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Abstract. In this paper, a three-dimensional adaptive finite element method is developed for
a variational phase field bending elasticity model of vesicle membrane deformations. Using a mixed
finite element formulation, residual type a posteriori error estimates are derived for the associated
nonlinear system of equations and, they are used to introduce the mesh refinement and coarsening.
The resulting mesh adaptivity significantly improves the efficiency of the phase field simulation of
vesicle membranes and enhances its capability in handling complex shape and topological changes.
The effectiveness of the adaptive method is further demonstrated through numerical examples.
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1. Introduction. This paper presents an adaptive finite element method for the
numerical simulation of vesicle membrane deformation based on a phase field bend-
ing elasticity model. The vesicle membranes, formed by bilayers of lipid molecules,
are simple forms of biological membranes which exist everywhere in life and com-
partmentalize living matter into cells and subcellular structures, and are essential for
many biological functions [38]. The equilibrium shapes of bilayer vesicle membranes
have been successfully modeled via the minimization of certain shape energy; see, for
instance, [14, 36, 41, 48], and the references cited therein.

In the isotropic case, the most relevant energetic contribution to the equilibrium
membrane geometry is usually the elastic bending energy of the form [11, 12, 41]:

Eelastic =

∫
Γ

k

2
H2 ds,(1.1)

where H is the mean curvature of the membrane surface. The parameter k is the
bending rigidity, which can depend on the local heterogeneous concentration of the
species (such as protein and cholesterol molecules), but it is mostly assumed to be a
constant in this manuscript. Taking a simplified description of the effect of density
change and osmotic pressure, it is assumed that the variation of the bending energy
is subject to the constraints of specified volume and surface area. More general forms
of the bending elastic energy, attributed to Canham and Helfrich, also incorporate
effects of surface tension, the Gaussian curvature, and the spontaneous curvature
[36, 41]. For the sake of simplicity in our presentation, we only focus on the energy
(1.1), though much of our studies can be naturally extended to more general cases
including the effect of the spontaneous curvature [20], the Gaussian curvature [21, 24],
and the vesicle fluid interactions [17, 18].

∗Received by the editors April 5, 2006; accepted for publication (in revised form) October 31,
2007; published electronically April 18, 2008. This research is supported in part by NSF-DMR
0205232 and NSF-DMS 0712744.

http://www.siam.org/journals/sisc/30-3/65644.html
†Department of Mathematics, Pennsylvania State University, University Park, PA 16802 (qdu@

math.psu.edu, zhang j@math.psu.edu).

1634



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ADAPTIVE FEM FOR PHASE FIELD MODEL OF MEMBRANES 1635

Computationally, there are many simulation methods developed for studying var-
ious deforming interface problems, such as the boundary integral and boundary ele-
ment methods, immersed boundary and interface methods, front-tracking methods,
and level-set methods (see, for instance, [34, 40, 43, 46, 49], and the references given
in [22, 23]). For bending elasticity models, applications of these types of methods can
also be found in [6, 28, 32, 53]. The phase field model can be viewed as a physically
motivated level-set method; this is by virtue of its energy-based variational formalism.
One of the main attractions to use the phase field method is its capability of easily
incorporating the complex morphological changes of the interface, in particular, the
changes in both topological and geometrical structures. For more detailed discussions,
we refer to [22, 23], and the references given there.

In [22], a finite difference method was used to study the energy-minimizing vesicle
membrane in the three-dimensional axis-symmetric case. In [23], a Fourier spectral
method was used to study the full three-dimensional case. Parallel implementation of
such a spectral approach was also carried out to improve the computational efficiency.
The various simulation examples given in the earlier studies demonstrated the effec-
tiveness of the phase field approach. However, in the three-dimensional case, the high
computational cost remains a formidable challenge in making the phase field simula-
tion efficient. Indeed, the phase field function is defined on the whole physical domain,
and it changes rapidly only near the transition layer around the membrane surface
(the zero level set of the phase field function). Hence, uniform computational grids are
generally not optimal, and it is natural to consider the application of adaptive finite
element methods based on a posteriori error estimators [2, 3, 50]. We anticipate that
adaptivity based on effective error estimations could make the phase field simulation
much more efficient computationally and yet retain the advantage of being able to
avoid the explicit tracking of the interfaces. This is indeed confirmed by the present
work.

In the adaptive method presented in this paper, a mixed finite element method
(FEM) is used to discretize the phase field bending elasticity model. A residual-
type a posteriori error estimator is derived for the development of the adaptive FEM
algorithm. Effectively, the nodes of the adaptive mesh are concentrated near the
interface (the membrane surface) so that the number of nodes is significantly reduced
compared with the number of nodes in the uniform mesh cases, while the resolution
of the numerical resolution of the adaptive FEM remains at the same level. These
numerical results reveal the great potential of using the adaptive FEM to significantly
reduce the computational cost of phase field approaches.

Detailed descriptions, analysis, and numerical examples of our adaptive FEM
approach are presented in the rest of the paper as follows: in section 2, a brief intro-
duction is given to the phase field bending elasticity model for the vesicle membrane
problem. In section 3, we set up a finite element discretization for the model based
on a mixed formulation. In section 4, we derive some a posteriori error estimators.
In section 5, an adaptive algorithm is outlined along with discussions on other imple-
mentation issues involved. In section 6, numerical examples are presented, and finally,
in section 7, some concluding remarks are given.

2. The phase field bending elasticity model. As in [22, 23], we introduce a
phase function φ = φ(x) defined on the physical (computational) domain Ω, which is
used to label the inside and the outside of the vesicle Γ. The level set {x : φ(x) = 0}
gives the membrane surface Γ, while {x : φ(x) > 0} represents the outside of the
membrane and {x : φ(x) < 0} the inside. The original elastic bending energy model



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1636 QIANG DU AND JIAN ZHANG

consists of minimizing (1.1) among all surfaces with specified surface area and enclosed
volume.

