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Abstract

Algorithms have recently become prevalent in the criminal justice system.
Tools known as recidivism prediction instruments (RPIs) are being used all
over the country to assess the likelihood that a criminal defendant will reof-
fend at some point in the future. In June of 2016, researchers at ProPublica
published an analysis claiming an RPI called COMPAS was biased against
black defendants. This claim sparked a nation-wide debate as to how fairness
of an algorithm should be measured, and exposed the many ways that algo-
rithms are not necessarily fair. Algorithms are used in the criminal justice
system because they are regarded as more accurate and less biased than hu-
man predictions; however, there does not exist a contemporary comparison of
the performance of human and algorithmic recidivism predictions. To address
this, we set out to determine if COMPAS is more accurate than human pre-
diction, and to identify how the racial biases of human recidivism predictions
compare to the racial biases of the COMPAS algorithm. After establishing a
baseline performance of human prediction, we explore whether incorporating
human judgment into algorithms can enhance prediction accuracy.
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1. Introduction

With the recent rise of Big Data and the prevalence of technology in our every-

day lives, humans have become frequent subjects of algorithms. Data is col-

lected on all of us constantly, and many of our daily experiences are determined

by algorithmic systems. Some of these algorithms a↵ect our daily interactions

with technology. Spotify uses algorithms to make personalized song recom-

mendations [6]. Google builds algorithms to determine the ads that each user

sees [9]. Other algorithms a↵ect an individual’s future education or employ-

ment. An education consulting firm called Noel-Levitz provides an analytical

tool called Forecast Plus that ranks prospective students applying to a univer-

sity [31]. Workforce Ready HR screens job candidates using personality tests

to predict which individuals will perform better and which will remain with

the company for longer [31]. Many employers use automated systems to sort

through résumés and to determine optimally e�cient work schedules for their

employees [31]. Banks and online lenders have started making loan decisions

using algorithmic predictions [12]. In Washington D.C., public schools rely on

algorithmic assessment tools to identify and fire low-performing teachers [31].

Recently, algorithms have been increasingly used in the criminal justice

system. The police department of Reading, Pennsylvania, for example, uses

a crime prediction software called PredPol to predict where crime will most

likely occur in the city during each hour of the day [31]. This practice, known
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as predictive policing, occurs in various cities all over the country. In Chicago,

the police department developed technology to identify the top four hundred

people most likely to commit a violent crime in the city, ranked by the proba-

bility that they would be involved in a homicide [31]. There was even software

developed in China that claims it can predict whether someone is a criminal

based on their facial features alone [33].

Certain types of tools known as risk assessment instruments have become

particularly prevalent in the criminal justice system. Some instruments pre-

dict the likelihood that an individual will fail to appear at their court hearing

[1]. Recidivism prediction instruments (RPI’s) assess the likelihood that a de-

fendant will recidivate, defined to mean that they will reo↵end at some point

in the future. These tools use an individual’s criminal history, personal back-

ground, and demographic information to make these risk predictions. Various

risk assessment instruments are being used across the country to inform pre-

trial decisions, parole decisions, and sometimes even sentencing decisions [10].

The extensive use of this technology, however, is not without controversy.

One of the criminal risk assessment tools used across the country is COM-

PAS (Correctional O↵ender Management Profiling for Alternative Sanctions)

[5]. Built by the for-profit company Northpointe Inc.1, COMPAS has as-

sessed over 1 million o↵enders since it was developed in 1998 [30]. The RPI

component of COMPAS is called the Recidivism Risk Scale, which has been

used in COMPAS since 2000 [7]. This scale is computed from 137 questions,

1In January of 2017, Northpointe Inc. rebranded to the name “equivant” [2]. Since the
debate surrounding the COMPAS algorithm has used the name Northpointe Inc., we will
refer to the company as Northpointe in this paper.
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which are either personally answered by a defendant or are determined auto-

matically from a defendant’s criminal record [5]. According to the COMPAS

practitioner’s guide, this recidivism risk scale is built to predict “a new mis-

demeanor or felony o↵ense within two years of the COMPAS administration

date” [30].

In May of 2016, Angwin et al. at ProPublica released an analysis [5] of

the COMPAS Recidivism Risk Scale. The goal of the analysis was to assess

the accuracy of the COMPAS recidivism prediction algorithm, and to investi-

gate whether the tool was biased against any particular group. Angwin et al.

gathered data on over 7,000 individuals arrested in Broward County, Florida

during 2013 and 2014, and determined whether each individual was charged

with a new crime over the next two years [5]. Because Broward County uses

the COMPAS recidivism risk scores to determine whether a defendant should

be released or detained before their trail, ProPublica collected the COMPAS

scores given to each defendant before their trial [25]. Using this data, ProP-

ublica was able to assess the accuracy and bias of the COMPAS recidivism

risk scores.

COMPAS scores range from 1 to 10. Scores of 1-4 are labeled Low-Risk,

scores of 5-7 are labeled Medium-Risk, and scores of 8-10 are labeled High-

Risk. ProPublica considered scores higher than “Low-Risk” to indicate a risk

of recidivism [25], citing the Northpointe practitioner’s guide to COMPAS that

states, “scores in the medium and high range garner more interest from super-

vision agencies than low scores, as a low score would suggest there is little risk

of general recidivism” [30]. Therefore, ProPublica translated the COMPAS
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Individual Did Recidivate Individual Did Not Recidivate
COMPAS Predicticed

Will Recidivate
True Positive False Positive

COMPAS Predicted
Will Not Recidivate

False Negative True Negative

Table 1.1: Classification in the COMPAS binary prediction scheme.

scores into a binary prediction that a defendant would recidivate or would not

recidivate. In binary prediction circumstances, errors are classified as either

false positive errors or false negative errors. In this binary prediction scheme,

the positive prediction is that an individual will recidivate. The negative pre-

diction is that an individual will not recidivate. Therefore, a false positive

error occurs when an individual is classified by the algorithm as someone who

will recidivate, but they do not actually recidivate. A false negative error oc-

curs when an individual is predicted to not recidivate, but they do recidivate,

Table 1.1.

ProPublica was specifically interested in how the COMPAS algorithm

treated black defendants as compared to white defendants, which are the two

largest racial demographics in their data set2. They compared the accuracy of

COMPAS on the two groups, which is defined as the percentage of individuals

that COMPAS correctly classified as a recidivator or non-recidivator. They

found that COMPAS was similarly predictive for both races (66.9% accurate

for white defendants, and 63.8% accurate for black defendants) [25]. The

algorithm, however, made drastically di↵erent mistakes on each racial group.

Black defendants who did not recidivate were almost twice as likely to be

classified as recidivators compared to white defendants who did not recidivate.

251.2% of the defendants in the data set are black. 34.0% are white.
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Defendant Race Accuracy (%)
False Positive

Rate (%)
False Negative

Rate (%)

Black 63.8 44.9 28.1
White 66.9 23.5 47.7

Table 1.2: COMPAS performance by race.

Of the black defendants who did not go on to recidivate, 44.9% of them were

misclassified as recidivators. Of the white defendants who did not go on to

recidivate, only 23.5% of them were misclassified as recidivators. The opposite

is true for defendants who did go on to recidivate. Of the black defendants

who did go on to commit a new crime, 28.1% of them were misclassified

as low-risk. Of the white defendants who did commit a new crime, 47.7%

of them were misclassified as low risk. This means that white individuals

who did recidivate were almost twice as likely to be given a low risk score

compared to black individuals who did recidivate. In other words, ProPublica

found that the false positive error rate for black defendants was almost twice

as high as the false positive error rate for white defendants. Conversely, the

false negative error rate for white defendants was almost twice as high as the

false negative error rate for black defendants.

