt T t Tj j

W Q U d W Q U d W
φφα τ φ α τ φ

φ φ φ φ=− −

⎛ ⎞⎛ ⎞ ΔΔ ⎜ ⎟⎜ ⎟= − + + Δ − + + Δ⎜ ⎟⎜ ⎟ ⎜ ⎟+ Δ Δ + Δ Δ⎝ ⎠ ⎝ ⎠
∑∫ ∫&  (39) 

Let Condition 1 be satisfied. Let the actor NN be tuned as  

( ) ( )2 2 1 2 2 1 2 2 2
ˆ ˆ ˆ ˆ ˆtanh

tT
T

t T

W t Y W g D M W a M M W d
m
φα φ λ τ

−

⎤Δ⎡= − +∇ + + ⎥⎣ ⎥⎦
∫&

 (40) 

where ( )1 Tφ φ φ φΔ = Δ +Δ Δ , 1 Tm φ φ= +Δ Δ  and 1Y is a design parameter. Let Assumptions 1-3 hold. Let the 

sampling time be small enough. Let the control law be given by Eq. (37). Then the closed-loop system states, the 
critic NN error, and the actor NN error are UUB, for sufficiently large number of NN neurons provided that 

( ) 2
1 2max 0.5 1

t
Y a M

∀
> +  (41) 

3 2

3

x

T
m

<
 

(42) 

Proof: Proof is not provided due to the page limitation. 

IV. Simulation Results 
Consider the following nonlinear dynamics for the system (1). 
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( ) ( )( )2 2 2 2
1 2 1 1 1 1 2 2 1 1,

T
f x x x x x x x x x x= + − + − + − +  (43) 

[ ]0,1 Tg =     (44) 

The aim is to control the system with control limits of 1u ≤ . The above system was previously employed by 
[7] to test their offline optimal control design algorithm.  

The cost function is chosen as the nonquadratic cost function (4) with ( ) 2 2
1 2Q x x x= +  and R=1 [7]. Also, 

similar to [7], the critic NN is chosen as a power series neural network with 24 activation functions containing 
powers of the state variable of the system up to the eight order. The critic and actor weights are initialized randomly. 
To perform simulations, the integral reinforcement interval T is considered as 0.05. During learning, the probing 
noise is added to the control input to ensure that Condition 1 is satisfied. Fig 1 shows the states of the system during 
online learning. The probing noise is no longer required and is thus removed after 150 seconds. After that, the states 
remain very close to zero, as required. Fig 2 shows convergence of the first 10 weights of the critic NN. In fact, the 
critic weights converge to W = [ 8.86, 4.60, 3.62, -2.80, 2.39, -1.15, 1.05, 2.89, -5.64, -0.54, 1.64, 1.60, 3.52, 2.67, 
5.29, 0.29, 1.52, -0.22, -1.72, -1.00, 2.78, -0.72, 3.35, 2.22].  

The performance of the final near-optimal controller which is found at the end of the learning process (control 
law 1) is compared with the performance of the near-optimal control law found in [7] (control law 2). Figs 3 and 4 
depict the state 1x  and the control effort for control laws 1 and, starting the system from a specific initial condition. 
Comparing the results, it is obvious that the performance of the proposed optimal control law is better than those of 
[7], as both the control effort and the states for the proposed control law converges to zero faster.  
 

	
  
Fig	
  1.	
  State	
  trajectory	
  during	
  online	
  learning	
  	
  

	
  
Fig	
  2.	
  Convergence	
  of	
  the	
  critic	
  NN	
  parameters	
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Fig	
  3.	
  System	
  state	
   1x 	
  for	
  control	
  laws	
  1	
  and	
  2	
  

	
  
Fig	
  4.	
  Control	
  effort	
  u	
  for	
  control	
  laws	
  1	
  and	
  2	
  

 

V. Conclusion 
An adaptive algorithm converging to the optimal state feedback law for systems in the presence of input 

constraints was presented. Integral reinforcement knowledge was used for updating the value function. The 
presented approach is   capable of learning the optimal policy without requiring knowledge of the drift dynamics. 
Using the experience replay technique for updating the value function,  it was guaranteed under a simple condition 
on the richness of the recorded data, which can easily be checked online, is sufficient to guarantee exponential 
convergence to a near-optimal policy.  
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