Define the following modified elastic energy:

E(φ) =

∫
Ω

kε

2

(
�φ− 1

ε2
(φ2 − 1)φ

)2

dx,(2.1)

where ε is a transition parameter which is taken to be very small compared to the
size of the vesicle. In our numerical examples, ε varies in the same range of that in
[23], that is, taking values generally about 1/40 to 1/200 of the size of Ω to ensure a
sufficient level of resolution of the interface and the phase field solution profile.

For a minimizer φ of E(φ), it has been shown that

H(φ) = ε

(
�φ− 1

ε2
(φ2 − 1)φ

)

is the phase field approximation of the mean curvature H of the interface, which
behaves like a measure concentrated in the diffuse interfacial layer of the zero level
set of φ as ε goes to zero [23, 25]. Notice that the definition of E(φ) is

E(φ) =
1

ε

∫
Ω

k

2
H2(φ)dx,

with the normalizing factor 1/ε accounting for the contribution due to the diffuse
interfacial layer. The phase field bending elasticity model is then given by minimizing
the above energy E(φ) subject to prescribed values of

A(φ) =

∫
Ω

φ(x)dx and B(φ) =

∫
Ω

[
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

]
dx .(2.2)

Intuitively, it is insightful to consider a special phase field function of the form

φ(x) = tanh(d(x,Γ)√
2ε

), where d(x,Γ) is the signed distance from a point x ∈ Ω to the

surface Γ; the geometric meanings of the energy E and the constraints (2.2) would
then become clear. More rigorously, the existence of the minimizer to E(φ) subject to
prescribed A(φ) and B(φ) has been established in [25]. Moreover, it has been shown
in [19, 51] that under some general ansatz assumptions, as ε → 0, the minimum of the
phase field energy E(φ) with the specified constraints approaches to the minimum of
the original energy (1.1), with A(φ) approaching the difference of the outside volume
and the inside volume of the membrane surface and B(φ) approaching to 2

√
2/3

times the surface area of Γ. The previously developed finite difference, finite element,
and spectral methods in [22, 23, 25, 26] are based on the above phase field bending
elasticity model. Some convergence analysis and a priori error estimates have been
given in [25, 26].

3. The finite element discretization. The variational phase field bending
elasticity model described in the previous section is conveniently stated as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg min
φ

E(φ) =

∫
Ω

kε

2

[
�φ− 1

ε2
(φ2 − 1)φ

]2
dx,

A(φ) =

∫
Ω

φdx = α,

B(φ) =

∫
Ω

[
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

]
dx = β,

φ|∂Ω = 1,

(3.1)
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where α and β are given constants, and Ω = [−1, 1]3. The well-posedness of the above
problem can be found in [19, 25]. The consistency to the original bending elasticity
model when ε → 0 has also been examined in [19, 51].

To deal with the nonlinear constraints, a penalty formulation can be used. Let

G(φ) = E(φ) + M1[A(φ) − α]2 + M2[B(φ) − β]2,

where M1 and M2 are penalty constants, and let us introduce

λM (φ) = 2M1[A(φ) − α] , μM (φ) = 2M2[B(φ) − β] .

As the penalty constants M1 and M2 go to infinity, the minimizer of G goes to
the solution of the constrained problem, and λM and μM converge to the Lagrange
multipliers [22, 25]. For the sake of simplicity, we denote them by λ and μ in the
analysis. In the simulations, M1 and M2 are taken to be fixed large numbers that
assure the convergence of the Lagrange multipliers to within the given numerical
accuracy.

To derive the mixed weak formulation [26], we introduce a function f as

f =
√
kε

[
�φ− 1

ε2
(φ2 − 1)φ

]
.

We note that f is a scaled phase field approximation of the mean curvature, and
for small ε other boundary conditions such as the homogeneous Neumann boundary
condition on φ may also be used.

Multiplying the equation for f by a test function w ∈ H1
0 (Ω) and integrating over

Ω, after integration by parts, we get

∫
Ω

fwdx = −
√
kε

∫
Ω

[
∇φ · ∇w +

1

ε2
(φ2 − 1)φw

]
dx

for any w ∈ H1
0 (Ω). Note that the boundary condition φ = 1 is imposed.

Taking the variational derivative of the energy functional, we get

−
√
kε

∫
Ω

[
∇f · ∇v +

1

ε2
f(3φ2 − 1)v

]
dx +

∫
Ω

(
λ− μ

√
ε

k
f

)
vdx = 0

for any v ∈ H1(Ω). Given any spatial region D ⊆ Ω, let

(u, v)D =

∫
D

uvdx, ‖u‖D = (u, u)
1/2
D

denote the standard L2 inner product and the L2 norm on D, respectively, and

〈∇u,∇v〉D =

∫
D

∇u · ∇vdx .
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1638 QIANG DU AND JIAN ZHANG

Let us define

H = H1(Ω) ×H1(Ω) and H0 = H1(Ω) ×H1
0 (Ω).

The weak form of our problem (3.1) is to find (f, φ) with (f, φ − 1) ∈ H0 such
that, for all (v, w) ∈ H0, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
√
kε

[
〈∇f,∇v〉Ω +

1

ε2
(
f(3φ2 − 1), v

)
Ω

]
+ λ(1, v)Ω

−μ

√
ε

k
(f, v)Ω = 0,

√
kε

[
〈∇φ,∇w〉Ω +

1

ε2
(
(φ2 − 1)φ,w

)
Ω

]
+ (f, w)Ω = 0 .