In this scenario, a false positive error is detrimental to a defendant, whereas

a false negative error is beneficial for a defendant. Being misclassified as high-

risk may result in a defendant being detained in jail before their trail, given

a higher bail, or even given a longer sentence. Being misclassified as low-

risk means that an individual may su↵er less harsh consequences. Thus, the

imbalanced false positive and false negative error rates of the COMPAS al-

gorithm are benefitting white defendants and unfairly punishing black defen-
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dants. This situation is known as disparate impact, where a penalty system

has “unintended disproportionate adverse impact on a particular group” [10].

Because black defendants were su↵ering from the COMPAS errors and white

defendants were benefitting from the COMPAS errors, ProPublica reported

that the COMPAS algorithm was biased against blacks.

In July of 2016, less than two months after ProPublica published their

critique, Northpointe responded with a 39-page rebuttal [15] to ProPublica’s

claims. Primarily, Northpointe argues that the ProPublica authors overlooked

the fact that the COMPAS risk scales satisfy predictive parity. An algorithm

satisfies predictive parity if it generates equally accurate predictions for all

groups [4]. Because COMPAS was around 60% accurate for both whites and

blacks, Northpointe argues that it was fair to both groups. This argument rests

in the belief that a recidivism prediction instrument should not be more accu-

rate for one group than it is for another. Furthermore, Northpointe defends

that COMPAS satisfies accuracy equity, which means that it can “discriminate

recidivists and non-recidivists equally well for two di↵erent groups” [15]. The

most commonly used measure of discriminative performance is the area under

the receiver operating characteristic (ROC) curve. This is known as an AUC

or AUC-ROC value, and, in this context, represents “the probability that a

randomly selected recidivist will have a higher risk score than a randomly

selected non-recidivist” [15]. AUC values of 0.70 or above are considered to

indicate satisfactory discriminative ability [7]. Northpointe reports in their

rebuttal that the AUC value for white defendants is 0.693, and the AUC value

for black defendants is 0.704. This suggests that COMPAS accomplishes satis-
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factory predictive accuracy on both white and black defendants. Additionally,

Northpointe claims that the di↵erence in these AUC values is not significant

(p=0.483). Therefore, Northpointe maintains that it can discriminate recidi-

vists from non-recidivists equally well for both black and white defendants.

Finally, Northpointe claims that equal false positive and false negative rates

are both an “unrealistic criterion” [15] as an assessment of racial bias, because

the two groups have di↵erent base rates. In other words, because a greater

percentage of black defendants in the data set recidivated compared to white

defendants (52.3% compared to 39.1%), it is unreasonable to expect the false

positive and false negative rates to be the same for both groups.

These contradictory notions of fairness sparked a nation-wide debate as to

how fairness should be measured [11, 26, 35, 3, 10, 24, 20, 17]. One paper pub-

lished in September in the journal Federal Probation defended the use of AUC

values to prove non-discrimination, citing that AUC values are the standard

measure of risk prediction performance [17]. This paper accused ProPublica

of not using the “accepted methods to assess the presence of test bias” [17]. In

October, researchers at Google proposed two criteria for measuring unfairness:

equalized odds and equalized opportunity [20]. A prediction algorithm satisfies

equalized odds if it has equal true positive rates and equal false positive rates

for each group of individuals. This criterion aligns with ProPublica’s notion

of fairness, that the types of errors made in the predictions must be equally

frequent for both white and black defendants. The requirement of equalized

opportunity assumes there is a desired outcome of the prediction algorithm,

such as being granted a loan or being accepted into a school. A binary pre-
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dictor satisfies equalized opportunity if the probability of receiving the desired

outcome (assuming one is qualified for that outcome) is independent of one’s

group membership. In the case of recidivism predictions, the desired outcome

for an individual is being rated as low-risk. Therefore, a recidivism predictor

satisfies equalized opportunity if the true negative rates are equal for both

white and black defendants. Equalized opportunity is a weaker measurement

of fairness, and may not apply well to the case of recidivism predictions, be-

cause the undesired outcome (receiving a high-risk score) can have significant

negative consequences.

Kleinberg et al. at Cornell University [24] and Chouldechova at Carnegie

Mellon University [10] independently released papers in September and Oc-

tober, respectively, arguing that the COMPAS risk scores are well-calibrated,

which is a crucial requirement for a fair algorithm. For risk scores to be well-

calibrated, each score must have the same meaning regardless of a defendant’s

race [24]. In other words, white and black defendants with the same risk

score should be equally likely to reo↵end (see Figure 1.1). This is an impor-

tant requirement of risk scores, because judges should not have to consider a

defendant’s race when interpreting their score.

Both Kleinbert et al. and Chouldechova discussed why balancing false pos-

itive and false negative rates across groups (or, achieving equalized odds) is

also a desired property of fairness. If these error rates are significantly di↵er-

ent between groups, then the predictions negatively impact one group more

than the other. However, Kleinbert et al. and Chouldechova both arrived at

an intriguing conclusion: unless two groups have equal base rates, building
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Figure 1.1: Recidivism rate by COMPAS risk score, for white and black de-
fendants. The shaded areas represent 95% confidence intervals at each value.

an algorithm that produces well-calibrated scores as well as equal false posi-

tive and false negative rates across groups is mathematically impossible3. In

the context of recidivism prediction, this means that algorithms that predict

recidivism cannot be both well-calibrated and satisfy equalized odds unless

3It is also possible to satisfy these three fairness conditions simultaneously if the algorithm
achieves perfect prediction, but this is an unreasonable expectation.
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the recidivism rate among white individuals is the same as that among black

individuals.4

Clearly, the debate sparked by ProPublica’s article exposed the lack of a

cohesive statistical definition for fairness. As Chouldechova explains, “it is

important to bear in mind that fairness itself is a social and ethical concept,

not a statistical one” [10]. All of the fairness criteria discussed have reasonable

ethical grounds to be measures of fairness. However, as Kleinbert et al. and

Chouldechova revealed, some definitions of fairness are mathematically incom-

patible. Thus, defining a cohesive definition of fairness that is mathematically

plausible may be futile.

Algorithmic predictions have become common in the criminal justice sys-

tem because they maintain a reputation of being objective and unbiased, while

human decision making is considered inherently biased and flawed. North-

pointe describes COMPAS as “an objective method of estimating the likeli-

hood of reo↵ending” [30]. The Public Safety Assessment (PSA), a pretrial risk

assessment tool developed by the Laura and John Arnold Foundation, adver-

tises itself as a tool to “provide judges with objective, data-driven, consistent

information that can inform the decisions they make” [22]. In general, people

often assume that algorithms using “big data techniques” are unbiased simply

because of the amount of data used to build them [29]. However, as the de-

bate on fairness exposed, algorithms are not necessarily fair. Thus, it may be

4Within the current criminal justice circumstance, it may be unreasonable to expect equal
recidivism rates in white and black populations in the United States. The U.S. Department
of Justice published a report in June of 2016 stating that 39.7% of white prisoners released
from federal prisons in 2005 were arrested for a new crime by 2010, compared to 55.1% for
black prisoners. 73.1% of white prisoners released from state prisons in 2005 were arrested
for a new crime in 2010, compared to 80.6% for black prisoners [27].
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dangerous to assume that an algorithm is fundamentally more objective than

human judgment, for this assumption could camouflage bias under the guise

of technology.

Algorithmic predictions are also regarded as inherently more accurate than

human predictions. The literature surrounding risk assessments have accepted

that risk assessment instruments are definitively more accurate than human

judgment [10, 17]. Many studies that have compared algorithmic risk assess-

ments to professional judgment have found that data-driven risk assessments

are usually more accurate the human predictions [18]. However, most of the

studies that have compared algorithmic and human prediction have focused

on medical diagnoses circumstances. The most recent study that explored re-

cidivism prediction was done in Canada in 1984 [36]. As of this writing, we

are not aware of a contemporary comparison of the accuracies of human versus

algorithmic recidivism predictions.

Algorithmic recidivism predictions are increasingly utilized in the criminal

justice system because they are considered less biased and more accurate than

human predictions. As we have seen, algorithms are not inherently objective.