(3.2)

The above weak form leads naturally to a mixed FEM for its numerical solution [26].
Define the operator F : H → L(H0, R

2) by

F (f, φ)(v, w)

=

(
−
√
kε

[
〈∇f,∇v〉Ω +

1

ε2
(
f(3φ2 − 1), v

)
Ω

]

+λ(1, v)Ω − μ

√
ε

k
(f, v)Ω,

W

[√
kε

(
〈∇φ,∇w〉Ω +

1

ε2
(
(φ2 − 1)φ,w

)
Ω

)
+ (f, w)Ω

])T

,

where W is a weight constant to be determined in simulations. Now the problem
becomes that of solving

F (f, φ) = 0(3.3)

in an abstract form, together with the boundary conditions.
To construct the finite element approximation to the mixed formulation, we take

the discrete function space as

Vh = Wh = {v ∈ C0(Ω) ∩H1(Ω) | v|K ∈ P1(K) ∀K ∈ Jh},

where Jh is a triangulation of Ω consisting of tetrahedra K, whose diameters hK are
bounded above by h = maxK∈Jh

hK , and P1(K) denotes the linear function space on
element K. The mesh is assumed to be regular so that the standard minimum angle
condition is satisfied and the number of adjacent elements to any given element is
bounded independently of h. We also assume that the family Jh is uniformly regular
so that for any K ∈ Jh the ratio of the diameter of K and the diameter of the largest
ball enclosed in K is uniformly bounded from above by a constant independent of h.
The detailed adaptive construction of Jh will be described later in the paper. Now,
let

Xh = Vh ×Wh and X0
h = V 0

h ×Wh,
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where

V 0
h = W 0

h = {v | v ∈ Vh, v|∂Ω = 0}.

For the trial solution (fh, φh − 1) ∈ X0
h satisfying the boundary conditions and the

test function (vh, wh) ∈ X0
h, we define the discrete version of F :

Fh(fh, φh)(vh, wh) = F (fh, φh)(vh, wh).

Hence the discrete problem is to solve

Fh(fh, φh) = 0.(3.4)

The solutions of (3.3) and (3.4) depend on the parameters α and β. By normalization,
we may always take β = 1(some constant surface area); then the solution of (3.3) may
be viewed as a solution branch of

F (α;x) = 0.

The basic mathematical analysis of the discretized system (such as the existence of
solutions and an a priori error estimate, specialized to a piecewise linear element) has
been made in [26]. In particular, if there exists a C1 branch {α, x(α)} of nonsingular
solutions of the nonlinear variational problem (3.3) for α ∈ Λ which is a compact
interval in R, then for small h there is a unique branch {α, xh(α)} of solutions of
(3.4) converging to {α, x(α)}. Moreover, if α → x(α) is a C1 function from Λ into
H ∩ (H2(Ω) ×H2(Ω)), we have the optimal order a priori error estimate

‖x(α) − xh(α)‖H ≤ Ch,

where C is a constant independent of h.
While the a priori error analysis can offer theoretical assurance on the convergence

of the finite element methods as the mesh size gets smaller and smaller, to implement
an adaptive strategy for the finite element approximations, we need a posteriori error
estimators. We choose to work with residual-type estimators which are derived in the
next section.

4. A posteriori error estimate. Adaptive methods often lead to efficient dis-
cretization to problems with solutions that are singular or have large variations in
small scales. In phase field models, the sharp interface of physical quantities is re-
placed by regularized phase field functions. However, for a small interfacial width
constant ε, the phase field solutions may display large gradients within the diffusive
interfacial region. Thus, adaptivity in the form of mesh refinement and coarsening
as well as mesh transformation can greatly improve the efficiency of the numerical
approximations of phase field models [10, 27, 37, 44]. A posteriori error estimators
are key ingredients in the design of adaptive methods [3]. There have been many
existing studies on deriving such estimators for the finite element approximation of
linear and nonlinear variational problems and for standard Galerkin and mixed finite
element formulations; see, for example, [1, 8, 45, 50], and the references cited therein.

Let x0 = (f0, φ0) be a solution of a nonlinear operator equation F (x0) = 0. We
call x0 a regular solution if the Frechet derivative DF (x0) is well defined and is a
linear homeomorphism; that is, DF (x0) and its inverse are bijective and continuous
linear operators. First, using the abstract approximation results from [50] (see also
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[7], and particular applications to Ginzburg–Landau-type models [16], and the phase
field bending elasticity model of vesicle membranes presented in [26]), we immediately
get the following.

Proposition 4.1 (see [50]). Let H∗
0 = L(H0, R

2) and F ∈ C1(H,H∗
0). Let x0 be

a regular solution of F (x) = 0 with Z = ||DF (x0)||L(H0,H∗
0) and Ẑ = ||DF (x0)

−1||L(H∗
0 ,H0).

Assume, in addition, that DF is Lipschitz continuous at x0 with a constant γ > 0,
i.e., there is a M0 such that

γ := sup
||x−x0||H<M0

||DF (x) −DF (x0)||L(H0,H∗
0)

||x− x0||H
< ∞.

Set

M := min{M0, γ
−1Ẑ−1, 2γ−1Z}.

Then, for all x ∈ H with ||x− x0||H < M .

1

2Z
||F (x)||H∗

0
≤ ||x− x0||H ≤ 2Ẑ||F (x)||H∗

0
.(4.1)

To apply the above framework to our problem, one relevant issue is how the
various constants γ, Z, Ẑ, and M depend on ε. We note that obtaining a very precise
dependence in general is very difficult, and it remains largely as an open problem
due to the nonlinear nature of the problem (see [29, 39, 42] for related discussion).
Some crude estimates can be obtained, for example, by noticing that for given f0, φ0

the components of the vector-valued operator DF (f0, φ0) contain typical terms like
−
√
kε(Δ + 1

ε2 (3φ2
0 − 1)I). It is then reasonable to take a typical tanh profile for φ0

based on the earlier sharp interface limit analysis in [19] and to get estimates on the
spectra of such operators. Similarly, one can estimate the Lipschitz constant γ. These
estimates, however, are not sharp in general, and future studies are obviously needed
to examine such dependence more carefully.

We now continue to derive a posteriori error estimators. Let xh = (fh, φh) be a
solution of Fh(xh) = 0 and Rh be a restriction or projection operator from H to the
finite element space. For y ∈ H0, by Galerkin orthogonality

Fh(xh)Rhy = 0.

Hence

F (xh)y = Fh(xh)y = F (xh)(y −Rhy).