Consequently, if algorithmic predictions are used in the criminal justice sys-

tem, they should be at least as accurate as human judgment, otherwise they

maintain no advantage over human predictions. Thus, it is imperative that

humans are tested to evaluate their performance in predicting recidivism.

This study set out to determine if COMPAS is more accurate than human

prediction. Additionally, we will identify how the biases of human predictions

compare to the biases of the COMPAS algorithm. Understanding the baseline

11



accuracy and biases of human recidivism predictions will provide a standard

above which algorithmic predictions should perform in order to justify their

continued use in the criminal justice system.
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2. Human Recidivism

Prediction

The primary goal of this study is to determine how accurately humans can

predict recidivism compared to the COMPAS algorithm. Additionally, this

study aims to compare the racial biases of human recidivism predictions with

COMPAS predictions.

2.1 Methods

We downloaded the data set provided by ProPublica in their analysis of

COMPAS. This data set contains information on 7,214 pre-trial defendants

in Broward County, Florida during 2013 and 2014. The data set contains each

defendant’s demographic information, criminal history, the crime for which

they were arrested, their COMPAS “Risk of Recidivism” score, and whether

they were arrested for a new crime within two years of their COMPAS screen-

ing.

COMPAS scores range from 1 to 10. Scores of 1-4 are labeled Low-Risk,

scores of 5-7 are labeled Medium-Risk, and scores of 8-10 are labeled High-

Risk. Therefore, in this study, a COMPAS “Risk of Recidivism” score of 5 or
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higher is considered a prediction that the individual would recidivate. This is

the same cuto↵ used by ProPublica.

Of the 7,214 defendants in the data set, 1,000 were selected for use in this

study. A total of 1,000 defendants were randomly selected from the data set

until the COMPAS accuracies, false positive rates, and false negative rates on

the subset were representative of COMPAS’ performance on the entire data

set. A descriptive paragraph about each defendant was generated using the

following data fields:

1. Sex

2. Age

3. Race

4. Criminal Charge Description

5. Criminal Charge Degree

6. Juvenile Misdemeanor Count

7. Juvenile Felony Count

8. Number of Prior Crimes

Each description paragraph followed this format:

The defendant is a [RACE] [SEX] aged [AGE]. They have been

charged with: [CRIME CHARGE DESCRIPTION]. This crime is

classified as a [CRIME DEGREE]. They have been convicted of

[PRIORS COUNT] prior crimes. They have [JUV FEL COUNT]

14



juvenile felony charges and [JUV MISD COUNT] juvenile misde-

meanor charges on their record.

In this subset of 1,000 defendants, there were 63 unique criminal charge

descriptions (see Appendix A). We gathered more detailed descriptions of

each of these crimes according to Florida laws [23]. The participants making

recidivism predictions are assumed to have no background in criminology,

so a brief explanation of the crime was given to help with their predictions.

These short crime descriptions followed this format:

[CRIME NAME]: [SHORT CRIME DESCRIPTION]

The goal of the study is to measure how accurately a person can predict a

defendant’s future recidivism based on only this brief information of a defen-

dant. For each defendant, a participant was shown the description paragraph

about the individual, as well as the short explanation of the crime with which

the individual was charged. The participant was then asked, “Do you think

this person will commit another crime within 2 years?” The participant re-

sponded by selecting either “Yes” or “No”. The participants were required

to answer every question, and they could not change a response once it was

submitted.

The 1,000 defendants were randomly divided into 20 blocks of 50 defen-

dants. Each participant was randomly assigned to see 1 of these 20 blocks.

Therefore, each participant made predictions on 50 di↵erent defendants. The

participants saw the 50 questions in a random order.
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After making a prediction, the participant was told if their answer was

correct or incorrect. After each response, the participant was shown their

overall accuracy.

This study was run through Amazon’s Mechanical Turk, an online crowd-

sourcing marketplace where individuals are paid to perform short tasks. Our

task was titled “Predicting Crime” with the description: “Read a few sen-

tences about an actual person and predict if they will commit a crime in the

future”. The keywords for the task were “survey, research, criminal justice”.

We o↵ered $1 to each participant who completed our task. When a Turk par-

ticipant decided to complete our task, they were directed to a survey, which

was powered by Qualtrics. For the remainder of the paper, the term “task”

will be used to describe the survey that the participants took.

At the start of the task, the participants were given this brief explanation

of the study:

In this exercise, you will be shown information regarding an indi-

vidual who has previously committed a crime but is not currently

incarcerated. You will see this person’s age, race, gender, previous

criminal history, and a description of the crime with which they

were most recently charged. After evaluating this information, you

will predict whether this person will commit another crime within

2 years.

The information you will see is from real people and cases. You

will see a random selection of 50 people from a large database of

over 5,000 entries.
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We are performing this study to determine how accurately humans

can determine the risk that a defendant poses. Your perfor-

mance on this task may very well inform our Courts and

so it is important that you try your best.

You will be paid $1 for completing this task. If your overall accu-

racy is greater than 65% we will pay you a $5 bonus for a

total of $6 for completing this task.

The $5 bonus was intended to provide an incentive to the participants to

pay close attention to the task. We chose the cuto↵ value to be 65% because

the accuracy of COMPAS on the 1,000 defendants included in the study is

65.2%. Additionally, we told the participants that their performance could

inform the Courts, which provided a moral incentive for the participants to

pay attention to the task.

Before beginning, the participant was also shown a sample question (Fig-

ure 2.1) to prepare them for the task. They were also shown an example of

what the feedback to each question would look like (Figure 2.2).

Once the participant read the task instructions, they were asked to provide

their age, gender, race/ethnicity, and education level, Appendix B. After read-

ing the instructions and answering the demographic questions, the participant

was presented with 50 questions, in a random order. The participant saw only

one question at a time, and was given feedback on their answer after each

question. The participant’s current accuracy was displayed at the top of the

screen, Figure 2.3.
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Figure 2.1: Sample question shown to participants.

Figure 2.2: Feedback shown to a participant after each question in the task.
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Figure 2.3: The participant’s current accuracy was displayed above each que-
sion.

The participants were shown 3 additional catch-trial questions at random

points during the task to check if they were paying attention. These questions

were formatted to look similarly to the other questions, but had easily iden-

tifiable correct answers, Appendix C. If a participant answered any of these

questions incorrectly, their responses were not counted in our study. The

answers to these questions contributed to the overall accuracy that the partic-

ipant was shown. However, these questions were not counted in our analysis

of the participants’ accuracies.

19



At the end of the task, participants were shown their final accuracy. Finally,

the participants were given a unique 8-digit code to submit to Mechanical Turk.

These codes were used to associate a Mechanical Turk participant with their

task submission.

A total of 457 responses were recorded. All participants were located in the

United States when they completed the task. There were 49 responses removed

from the results due to incorrect answers on the catch-trial questions.

Responses were collected until each block of 50 questions had been seen

by 20 di↵erent valid observers. After removing the catch-trial failures, 408

responses remained. For the blocks that had more than 20 valid responses,

a random 20 responses were kept in the results. Ultimately, there were 400

responses. Each block of 50 defendants was seen by 20 participants.

2.2 Results

The 400 participants correctly predicted criminal recidivism with a median

accuracy of 64.0%, and a mean accuracy of 62.3%. The distribution of the 400

participant accuracies is shown in Figure 2.4.