Specifically, let Rh = [Ih, Ih], where Ih denotes the Clement interpolation [13]. We
first note that, for a given element K and a given edge e defined by the triangulation
Jh, the operator Ih has the following properties:

||u− Ihu||K ≤ ChK ||∇u||N(K)

and

||u− Ihu||L2(e) ≤ Ch
1
2
e ||∇u||N(e),

where N(K) denotes the union of K and its neighbor elements and N(e) denotes the
union of elements that have e as a face.
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Next, we have

||F (fh, φh)(v, w)|| = ||F (fh, φh)(v − Ihv, w − Ihw)||

=

{[
−
√
kε
∑
K

〈∇fh,∇(v − Ihv)〉K

+
∑
K

([
−
√
k

ε3/2
fh(3φ2

h − 1) + λ− μ

√
ε

k
fh

]
, v − Ihv

)
K

]2

+W 2

[
√
kε
∑
K

〈∇φh,∇(w − Ihw)〉K

+
∑
K

([
f +

√
k

ε3/2
(φ2

h − 1)φh

]
, w − Ihw

)
K

]2⎫⎬
⎭

1
2

≤ C

{[
√
kε
∑
e⊂Ω

h
1
2
e |e|

1
2

∣∣∣∣
[
∂fh
∂n

]
e

∣∣∣∣ ||∇v||N(e)

+
∑
K

hK

∣∣∣∣∣
∣∣∣∣∣λ−

√
k

ε3/2
fh(3φ2

h − 1) − μ

√
ε

k
fh

∣∣∣∣∣
∣∣∣∣∣
K

||∇v‖N(K)

]2

+W 2

[
√
kε
∑
e⊂Ω

h
1
2
e |e|

1
2

∣∣∣∣
[
∂φh

∂n

]
e

∣∣∣∣ ||∇w||N(e)

+
∑
K

hK

∣∣∣∣∣
∣∣∣∣∣fh +

√
k

ε3/2
(φ2

h − 1)φh

∣∣∣∣∣
∣∣∣∣∣
K

||∇w‖N(K)

]2⎫⎬
⎭

1
2

.

Let

ηK =

⎧⎪⎨
⎪⎩
⎡
⎣C1

√
kε
∑

e⊂Ω∩K

h
1
2
e |e|

1
2

∣∣∣∣
[
∂fh
∂n

]
e

∣∣∣∣+ hK

∥∥∥∥∥λ−
√
k

ε3/2
fh(3φ2

h − 1) − μ

√
ε

k
fh

∥∥∥∥∥
K

⎤
⎦

2

+W 2

⎡
⎣C2

√
kε
∑

e⊂Ω∩K

h
1
2
e |e|

1
2

∣∣∣∣
[
∂φh

∂n

]
e

∣∣∣∣+ C3hK

∥∥∥∥∥fh +

√
k

ε3/2
(φ2

h − 1)φh

∥∥∥∥∥
K

⎤
⎦

2
⎫⎪⎬
⎪⎭

1
2

,(4.2)

where C1, C2, and C3 are weights depending on constants in the interpolation in-
equalities. Without loss of generality, we simply take them to be 1, and the choice of
the weight W used in the simulations is described later. We have

‖F (fh, φh)‖L(H0,R2) ≤ C

{∑
K

η2
K

} 1
2

.

Applying Proposition 4.1, we get

‖(fh, φh) − (f0, φ0)‖H ≤ C

{∑
K

η2
K

} 1
2

.(4.3)

We would like to point out that the constant C depends on ε through Ẑ.
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Let us now derive the following estimate.
Lemma 4.1. Let ηK be defined as in (4.2) and (fh, φh) be a solution of Fh(fh, φh) =

0. Then {∑
K

η2
K

} 1
2

≤ Cε||F (fh, φh)||L(H0,R2).

Proof. Let xh = (fh, φh) denote a solution to the discrete problem, and let F1

and F2 denote the components of F , that is,

F (f, φ)(v, w) = (F1(f, φ)v, F2(f, φ)w)
T
.

Let

g = λ(φh) −
√
k

ε3/2
fh(3φ2

h − 1) − μ(φh)

√
ε

k
fh.

For an element K, let vK denote the element-bubble function given by

vK = 256ψ1ψ2ψ3ψ4,

where {ψi}4
1 are the nodal basis functions on K. Since g is a polynomial of degree 3

in K,

||g||2K ≤ C

∫
K

g2vKdK = CF1(xh)(gvK).(4.4)

Notice that gvK is a polynomial of degree 7 and vK has maximum value 1, so we have

||gvK ||H1(K) ≤ Ch−1
K ||g||K .(4.5)

Multiplying (4.4) and (4.5), we get

hK ||g||K ≤ C||gvk||−1
H1(K)F1(xh)(gvK).(4.6)

For an internal face e = K ∩K ′, let

ge =

∣∣∣∣
[
∂fh
∂n

]
e

∣∣∣∣ ,
and denote the face-bubble function by

ve = 27ψ1ψ2ψ3,

where {ψi}3
1 are the nodal basis functions of K corresponding to the 3 nodes on the

face e; then

F1(xh)(geve) = −
√
kε

∫
K∪K′

∇fh · ge∇vedx +

∫
K∪K′

ggevedx .

Hence,

√
kεg2

e ||ve||L1(e) ≤ ge|F1(xh)(ve)| + ge||g||K ||ve||K + ge||g||K′ ||ve||K′ .
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Let |e| be the area of e. The face-bubble function ve has the following properties:

||ve||L1(e) ∼ |e|,
||ve||K ≤ C(hK |e|) 1

2 ,

||ve||H1(K) ≤ Ch
− 1

2

K |e| 12 .

Notice that F1(f, φ)(·) is a linear operator; we can choose the sign of ve such that
|F1(xh)ve| = F1(xh)ve. Together with (4.6) and the fact that the size of adjacent
elements does not change rapidly, these give us

√
kεh

1
2

K |e| 12
∣∣∣∣
[
∂fh
∂n

]
e

∣∣∣∣ ≤ C
{
||ve||−1

H1(K)F1(xh)(ve)

+||gvK ||−1
H1(K)F1(xh)(gvK)

+||gvK′ ||−1
H1(K′)F1(xh)(gvK′)

}
.

Let

ue =
ve

||ve||H1(K)
+

gvK
||gvK ||H1(K)

+
gvK′

||gvK′ ||H1(K′)
.

We have

√
kεh

1
2

K |e| 12
∣∣∣∣
[
∂fh
∂n

]
e

∣∣∣∣ ≤ CF1(xh)ue.

Estimation of the other two terms of ηK can be obtained similarly. Hence for every
element K, we can find yK = (uK , wK) ∈ H0 such that

0 ≤ ηK ≤ C(F1(xh)uK+F2(xh)wK), ||yK ||H0
= 1, and supp(uK , wK) ⊂ N(K) .

Let

aK =
ηK√∑
K η2

K

, y = (u,w) =
∑
K

aKyK .

Then

{∑
K

η2
K

} 1
2

=
∑
K

aKηK

≤ C(F1(xh)u + F2(xh)w)

≤ C||y||H0 ||F (xh)||L(H0,R2).

Since the support of yK ’s only overlaps with that of the adjacent ones, we get

||y||H0 ≤ C

(∑
K

a2
K ||yK ||2H0

) 1
2

= C.

This completes the proof of Lemma 4.1.
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Combining Proposition 4.1 and Lemma 4.1, we get the following theorem.
Theorem 4.1. Let H∗

0 = L(H0, R
2) and F ∈ C1(H,H∗

0). Let x0 be a regular
solution of F (x) = 0 with Z = ||DF (x0)||L(H0,H∗

0) and Ẑ = ||DF (x0)
−1||L(H∗

0 ,H0).
Assume, in addition, that DF is Lipschitz continuous at x0 with a constant γ > 0,
i.e., there is a M0 such that

γ := sup
||x−x0||H<M0

||DF (x) −DF (x0)||L(H0,H∗
0)

||x− x0||H
< ∞.

Set

M := min{M0, γ
−1Ẑ−1, 2γ−1Z}.

Let xh = (fh, φh) be the finite element solution to Fh(xh) = 0. There exist positive
constants M , Cupper, and Clower, depending on γ and x0, such that, when h is small
enough and ||x0 − xh||H < M , we have

Clower

{∑
K

η2
K

} 1
2

≤ ||x0 − xh||H ≤ Cupper

{∑
K

η2
K

} 1
2

,(4.7)

where ηK ’s are defined as in (4.2).
The above theoretical analysis is used to guide us in the design of effective adaptive

algorithms based on the a posteriori error estimator. A few comments are in order:
as mentioned earlier, notice that the constants M , γ, Cupper, and Clower depend

on ε since the constants γ, Z = ||DF (x0)||, and Ẑ = ||DF (x0)
−1|| have such a

dependence. Some of these constants rely on a priori information and may not be
easily computable; we thus cannot completely assure the reliability and efficiency
of the a posteriori error bounds theoretically, though such an issue is typical for
many nonlinear variational problems [9] except in some limited cases [54]. Also, the
condition ||xh − x0|| < M is satisfied only when h is small enough which may again,
theoretically speaking, require a prohibitively small h, especially in comparison to
ε. In addition, with possibly different constants for the lower and upper bounds in
(4.7), the error estimator {

∑
K η2

K} 1
2 may not be asymptotically exact in theory [50].

Nevertheless, our numerical experiments demonstrate that a very effective adaptive
algorithm can be implemented for the phase field simulation based on the a posteriori
error estimator {

∑
K η2

K} 1
2 as defined by (4.2).

The details are to be described in the rest of the paper.

5. Adaptive algorithm. From a practical point of view the most interesting
objects of the phase field models are related to a narrow transition region near the
zero level set of the phase field function, which in our case provides information on the
deformed membranes (as well as information on the interactions with external fields
where they are present). It is thus easily concluded that some adaptive algorithms
may lead to more efficient numerical schemes. We now discuss an adaptive FEM for
the phase field bending elasticity model.

The common objective of an adaptive FEM is to generate a mesh which is adapted
to the problem such that the error between the finite element solution and the exact
solution is within the given error tolerance. Using {Mj}j≥0 to represent the various
level of meshes generated from the refinement and coarsening procedure, a description
of the general adaptive algorithm is outlined below.
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Algorithm 5.1. (Adaptive FEM).
Start with mesh M0 and error tolerance tol

set j := 0; η := tol + 1
while η > tol, do

solve the discrete problem on Mj

compute local error indicators η
K

and global error estimator η
if η > tol

mark elements of Mj for refinement or coarsening
update Mj to get Mj+1 and set j := j + 1

end if
end while.

Naturally, the objective of the marking strategy to be implemented in the above
algorithm is to produce an efficient mesh. This is understood generally in the sense
that one should provide more degrees of freedom where the error is big and less where
the error is small. For linear elliptic problems, adaptive FEM often generates a quasi-
optimal mesh with nearly equidistributed local errors, but, for nonlinear problems, the
lack of resolution of the solution on coarse meshes may lead to some local refinement
which is not needed for the final solution, and the mesh could be coarsened again.
In the numerical implementation, we use the following marking strategy (where N
denotes the number of elements of the current mesh and η is the total error).

Algorithm 5.2. (Marking strategy).
Start with given parameters refine factor > 1 and coarsen factor < 1
for all element K do

if η
K
> η√

N
∗ refine factor

mark K for refinement
end if
if η

K
< η√

N
∗ coarsen factor

mark K for coarsening
end if

end for.
In our simulations refine factor = 1.4 and coarsen factor = 0.7. We would like

to mention that, during the mesh-updating procedure, elements marked for coarsening
are actually coarsened only when the resulting mesh is still conforming. Since the
variational problem considered here involves very complex nonlinearities, we next
discuss some practical issues encountered in the implementation.