The accuracy of the participants was analyzed in comparison to the COM-

PAS performance on the same subset of defendants. Because groups of 20

participants were shown the same block of 50 defendants, the individual par-

ticipant accuracies are not independent from one another. However, the me-

dian accuracies on each block of 50 defendants can reasonably be assumed

to be independent. Therefore, the median participant performance on the 20

20



Figure 2.4: Participant accuracy distribution.

di↵erent blocks can be directly compared to the COMPAS performance on the

same 20 blocks. Shown in Table 2.1 is the median participant accuracy on the

20 blocks of 50 defendants in the study, as well as the accuracy of COMPAS

on each of the 20 blocks. The participant results are subject to low outliers,

because participants may have given up on the task once they realized they

were no longer eligible for the bonus. This behavior skews the mean accuracies

to be lower, so the median accuracies of participants were considered instead

of the mean accuracies. As previously noted, a COMPAS score greater than 4

was considered a prediction that an individual would recidivate, and a COM-
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Block
Number

Median Participant
Accuracy (%)

COMPAS
Accuracy (%)

1 56 60
2 64 64
3 52 60
4 69 76
5 63 68
6 67 74
7 70 66
8 67 66
9 67 68
10 63 66
11 60 70
12 60 62
13 60 62
14 68 62
15 62 60
16 63 66
17 60 62
18 66 52
19 64 70
20 60 70

Table 2.1: Participant and COMPAS accuracy per block of 50 defendants.

PAS score of 4 or less was considered a prediction that the individual would

not recidivate.

Across these 20 blocks, the average of the 20 median participant accuracies

was 63.1%, while the mean COMPAS accuracy was 65.2%. A matched-pairs

t-test was performed to determine if the di↵erence was significant. The test

statistic was not significant at the 0.05 critical alpha level, t(19)=-1.6690,

p=0.1115. Therefore, there is not su�cient evidence to suggest that COMPAS

is significantly more accurate than the participants.

The concept of “the wisdom of crowds” is that the judgments of a crowd

of individuals can outperform individuals that are not experts in what they

are judging [34]. The predictive power of the crowd has been demonstrated in

multiple studies [34, 21]. The participant responses of this study were analyzed

to determine if the collective responses of all observers are more accurate than
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the individual responses. These collective responses will be referred to as the

“crowd”.

Each of the 1,000 defendants was seen by a group of 20 participants. Each

of these participants made a “Yes” or “No” prediction on the defendant. Thus,

we can examine the percentage of participants who answered “Yes” on a de-

fendant to determine the prediction accuracy of the crowd. If more than 50%

of participants answered “Yes” on a defendant, that was considered a predic-

tion that the individual would recidivate. Conversely, if more than 50% of the

participants guessed “No” on a defendant, that was considered a prediction

that the defendant would not recidivate. A cuto↵ of 50% follows the “majority

rules” group prediction strategy that has been shown to be both e�cient and

robust [21].

Using this mode of prediction, the crowd achieved an accuracy of 66.5%

across the 1,000 defendants, slightly higher than the median individual re-

sponse of 64.0%, and the COMPAS accuracy of 65.2%. The crowd perfor-

mance was analyzed in comparison to the COMPAS performance on the 1,000

defendants. A matched-pairs t-test was performed to determine if the di↵er-

ence was significant. Again, the accuracies were compared according to the

accuracy on each of the 20 blocks of 50 defendants. The test statistic was not

significant at the 0.05 critical alpha level, t(19)=1.0467, p=0.3083. Therefore,

there is not su�cient evidence to suggest that the di↵erence between the crowd

accuracy and the COMPAS accuracy is statistically significant.

The crowd performance can also be assessed according to its AUC-ROC

value. As previously discussed, the AUC-ROC (area under the receiver operat-
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ing characteristic curve) is the most commonly used measure of discriminative

performance for risk assessments. AUC-ROC is widely used because it is not

a↵ected by base rates or sample sizes [17]. The AUC-ROC value of a recidi-

vism classifier represents “the probability that a randomly selected recidivist

will have a higher risk score than a randomly selected non-recidivist” [15].

In this context, the percentage of the crowd that guessed “Yes” on a defen-

dant represents the defendant’s “risk score”. Thus, the AUC-ROC value of

the crowd predictions represents the probability that a randomly selected re-

cidivist will have a higher percentage of “Yes” votes from the crowd than a

randomly selected non-recidivist.

Shown in Figure 2.5 are the ROC curves of both the crowd and COMPAS

on the 1,000 defendants. The AUC-ROC value of the crowd was 0.7101 ±

0.03, and the AUC-ROC value of COMPAS was 0.7043 ± 0.035. AUC values

of 0.70 are considered to indicate satisfactory predictive accuracy [7], so both

the crowd and COMPAS performed satisfactorily on this set of defendants.

The most common test for comparing AUC-ROC values is the method from

DeLong et al. (1988) [13]. These two AUC-ROC values were compared using

this method, and the di↵erence between the values was not significant at the

0.05 critical alpha level, p=0.7257. Therefore, there is not su�cient evidence

to suggest that the di↵erence between the crowd and COMPAS AUC-ROC

values is significant.

The predictive accuracies of various observer demographics were analyzed

to determine whether one’s demographic a↵ects their accuracy in predicting
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Figure 2.5: Receiver Operating Characteristic Curves of COMPAS and the
crowd.

recidivism. We found that one’s demographic did not a↵ect their accuracy in

predicting recidivism. Details of this analysis can be found in Appendix D.

2.2.1 Fairness

Although there does not exist a standard measurement of fairness, we can

evaluate the fairness of the participants in terms of how well their results meet

the following fairness criteria: Predictive Parity; Equalized Odds; Accuracy

Equity; and Calibration.
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Predictive Parity An algorithm satisfies predictive parity if it is equally

accurate across all groups [4]. Therefore, the Mechanical Turk participants

satisfy predictive parity if their responses were equally accurate for white and

black defendants. Across the 400 individual participant responses, the average

accuracy on black defendants was 62.3% (median = 63.0%), and the average

accuracy on white defendants was 63.5% (median = 65.0%). Because the in-

dividual participant accuracies aren’t independent, they must be analyzed by

independent block accuracies. Therefore, one can compare the accuracies of

the participants on black defendants in each block to the accuracies on white

defendants in each block. Again, the median accuracies for each block were

used. The average of the median accuracies on black defendants was 62.7%,

and the average of the median accuracies on white defendants was 65.0%.

The di↵erence between these averages can be compared through a t-test for

independent means. The samples are both independent, the data are approx-

imately normally distributed, and the two samples have approximately the

same variance, so the data passes the requirements to run this t-test. The test

statistic was not significant at the 0.05 critical alpha level, t(19)=-1.11481,

p=0.2719. Therefore, there is not su�cient evidence to suggest that the dif-

ference between the participants’ accuracies on white versus black defendants

is significant.

The crowd responses can also be analyzed for predictive parity. The crowd’s

accuracy on black defendants was 65.9%, and the crowd’s accuracy on white

defendants was 67.4%. A t-test for independent means was run on the 20 blocks

of accuracies. The test statistic was not significant at the 0.05 critical alpha
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level, t(19)=-0.46274, p=0.6462. Therefore, there is not su�cient evidence

to suggest that the di↵erence between the crowd’s accuracies on black versus

white defendants is significant.

The predictive parity of the participants and of the crowd can be compared

to that of COMPAS on our subset of 1,000 defendants. The COMPAS accu-

racy for black defendants was 64.9%, and the COMPAS accuracy for white

defendants was 65.7%. A t-test for independent means was run on the 20

blocks of accuracies for the defendants in the study. The test statistic was not

significant at the 0.05 critical alpha level, t(19)= -0.25443, p=0.8005. There-

fore, there is not su�cient evidence to suggest that the di↵erence between the

COMPAS accuracies on black versus white defendants is significant.

These results suggest that the individual participant predictions, the crowd

predictions, and the COMPAS predictions satisfy predictive parity for white

and black defendants, which means they are equally accurate for both groups.

Equalized Odds A prediction algorithm satisfies equalized odds if it has

equal true positive rates and equal false positive rates for each group of indi-

viduals. This is equivalent to having equal false negative rates and equal false

positive rates for each group.