On a given mesh, the minimization of G is carried out using a gradient flow
approach [22, 25]. Given φn and a step size Δtn, the minimizer φn+1 of

1

2

||φn+1 − φn||2
Δtn

+ G(φn+1)(5.1)

satisfies

φn+1 − φn

Δtn
+

δG

δφ
(φn+1) = 0,

which is the backward Euler scheme of the gradient flow equation

∂φ

∂t
= −δG

δφ
.

Given an initial guess, as t → ∞, the dynamic solutions {φ(t)} converge to a steady
state which is a critical point of the energy G [4, 15, 35]. The solution of (5.1) at each
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step is obtained using the nonlinear conjugate gradient (NCG) method. We adjust
the time step Δtn so that the NCG method converges in 8–15 steps. This allows
efficient computation at each time step without the assembly of Hessian matrices.
Several other nonlinear solvers can also be considered, such as the built-in Newton
solver in ALBERTA [31], BFGS-type methods and augmented Lagrange multipliers
[28], multigrid methods [30, 33], and other time-stepping schemes like the second order
scheme in [25] and operator splitting schemes [4].

6. Numerical examples. We now present some numerical examples. Our ob-
jectives here are mainly to illustrate the effectiveness of the adaptive methods; thus,
most of the computed vesicle shapes are ones which have also been computed by other
methods as well [14, 22, 23, 28, 32, 41, 47, 53]. We let the computational domain be
[−1, 1]3 and for simplicity, let the elastic bending rigidity be k = 1. The mesh refine-
ment and coarsening procedure is implemented with the help of the adaptive FEM
toolbox ALBERTA [31].

In the experiments, the weight W in (4.2) is set to be W = 100. To illustrate how
this weight is chosen, we first calculate the error estimators for a sphere using a tanh

profile. That is, let φ = tanh( |x|−R√
2ε

), and start from its finite element approximation

(interpolation) on a uniform initial mesh, we refine several times according to the
error estimators and then calculate the percentage of the two terms in (4.2). We
conduct several experiments with the radius R = 0.8, 0.5, 0.2 and ε = 0.03, 0.02,
0.01, respectively. It is found that, when W = 1, the first term contributes to about
98% of the total error estimate for all nine cases. Thus, a choice of W = 100 leads
to a balance of the two error components. Of course, the tanh function only gives a
typical asymptotic profile [19] that provides us some hints on the possible scales of
the terms in the error estimator. To validate this choice of weight W in our numerical
simulations, a series of tests on numerical solutions are performed for ε = 0.048 with
W ranging from 0.01 to 10, 000. The solution is taken to be an axis-symmetric disc,
and the mesh density over the cross section x2 = 0 is shown in Figure 6.1, from left to
right, for W = 0.01, W = 100, and W = 10, 000, respectively. The case of W = 100
tends to give a more reasonable mesh distribution. Moreover, the simulation results
again show that the choice of W = 100 makes the corresponding two terms in the error
estimator have comparable magnitude. It turns out that the same can be verified for
the other simulations presented in this paper.

The transition width parameter ε is often assigned several different values in the
range of 0.01 to 0.05 so that the results can be compared to ensure the fidelity of the
phase field approximation to the sharp surface model [19, 23]. However, to save space,

Fig. 6.1. Mesh density on cross section x2 = 0 for W = 0.01, W = 100, and W = 10,000.
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most of the results shown here are for the case of ε = 0.03. Making further reduction
in ε would not affect the results of the numerically simulated vesicle membrane shapes,
although the level of adaptivity will certainly be influenced. Such dependence will be
examined in more detail later, and the related analysis also serves to quantitatively
measure the effectiveness of the adaptivity algorithm.

Simulating a solution branch with changing excess area. In the membrane simu-
lation community, the excess area of a compact surface Γ is defined as the difference
between its area and the area of the sphere having the same volume as that enclosed
by Γ, motivated by the fact that the surface with minimum surface area with a given
volume is necessarily a sphere. It is known that, for a range of the excess area, a
continuous solution branch of energy-minimizing shapes exists, and it undergoes the
deformation from a more elliptical shape to that of the discocytes (biconcave shape).
We first used our adaptive algorithms to calculate such a solution branch.

Let us take a three-dimensional ellipsoid

x2
1

a2
+

x2
2

a2
+

(bx3)
2

a2
= 1

as the initial membrane surface, which in general is not energy-minimizing. The initial
value of the phase field function φ is assigned according to the formula

φ0(x) = tanh

(
d(x)√

2ε

)
,

where d(x) is the distance from x = (x1, x2, x3) to the membrane surface.
Since we are mostly interested in the shape of the energy-minimizing surface, the

initial value of φ does not have to accurately fit the constraints nor have a good tanh
profile. Thus, in our experiments, d(x) is calculated approximately using

d(x) ∼
√
x2

1 + x2
2 + (bx3)2 − a .(6.1)

We let a = 0.6; the constraints on volume and surface area are chosen by setting
α = A(φ0), and β = B(φ0) for different values of b. Beginning with an uniform mesh
with 173 nodes, we refine the mesh several times according to the error estimator
calculated using φ0 to get the initial mesh, so that α and β provide accurate values
of the volume and surface area for the associated level surface.

We have also made various selections of the penalty constants M1 and M2. Based
on the experiments, we find that it is adequate to choose the penalty constants M1 =
100 and M2 = 10, 000, respectively. With this choice, the volume and surface area
constraints are satisfied with less than 0.5% error, and the convergence of the Lagrange
multipliers can also be observed.

Table 6.1 provides the numerical estimates to the constraints and the energy
values corresponding to the minimizing shapes for different values of b. We can scale
the volume of the membrane to be of unit volume since the bending energy is scale
invariant. With such a scaling, the rescaled surface areas (denoted by Area1) are
calculated, and they are naturally linked to the so-called excess areas described earlier,
so that for larger values of b, we have larger excess areas. The results of Table 6.1
illustrate quantitatively the dependence of the minimum energy with respect to the
excess area.