Across the 400 participants, the average false positive rate for black de-

fendants was 47.1% (median = 46.2%), and the average false positive rate for

white defendants was 33.1% (median = 30.8%). These values can be com-

pared through a t-test for independent means on the 20 independent block

values. The average of the median false positive rates for black defendants
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was 46.7%, and the average of the median false positive rates for white defen-

dants was 30.9%. The test statistic was significant at the 0.05 critical alpha

level, t(19)=5.8113, p < 0.00001. This suggests that the false positive rate for

black defendants was significantly higher than for white defendants.

Across the 400 participants, the average false negative rate for black de-

fendants was 31.5% (median = 29.4%), and the average false negative rate for

white defendants was 41.4% (median = 42.3%). The average of the median

false negative rates for black defendants was 29.8%, and the average of the

median false negative rates for white defendants was 40.3%. The test statistic

was significant at the 0.05 critical alpha level, t(19)=-2.4625, p=0.0184. This

suggests that the false negative rate for black defendants was significantly lower

than for white defendants. Therefore, these tests suggest that the individual

participants’ predictions do not satisfy equalized odds.

The crowd predictions can be similarly evaluated. In the crowd’s predic-

tions, the false positive rate for black defendants was 39.9%, and the false pos-

itive rate for white defendants was 26.2%. The test statistic for a t-test for in-

dependent means was significant at the 0.05 critical alpha level, t(19)=3.5236,

p=0.0011. Therefore, there is su�cient evidence to suggest that the false

positive rate for black defendants was significantly higher than for white de-

fendants. The crowd’s false negative rate for black defendants was 29.8%,

and the false negative rate for white defendants was 43.6%. The test statis-

tic was significant at the 0.05 critical alpha level, t(19)=-2.3295, p=0.0252.

Therefore, there is su�cient evidence to suggest that the false negative rate

for black defendants was significantly lower than for white defendants. Con-
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sequently, these tests suggest that the crowd’s predictions also do not satisfy

equalized odds.

We can compare the participants’ performance to the COMPAS algorithm.

From the COMPAS predictions, the false positive rate for black defendants was

40.4%, and the false positive rate for white defendants was 25.4%. The test

statistic for a t-test for independent means was significant at the 0.05 critical

alpha level, t(19)=3.2452, p=0.0025. Therefore, there is su�cient evidence

to suggest that the false positive rate for black defendants was significantly

higher than for white defendants. The COMPAS false negative rate for black

defendants was 30.9%, and the false negative rate for white defendants was

47.9%. The test statistic was significant at the 0.05 critical alpha level, t(19)=-

3.1425, p=0.0032. Therefore, there is su�cient evidence to suggest that the

false negative rate for black defendants was significantly lower than for white

defendants. Thus, these tests suggest the COMPAS predictions also do not

satisfy equalized odds.

These results suggest that the individual participant predictions, the crowd

predictions, and the COMPAS predictions do not satisfy equalized odds, be-

cause they do not have equal true positive rates and equal false positive rates

between white and black individuals. These results indicate that the human

predictions are biased in the same ways as the COMPAS algorithm under this

criterion of fairness.

Accuracy Equity Recidivism risk scores satisfy accuracy equity if they can

discriminate recidivists and non-recidivists equally well for two di↵erent groups
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[15]. A risk score’s discriminative ability is measured by its AUC-ROC value.

For the crowd predictions, the percentage of the crowd that answered “Yes” on

a defendant represents the defendant’s “risk score”. The AUC-ROC value for

the crowd’s predictions on black defendants was 0.6902, and the AUC-ROC

value for the crowd’s predictions on white defendants was 0.7127.

The significance of the di↵erence between the AUC-ROC values was com-

puted [19]. The test statistic was not significant at the 0.05 critical alpha

level, z(1)=-0.6203, p=0.5351. Therefore, there is not su�cient evidence to

suggest that the AUC-ROC values for the black and white defendants are

significantly di↵erent. This result suggests that the crowd risk scores satisfy

accuracy equity for black and white defendants.

For the COMPAS scores, the AUC-ROC value for black defendants was

0.6906, and the AUC-ROC value for white defendants was 0.6937. The test

statistic was not significant at the 0.05 critical alpha level, z(1)=-0.0845,

p=0.9327. Therefore, there is not su�cient evidence to suggest that the AUC-

ROC values for the black and white defendants are significantly di↵erent. This

result suggests that the COMPAS risk scores also satisfy accuracy equity for

black and white defendants.

These results indicate that the crowd predictions are equivalently discrim-

inative to the COMPAS algorithm.

Calibration A risk score is well-calibrated by race if each score has the

same meaning regardless of a defendant’s race. Therefore, white and black

defendants with the same risk score should be equally likely to re-o↵end. The
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crowd risk scores, determined by the percentage of the crowd that answered

“Yes” on a defendant, can be binned into 10 distinct risk scores from 1-10.

Shown in Figure 2.6 and Figure 2.7 are the percentage of individuals that

recidivated at each of the crowd risk scores and COMPAS risk scores for both

black and white defendants.

At each crowd score, the 95% confidence intervals for the percentage of

black individuals who recidivated and the percentage of white individuals who

recidivated are overlapping. This suggests that white and black defendants

with the same crowd risk score are equally likely to reo↵end.

The COMPAS scores, however, are slightly less calibrated. The 95% con-

fidence intervals do not overlap at all of the scores, suggesting that white and

black defendants with the same COMPAS risk score are not always as equally

likely to reo↵end. It is important to note, however, that the COMPAS risk

scores are well-calibrated on the entire data set of defendants.

These results suggest that the crowd predictions are at least as well-

calibrated, and possibly more calibrated, than the COMPAS predictions.

2.3 Summary

Our study participants were able to achieve a median accuracy of 64.0%, and

their aggregated crowd responses produced a prediction accuracy of 66.5%.

These prediction accuracies are not significantly di↵erent from the COMPAS

accuracy of 65.2%. The crowd predictions resulted in an AUC-ROC value of
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Figure 2.6: Recidivism rate by crowd risk score. The shaded areas represent
95% confidence intervals at each value.

Figure 2.7: Recidivism rate by COMPAS risk score. The shaded areas repre-
sent 95% confidence intervals at each value.
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0.71, which is statistically comparable to the COMPAS AUC-ROC value of

0.70.

When evaluated in terms of four main fairness criteria (predictive parity,

equalized odds, accuracy equity, and calibration) both human prediction and

COMPAS prediction fully satisfied predictive parity and accuracy equity, and

both were well-calibrated. Neither human prediction nor COMPAS prediction

satisfied the equalized odds fairness criterion that expects equal false positive

and false negative rates across groups. Therefore, the participants performed

with both equivalent accuracy and equivalent fairness to the COMPAS algo-

rithm.

2.4 Human Recidivism Prediction

Without Race

COMPAS scores are calculated from 137 characteristics of a defendant. Race

is not included in these characteristics [5]. The Mechanical Turk participants,

however, were shown the race of the defendants to inform their predictions.

Consequently, there is a possibility that seeing the race of a defendant a↵ected

recidivism predictions. A new study was run to determine if the race of a

defendant a↵ected the participant predictions of their recidivism. The goal of

this new study is to determine if the participant accuracy could be maintained

while minimizing the equalized odds fairness violation.
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2.4.1 Methods

This study used the same 1,000 defendants from the first study. The descrip-

tion paragraphs were identical, except the race of the defendant was removed.

Thus, the participants were shown the following details of each defendant:

1. Sex

2. Age

3. Criminal Charge Description

4. Criminal Charge Degree

5. Juvenile Misdemeanor Count

6. Juvenile Felony Count

7. Number of Prior Crimes

Shown in Figure 2.8 is an example question from the new study, with the

race of the defendant removed (see Figure 2.1). Besides removing the race

from the questions, this study was conducted in the same way as the first

study. However, this study had di↵erent participants from the first study.

2.4.2 Results

The 400 participants correctly predicted criminal recidivism with a median

accuracy of 64.0%, and a mean accuracy of 62.1%. The distribution of the 400

participant accuracies is shown in Figure 2.9.

The accuracy of the participants was analyzed in comparison to the first

study that included the race of the defendant. Across the 20 blocks, the average

34



Figure 2.8: Sample question with the race removed. See also Figure 2.1.

of the 20 median participant accuracies was 63.1% for the study with race, and

62.8% for the study without race. A matched-pairs t-test was performed to

determine if the di↵erence was significant. The test statistic was not significant

at the 0.05 critical alpha level, t(19)=0.5325, p=0.6005. Therefore, there is

not su�cient evidence to suggest that the accuracy from the study with race

is significantly di↵erent from the study without race.

The crowd performance was analyzed in comparison to the COMPAS per-

formance on the 1,000 defendants. Across the 20 blocks, the average crowd

accuracy for the study with race was 66.5%, and the average crowd accuracy

for the study without race was 67.0%. A matched-pairs t-test was performed

to determine if the di↵erence between those accuracies was significant. The

test statistic was not significant at the 0.05 critical alpha level, t(19)=-0.4453,

p=0.6611.
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Figure 2.9: Participant accuracy distribution for study without race.

The crowd performance was also assessed according to its AUC-ROC value.

The AUC-ROC value of the crowd was 0.7100, indicating satisfactory predic-

tive accuracy. The AUC-ROC value for the crowd with race was 0.7101. Shown

in Figure 2.10 are the overlapping ROC curves of the crowds with and without

race.

The individual and crowd performances on the black and white defendants

from each study can be directly compared using matched-pairs t-tests of the

20 blocks to determine if the absence of race a↵ected the participants’ ability

to predict recidivism for either race. The accuracy, false positive, and false

negative rates for both black and white defendants were compared between the
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Figure 2.10: ROC curves of the crowd from the study with race and the crowd
from the study without race.

two studies. No values from one study were statistically significantly di↵erent

from that of the other study. Therefore, there is not su�cient evidence to

suggest that the participant and crowd performance by race was significantly

di↵erent between the two studies. The details of this analysis can be found in

Appendix E.

Fairness

We can also evaluate the fairness of the participants in the study without

race in terms of how well their results meet the same fairness criteria used to
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evaluate the study with race: Predictive Parity; Equalized Odds; Accuracy

Equity; and Calibration.

Predictive Parity An algorithm satisfies predictive parity if it is equally

accurate across all groups [4]. Therefore, the participants satisfy predictive

parity if their responses were equally accurate for white and black defendants.

Across the 400 individual participant responses, the average accuracy on black

defendants was 62.7% (median = 62.5%), and the average accuracy on white

defendants was 62.5% (median = 62.5%). Because the individual participant

accuracies aren’t independent, they must be analyzed by independent block

accuracies. Therefore, one can compare the accuracies of the participants on

black defendants in each block to the accuracies on white defendants in each

block. Again, the median accuracies for each block were used. The average

of the median accuracies on black defendants was 63.8%, and the average of

the median accuracies on white defendants was also 63.8%. The di↵erence

between these averages can be compared through a t-test for independent

means. The test statistic was not significant at the 0.05 critical alpha level,

t(19)=-0.0061, p=0.9952. Therefore, there is not su�cient evidence to suggest

that the di↵erence between the participants’ accuracies on white versus black

defendants is significant.

The crowd responses can also be analyzed for predictive parity. The crowd’s

accuracy on black defendants was 68.2%, and the crowd’s accuracy on white

defendants was 67.6%. A t-test for independent means was run on the 20

blocks of accuracies. The test statistic was not significant at the 0.05 critical
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alpha level, t(19)=0.1701, p=0.8658. Therefore, there is not su�cient evidence

to suggest that the di↵erence between the crowd’s accuracies on black versus

white defendants is significant.

The results of these two tests suggest that both the individual participant

predictions and the crowd predictions satisfy predictive parity for white and

black defendants, which means they are equally accurate for both groups.

Equalized Odds A prediction algorithm satisfies equalized odds if it has

equal true positive rates and equal false positive rates for each group of in-

dividuals. This is equivalent to having equal false negative rates and equal

false positive rates for each group. Across the 400 participants, the average

false positive rate for black defendants was 44.9% (median = 44.4%), and the

average false positive rate for white defendants was 35.3% (median = 35.7%).

These values can be compared through a t-test for independent means on the

20 independent block values. The average of the median false positive rates

for black defendants was 43.9%, and the average of the median false positive

rates for white defendants was 33.8%. The test statistic was significant at

the 0.05 critical alpha level, t(19)=3.0025, p=0.0047. This suggests that the

false positive rate for black defendants was significantly higher than for white

defendants.

Across the 400 participants, the average false negative rate for black de-

fendants was 32.5% (median = 30.8%), and the average false negative rate for

white defendants was 40.9% (median = 40.0%). The average of the median

false negative rates for black defendants was 31.5%, and the average of the
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median false negative rates for white defendants was 39.9%. The test statistic

was not significant at the 0.05 critical alpha level, t(19)=-2.0170, p=0.0508.

Therefore, there is not su�cient evidence to suggest that the false negative

rate for black defendants was significantly lower than for white defendants.

These tests suggest that while the individual participants’ predictions do not

satisfy the equal false positive rate criterion for equalized odds, they do satisfy

the equal false negative rate criterion.

The crowd predictions can also be evaluated through this test. In the

crowd’s predictions, the false positive rate for black defendants was 37.1%,

and the false positive rate for white defendants was 27.2%. The test statistic

for a t-test for independent means was significant at the 0.05 critical alpha

level, t(19)=2.2959, p=0.0273. Therefore, there is su�cient evidence to sug-

gest that the false positive rate for black defendants was significantly higher

than for white defendants. The crowd’s false negative rate for black defen-

dants was 29.2%, and the false negative rate for white defendants was 40.2%.

The test statistic was significant at the 0.05 critical alpha level, t(19)=-2.1942,

p=0.0344. Therefore, there is su�cient evidence to suggest that the false nega-

tive rate for black defendants was significantly lower than for white defendants.

Consequently, these tests suggest that the crowd’s predictions do not satisfy

equalized odds.

These results suggest that the individual participant predictions and the

crowd predictions do not fully satisfy equalized odds. However, the individual

participant predictions from this study are closer to satisfying equalized odds

than from the previous study, because these individual participant predictions
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did not produce statistically di↵erent false negative rates for white and black

defendants.

Accuracy Equity Recidivism risk scores satisfy accuracy equity if they can

discriminate recidivists and non-recidivists equally well for two di↵erent groups

[15]. A risk score’s discriminative ability is measured by its AUC-ROC value

(the area under the receiver operating characteristic (ROC) curve). The AUC-

ROC value for the crowd’s predictions on black defendants was 0.6993, and the

AUC-ROC value for the crowd’s predictions on white defendants was 0.7035.

Therefore, the crowd was satisfactorily discriminative for both black and white

defendants.

The significance of the di↵erence between the AUC-ROC values was com-

puted [19]. The test statistic was not significant at the 0.05 critical alpha

level, z(1)=-0.1156, p=0.9080. Therefore, there is not su�cient evidence to

suggest that the AUC-ROC values for the black and white defendants are

significantly di↵erent. This result suggests that the crowd risk scores satisfy

accuracy equity for black and white defendants.

Calibration A risk score is well-calibrated by race if each score has the

same meaning regardless of a defendant’s race. Therefore, white and black

defendants with the same risk score should be equally likely to reo↵end. Shown

in Figure 2.11 is the percentage of individuals that recidivated at each of the

crowd risk scores for both black and white defendants.

At all scores except for 1 and 9, the 95% confidence intervals for the per-

centage of black individuals who recidivated and the percentage of white indi-
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Figure 2.11: Recidivism rate by crowd risk score. The shaded areas represent
95% confidence intervals at each value.

viduals who recidivated are overlapping. This suggests that white and black

defendants with the same crowd risk score are equally likely to reo↵end for

every score except for 1 and 9. This indicates that the crowd predictions

are almost entirely well-calibrated, but are slightly less calibrated than in the

study that included the defendant’s race.