In Figures 6.2–6.4, the energy-minimizing membrane shapes (obtained by the zero
level sets of the phase field functions) are shown, along with some density plots of
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Table 6.1

Values of volume, area, rescaled area, and energy.

b α β Volume Area Area1 Energy

1.6 6.8253 3.4548 0.5873 3.6644 5.23 30.27
1.8 6.9559 3.3367 0.5221 3.5391 5.46 33.79
2.0 7.0596 3.2840 0.4702 3.4832 5.76 38.19
2.2 7.1470 3.2399 0.4265 3.4364 6.06 42.34
2.4 7.2175 3.2333 0.3912 3.4294 6.41 45.96
2.6 7.2772 3.2663 0.3614 3.4644 6.83 51.27

Fig. 6.2. Solution and mesh density for b = 1.8.

the cross sections of the phase field functions (the red color symbolizes φ = 1 in the
exterior of the membrane, while the blue color shows φ = −1 inside the membrane).
The three-dimensional sliced views of the densities of the corresponding adaptive
meshes are provided (with the red color showing the most refined, or densely packed,
meshing region and the blue color for the coarsest meshes; note the difference in
the color coding for the solution profile and the mesh density distribution). The
deformation to the discocytes for larger values of b is clearly seen from these figures.
To get some ideas on what the actual phase field functions look like (not only their
zero level set), Figure 6.5 shows the profile of φ and mesh density on cross sections
z = 0 and y = 0 when b = 2.6. For a better view, the profiles of −φ are plotted
instead. Figure 6.6 shows the profile of φ and mesh density for the same solution but
with ε = 0.01. It is clear that the profile is well resolved by the adaptive scheme.

We would like to comment on the dependence of the mesh on the curvature of
the solution. First, on a heuristic ground, the membrane curvature should play a
role in dictating the local mesh refinement, and the impact of the curvature with
respect to the resolution of the phase field is affected by the choice of W , as we see in
Figure 6.1. When W = 100, the magnitude of the two terms are comparable (in this
case about 2:3 for both ε = 0.03 and ε = 0.01). In both Figures 6.5 and 6.6, the mesh
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Fig. 6.3. Solution and mesh density for b = 2.2.

Fig. 6.4. Solution and mesh density for b = 2.6.

density at the two ends is a little higher than that in the middle. To get a better view
of the local mesh refinement we zoomed in the upper left of the mesh density and
plotted it in Figure 6.7. The effect of curvature can also be seen clearly in another
simulation. Figure 6.8 shows a stomacytes-shaped energy-minimizing surface and the
corresponding mesh density over a cross section where there is a bigger concentration
of mesh points in the large curvature region near the axis.
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Fig. 6.5. Profile and mesh of solution for b = 2.6 and ε = 0.03.

Fig. 6.6. Profile and mesh of solution for b = 2.6 and ε = 0.01.
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Fig. 6.7. An enlarged view of the upper left part of the mesh density plot in Figure 6.6.

Fig. 6.8. A stomacytes-shaped solution and the mesh density.

Table 6.2

Number of nodes and estimated error.

Number of nodes (N) 45,166 63,113 81,603 112,425 140,007 302,107
Estimated error (E) 464.40 413.88 367.43 317.23 277.68 192.60

Quantitative measures for the efficiency of the adaptive scheme. In many simple
contexts, the efficiency of the adaptive method is often illustrated by testing against
a known exact solution, and the number of the total degrees of freedom used in the
simulation against a certain error tolerance level are compared as a measure for the
effectiveness of adaptivity. For our problem, however, the exact solutions in general
are not easy to obtain.

We designed two series of simulations to address this issue.
First, we take the solution shown in Figure 6.8, fix ε, and solve for the same energy-

minimizing surface using more and more nodes. Instead of studying the relation
between the error and the mesh size, we studied the relation between the total number
of nodes and the error for the reason that the sizes of the elements vary in an adaptive
mesh. Table 6.2 shows the number of nodes and the estimated errors.

We speculate that, for the estimated error E, a relation to the number of nodes
like

log(E) ∼ C + δ log(N)

may be expected. A linear regression can then be used to estimate C and δ. The
estimated error and the fitted line are shown in Figure 6.9.

This result shows that the estimated error is on the order of N−0.4723, which
is close to the N−1/2 as projected by theory: since we are using isotropic elements,
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Fig. 6.9. Number of nodes vs. estimated error.

Table 6.3

Number of nodes and norms of the differences in solutions.

Number of nodes (N) 45,166 63,113 81,603 112,425 140,007

H1 norm of fi − f0 481.0800 399.4072 338.0796 265.6828 217.7660

H1 norm of φi − φ0 5.7128 4.3948 3.4876 2.7824 2.3988

an almost uniformly structured fine mesh may be expected near the membrane; in
this case we should expect the estimated error to be on the order of N−1/2 so that
the complexity of the three-dimensional (3D) adaptive FEM is comparable with a
2D uniform mesh. Of course, in the numerical simulations, as shown earlier, the
curvature of the membrane still plays a role in dictating the mesh refinement, so that
the adaptive mesh in general does not always have the same structure over the whole
membrane, thus leading to small variations to the projected order.

Next, the relation between the actual H1 error and N is provided. The difficulty
in getting such a relation is that the actual H1 error is unknown since no exact solution
is available. We first decide to use the solution on the finest mesh as an approximation
to the exact solution and compute the differences of the other solutions with it. Table
6.3 shows the H1 norm of the differences.

In Table 6.3, f0 and φ0 denote the solution of the mesh with 302,107 nodes. Since
the error of the solution at the finest level cannot really be ignored, we check to see
if asymptotically we have the following dependence:

||fi − f0||H1 + ||φi − φ0||H1 ∼
(

1

Ni
− 1

N0

)1/2

,(6.2)

where N0 = 302,107 is the number of nodes of the finest mesh. The ratios of the left-
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Table 6.4

Ratios between left-hand side and right-hand side in (6.2).