2.4.3 Summary

When not informed of a defendant’s race, the study participants were able

to achieve a median accuracy of 64.0%, and their aggregated crowd responses

produced a prediction accuracy of 67.0%. The participants of the study that
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included the defendant’s race also achieved a median accuracy of 64.0%, and

their aggregated crowd responses produced a prediction accuracy of 66.5%.

The prediction accuracies from the study without race are not significantly

di↵erent from those of the study that included the defendants race. The

crowd predictions in this study resulted in an AUC-ROC value of 0.71, which is

equivalent to the crowd’s AUC-ROC value of 0.71 for the study that included

race. The participants’ performance by race was also equivalent to that of the

previous study.

When evaluated in terms of four main fairness criteria (predictive parity,

equalized odds, accuracy equity, and calibration), both the individual partici-

pant and the crowd predictions satisfied predictive parity and accuracy equity

in the same ways as in the first study. However, the individual participant pre-

dictions from the study without race were closer to satisfying equalized odds

than the predictions from the study with race. Additionally, the crowd scores

from this study were slightly less calibrated than the first study, but still sat-

isfied the calibration criterion for eight of the ten risk scores. This is the same

level of calibration that COMPAS achieves on this subset of defendants.

2.5 Discussion

The results of the initial study indicate that human predictions perform com-

parably to the COMPAS algorithm. The participants achieved equivalent

accuracy to COMPAS via both individual predictions and aggregated crowd

predictions. The crowd predictions could discriminate between recidivists and
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non-recidivists with the same consistency as the COMPAS algorithm, as well.

These results suggest that there is no predictive advantage to using the COM-

PAS algorithm over simple human prediction when estimating a defendant’s

risk of recidivism.

Algorithmic presence in the criminal justice system is often justified due

to its presumed objectivity in comparison to human prediction. This study

found that COMPAS and human predictions satisfied the same fairness qual-

ifications, and su↵ered from the same type of bias. Both predictions satisfied

predictive parity, accuracy equity, and were well-calibrated. Both failed to sat-

isfy equalized odds in the same way; the false positive rate for black individuals

was significantly higher than for white individuals, and the false negative rate

for white individuals was significantly higher than for black individuals. How-

ever, it is essential to recognize that satisfying all four fairness criteria is not

mathematically possible given the di↵erence in base recidivism rates between

the white and black defendants. Therefore, while both COMPAS and the hu-

man predictions fail to satisfy equalized odds, neither could possibly satisfy

this criterion without violating the calibration criterion. Overall, this study

suggests that the COMPAS algorithm does not o↵er any form of objectivity

that is lacking in humans.

One limitation of our study is the racial homogeneity of the participants.

Of the 400 Mechanical Turk participants in the initial study, 77.3% of them

identified as white. Only 7.5% of the participants identified as black. Con-

sequently, the race of the participants may have a↵ected how they predicted

recidivism. Because there were so few non-white participants, the racial bi-

44



ases of participants were not analyzed by their identified race. However, when

considering these results as indicative of human recidivism prediction ability

and of human racial biases, it is important to acknowledge that these results

are specific to a mostly white population. Opportunities for future research

could include diversifying the racial demographics of the human participants,

and analyzing how one’s race a↵ects their biases in recidivism prediction.

Overall, these results indicate that humans can predict recidivism in a way

that is equivalent to the COMPAS algorithm in terms of both accuracy and

fairness. It is important to note that the COMPAS algorithm uses 137 fea-

tures to predict recidivism, while the human participants were given only 8

features for each defendant. The participants successfully matched the accu-

racy of COMPAS with much less information about each defendant. Future

research on this topic could explore whether humans can be more predictive

than COMPAS if given more details on each defendant.

The results of the follow-up study provide insight into the role that the race

of a defendant plays in human recidivism prediction. Although the participants

were not shown the race of a defendant in this second study, they performed

with comparable accuracy to the study that included the defendant’s race.

The crowd predictions were also comparably accurate to the crowd predictions

of the study that included the defendant’s race. These results suggest that

knowing the race of a defendant does not a↵ect a person’s accuracy or bias in

predicting the defendant’s risk of recidivism.

While the overall performance of the participants in the second study was

equivalent to that of the first study, the fairness performance of the predictions
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in the second study was slightly di↵erent than in the first study. Hiding the

defendant’s race produced false negative rates for white and black individu-

als that were not significantly di↵erent from each other. This result suggests

humans are more likely to incorrectly predict a white defendant will not recidi-

vate when the participant knows the defendant is white. Conversely, this result

suggests that humans are less likely to incorrectly predict a black defendant

will not recidivate when the participant knows the defendant is black. This

finding implies that white defendants benefit from their race being known,

whereas black defendants su↵er from having their race known.

This study also set out to determine a baseline accuracy of human recidi-

vism prediction. The median accuracy of both studies was 64.0%. However,

the participants involved in the study were untrained individuals that have

presumably no background in criminal justice or criminal behavior. Conse-

quently, it is reasonable to expect that people with more experience in this

field could perform with an even higher accuracy than these untrained partic-

ipants. Thus, while an accuracy of 64.0% can be understood as an estimate of

the baseline human accuracy, it should be noted that this may be a conserva-

tively low estimate of the potential for trained human recidivism prediction.

A worthy corollary for future research would be replicating this study with a

set of participants who have experience studying recidivism.
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3. Algorithmic Recidivism

Prediction

One major qualm about algorithmic predictions is that they are considered

black boxes [12, 14, 32, 29], which is a term used to describe a machine that

takes a series of inputs and produces results from a secret, unexplained pro-

cess [29]. Companies that o↵er algorithmic prediction services profit from the

tools they develop, so the inner workings of their algorithms are considered

intellectual property. A particular worry about using recidivism prediction

instruments is that judges who see these risk scores aren’t aware of how the

various components of a defendant’s identity (demographics, criminal history,

etc.) are being used to predict recidivism [32]. While Northpointe does not

share how, exactly, their COMPAS algorithm works, we can build our own clas-

sifiers in an attempt to replicate the behavior and performance of COMPAS.

Furthermore, replicating the COMPAS algorithm provides an opportunity to

explore whether incorporating human judgment into algorithms can enhance

prediction accuracy.
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3.1 Replicating the COMPAS Algorithm

We built multiple classifiers with the goal of reproducing, and possibly exceed-

ing, the prediction accuracy of COMPAS. The classifiers were trained using

the following eight features, provided by the data set published by Angwin et

al. in the ProPublica study [25].

1. Sex

2. Age

3. Race

4. Criminal Charge Degree (Misdemeanor or Felony)

5. Juvenile Misdemeanor Count

6. Juvenile Felony Count

7. Juvenile “Other” Charges Count

8. Number of Prior Crimes

Using these features, Linear Discriminant Analysis and Logistic Regression

classifiers were explored.

Linear Discriminant Analysis (LDA) Linear Discriminant Analysis

(LDA) is a linear classifier that is used to discriminate between two or more

classes of data. LDA works by projecting the data onto a linear subspace so

that the within-class variances are minimized, and the between-class variance

is maximized. In the binary prediction case, this method assumes that the
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data come from two Gaussian distributions, each with di↵erent means but

with the same covariance [16].

The LDA classifier was trained on a random subset of 80% of the data, and

then tested on the remaining 20%. This process was repeated 1,000 times, with

a new random training and testing split each time. The average test accuracy

was 63.0% (�=2.44). The average training accuracy was 63.1% (�=0.67). The

results exhibit qualitatively the same disparities between the false positive and

false negative rates for white and black defendants as COMPAS, Table 3.1.

Logistic Regression Logistic Regression learns a sigmoidal mapping that

maximizes the log-likelihood of each training example being correctly classi-

fied. Logistic regression produces probability estimates of a test example be-

longing to each class. Unlike LDA, this method does not assume a particular

distribution of the data [28].