Number of nodes (N) 45,166 63,113 81,603 112,425 140,007

ratio / 105 1.1218 1.1406 1.1421 1.1360 1.1246

hand side and the right-hand side of (6.2) are shown in Table 6.4, which indicates that
(6.2) is a good match of the simulation results with the predicted behavior. Notice
that, if we take N0 to infinity so that (f0, φ0) approaches the exact solution, we then
get an asymptotic convergence of the H1 error like ∼ N−1/2 as demonstrated for the
estimated error.

Combining the above discussions of the estimated error and the differences be-
tween numerical solutions, we see that for a given interfacial width parameter, as we
increase the level of numerical resolution, the a posteriori error estimators provided
good predictions of the quantitative behavior of the actual numerical error.

To demonstrate the efficiency of adaptive methods more quantitatively as ε gets
smaller and smaller, we borrow ideas from the asymptotic sharp interface limit of
the phase field model. By the analysis in [19] and the simulations presented earlier in
[22, 23], we see that a solution to the phase field model typically has a tanh profile and
the width of the transition layer is proportional to ε for small ε. Suppose we would
like to keep the same level of resolution within the transition layer; we expect the size
of the elements near the transition layer to be on the order of ε (we refer to [29, 39, 42]
for more detailed analysis on various numerical approximations of similar phase field
models and the dependence of the mesh size on the interfacial width for quasi-uniform
meshes). In such a case, if uniform meshes are used, the number of nodes would grow
at a rate proportional to at least ε−3 in order to maintain asymptotically the same level
of numerical resolution. For an isotropic adaptive mesh with nodes being concentrated
near the transition layer, we naturally expect the number of nodes to be proportional
to at least ε−2. Based on the above observation, we conduct another series of tests to
check the theoretical prediction. As the errors cannot be controlled exactly as desired,
we scale the number of nodes according to the estimated error under the assumption
that the estimated error of the solution is proportional to N−1/2.

We now present the results of a series of ten simulations with different ε, for
the case b = 1.6 and b = 2.4, respectively. Figure 6.10 shows the number of nodes
needed in order to achieve the same accuracy (estimated error) for different values of
ε. The blue “*” symbols are the experimental data, and the blue dashed line is the
estimated number of nodes using the formula N = Cε−2 for the case b = 1.6, while
the red “◦” symbols are experimental data, and the red solid line is the estimated N
corresponding to the case b = 2.4. The plots are in log-log scale, so that a negative
slope of −2 (for the dashed and solid lines) is expected and the actual numerical data
largely follow the same trend.

These simulation results support the theoretical prediction based on the asymp-
totic analysis and also serve as a quantitative measurement on the efficiency of the
adaptive method.

High genus energy-minimizing vesicles. We also conducted experiments with other
values of the parameters and obtained other solutions as shown in [22, 23]. Those
results are omitted here. Instead, let us briefly describe a new simulation result com-
puted with the adaptive method. Figure 6.11 shows the result of one experiment
which followed the path of four merging spheres. The transition width parameter is
taken to be ε = 0.04, the volume is constrained to be the same as the initial value,
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Fig. 6.10. Number of nodes vs. the transition width parameter ε.

Fig. 6.11. Initial surface and the energy minimizing surface with a smaller surface area.

but the area is set to be 90% of the initial value. The initial profile showing the four
small spheres appears to be less smooth, and this is due to the coarser meshes imple-
mented in the beginning of the simulation. The reason to fix a slightly reduced surface
area is to allow bigger perturbations to the initial profile and to allow the adaptive
mesh to make self-adjustment based on the resolution need. As the deformation be-
gins, meshes are adaptively refined and coarsened so that, in the end, there is very
good resolution near the equilibrium membrane surface. Topological transformation
takes place during the deformation as the spheres merge together. We note, however,
that the change of topology may lead to contributions due to the Gaussian curvature
energy whose effect has been ignored in the simulation reported here.

The simulated result not only gives evidence to the capability of the phase field
method in handling naturally the topological changes in the membranes, but it again
confirms the rich variety of the bending energy-minimizing membrane subject to the
volume and surface area constraints. We refer to [41, 47] for more discussions on this
type of non-axis-symmetric and high topological genus energy-minimizing surfaces.
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The experimental findings reported in this section are mostly designed to provide
evidence to the effectiveness of the adaptive FEM discussed in this paper. We leave
other computational results and their biological relevance to be reported in future
works.

7. Conclusion. The study of vesicle membrane deformation is receiving more
and more attention due to its fundamental importance and its close connection with
many biological functions. The variational phase field bending elasticity model of
vesicle membrane deformations has been demonstrated as an effective approach to
study the vesicle membrane deformations [22, 23]. The phase field model requires the
simulation of the phase field function in a computational domain enclosing the vesicle
membrane. Since the objects of central interest are the membranes themselves and the
phase field function also undergoes more significant variations around the membrane
surfaces, it is highly desirable to design adaptive numerical algorithms for the phase
field bending elasticity model. The three-dimensional adaptive finite element method
developed in this paper meets this need. In our adaptive method, the mesh adaptivity
is based on a residual-type a posteriori error estimator which is rigorously derived for
the associated nonlinear system of partial differential equations. The effectiveness of
the method is demonstrated through numerical simulation examples presented here
that include the simulations of known solution branches and new high genus vesicles
as well as quantitative experimental investigation on the adaptivity efficiency. This
constitutes another step forward in making the phased field modeling approach a
valuable tool for biophysicists and biologists to study interesting problems related to
lipid bilayer membranes.

The phase field bending elasticity models and simulation tools have the potential
to be very helpful in the study of the geometry, mechanics, and function of complex
lipid membrane systems. Recent extensions have been made to the study of multi-
component vesicles, vesicles with free edges [52], and membranes interacting with
background fluid flows [5, 18]. The extension of the adaptive algorithms to more
general cases and other types of error estimators as well as their applications in
multiscale modeling of bilayer vesicles and other more biologically realistic membrane
models are currently under investigation.
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