The Logistic Regression classifier was also trained on a random subset

of 80% of the data, and then tested on the remaining 20%. This process was

repeated 1,000 times, with a di↵erent training and testing split each time. The

average test accuracy was 66.9% (�=1.16). The average training accuracy was

67.0% (�=0.35). The results exhibit qualitatively the same disparities between

the false positive and false negative rates for white and black defendants as

COMPAS, Table 3.1.

Summary The performance of each classifier was compared to the perfor-

mance of COMPAS on the full set of defendants in the data set. Shown in
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Defendant False Positive False Negative
Method Category Accuracy (%) Rate (%) Rate (%)

COMPAS
Overall 65.3 32.4 37.5
Black 63.8 44.9 28.1
White 66.9 23.5 47.9

LDA
Overall 63.0 36.9 37.1
Black 63.3 45.8 28.5
White 62.3 29.1 51.3

LR
Overall 66.9 32.8 33.5
Black 67.2 42.9 23.3
White 65.7 26.8 45.8

Table 3.1: Performance of COMPAS, Linear Discriminant Analysis, and Lo-
gistic Regression.

Table 3.1 are the accuracy, false positive rate, and false negative rate values

for each classification method, including COMPAS.

While none of these classifiers significantly exceeded the predictive ability

of COMPAS, we were able to successfully reproduce the accuracy of COMPAS.

Both of these linear classifiers performed similarly to COMPAS on this data

set, which suggests that COMPAS employs a linear classifier in their prod-

uct. These classifiers were trained on only eight variables for each defendant,

whereas COMPAS classifiers are trained on 137 [4]. These equivalent classi-

fiers suggest that the variables that Northpointe uses are no more predictive

than these eight features.

3.2 Improving the COMPAS Algorithm

Beyond replicating the COMPAS accuracy, we explored whether incorporating

human judgment into the classifier could increase the accuracy. This analysis

incorporated the human crowd predictions on each of 1,000 defendants. The
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crowd predictions from the original study with race were used. As previously

discussed, these crowd predictions can be translated into risk scores by calcu-

lating the percent of participants that answered “Yes” for a defendant. These

1,000 defendants also have risk scores assigned by COMPAS. We combined the

crowd risk scores, the COMPAS risk scores, and the demographic and criminal

history information of these 1,000 defendants to determine if we could build

a more accurate classifier using both human and algorithmic knowledge. The

following features were used to build the classifiers:

1. Crowd Risk Score

2. COMPAS Recidivism Risk Score

3. Sex

4. Age

5. Race

6. Criminal Charge Degree (Misdemeanor or Felony)

7. Juvenile Misdemeanor Count

8. Juvenile Felony Count

9. Juvenile “Other” Charges Count

10. Number of Prior Crimes

These features were used to re-build the LDA and LR classifiers. They

were also used to build a non-linear Support Vector Machine. We included

the COMPAS scores to simulate incorporating COMPAS scores and human

judgment. The additional demographic and criminal history variables were
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also used to further boost the prediction accuracy. Because the crowd risk

scores were utilized, these classifiers were trained and tested on only the 1,000

defendants that we have crowd risk scores for from the study.

Linear Discriminant Analysis The LDA classifier was re-built using this

new set of features. It was trained on a random subset of 80% of the data, and

then tested on the remaining 20%. This process was repeated 1,000 times, with

a new random training and testing split each time. The average test accuracy

was 61.7% (�=3.44). The average training accuracy was 61.5% (�=1.54).

Including the crowd and COMPAS scores did not significantly change the

results of this classifier, Table 3.2.

Logistic Regression The LR classifier was re-built using this new set of

features. It was trained on a random subset of 80% of the data, and then

tested on the remaining 20%. This process was repeated 1,000 times, with a

new random training and testing split each time. The average test accuracy

was 66.3% (�=2.92). The average training accuracy was 67.1% (�=0.90).

Including the crowd and COMPAS scores did not significantly change the

results of this classifier, Table 3.2.

Non-Linear Support Vector Machine A Support Vector Machine (SVM)

is a classifier that fits an optimal separating hyperplane to the labeled training

data. The optimal separating hyperplane is found by maximizing the margin

between the hyperplane and the closest points to the plane in each class.

Non-Linear Support Vector Machines handle classification problems that do
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not have a linear separating hyperplane. These SVMs handle non-linearly

separable cases by raising the dimensionality of the features through a kernel

function that separates the data in a higher dimension [8]. A radial basis

function kernels was implemented for our classifier.

The Non-Linear SVM was trained on a random subset of 80% of the data,

and then tested on the remaining 20%. This process was repeated 1,000 times,

with a new random training and testing split each time. The average test accu-

racy was 67.1% (�=2.98), which is almost exactly the same as the average ac-

curacy for the linear SVM. The average training accuracy was 75.3% (�=0.82).

These results also su↵er from the same false positive and false negative rate

disparities between white and black defendants, Table 3.2.

Summary These results were compared to the COMPAS performance on

the subset of 1,000 defendants in the study. Shown in Table 3.2 are the accu-

racy, false positive rate, and false negative rate values for COMPAS and these

three classifiers.

While these classifiers were also able to replicate the performance of COM-

PAS, they did not perform significantly better than COMPAS. This suggests

that incorporating human judgment into the classifiers does not significantly

increase the accuracy.

3.3 Discussion

We successfully built two linear classifiers that replicated the behavior and

performance of COMPAS. The ability of LDA and LR to reproduce the re-
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Defendant False Positive False Negative
Method Category Accuracy (%) Rate (%) Rate (%)

COMPAS
Overall 65.2 31.5 38.5
Black 64.9 41.2 30.5
White 65.8 24.9 50.0

LDA
Overall 61.7 38.1 38.4
Black 61.3 50.0 33.1
White 62.1 32.7 46.7

LR
Overall 66.3 32.1 35.1
Black 66.1 46.9 24.1
White 67.3 24.5 46.5

Non-Linear SVM
Overall 67.1 22.3 44.4
Black 66.2 30.6 36.0
White 68.8 15.5 57.4

Table 3.2: Performance of COMPAS, LDA, LR, and Non-Linear SVM.

sults of COMPAS suggests that Northpointe uses a linear classifier to make

their predictions. At the very least, even if Northpointe employs a more com-

plicated algorithm than a linear classifier, their performance does not exceed

that of a simple linear classifier. Furthermore, the eight variables used in our

classifiers were equally as predictive as Northpointe’s 137 variables. This re-

sult implies that resources are wasted collecting the data for the 137 questions

that Northpointe demands, for the eight variables that ProPublica was able

to easily obtain are equally predictive.

Adding human judgment did not significantly a↵ect the performance of

the LDA and LR classifiers. While COMPAS and the crowd were equally pre-

dictive on their own, combining them did not increase their overall prediction

accuracy. This suggests that crowd wisdom about recidivism does not enhance

algorithmic accuracy.

The non-linear SVM did not provide any predictive advantage over the

linear classifiers. This lack of classification improvement suggests that the data
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may not be separable. In other words, the inability of the non-linear SVM to

predict with high accuracy suggests that these features are not discriminatory

in predicting future recidivism. Furthermore, these features are equivalently

predictive to the 137 features that COMPAS uses. Thus, more information

about a defendant also does not necessarily guarantee a higher prediction

accuracy.
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4. Conclusion

The use of COMPAS in the criminal justice system has been challenged in the

past year because it is a secret “black box”, and its predictions cannot be con-

tested in a courtroom in the same way other claims are refuted [26]. Trusting a

“black box” system in the courtroom can possibly be justified if its predictions

are substantially more accurate than human judgment. However, this study

shows that COMPAS is not significantly more accurate than untrained human

predictions. Additionally, COMPAS could be a worthy tool in the courtroom

if it o↵ered a form of objectivity of which humans aren’t capable. However,

in terms of racial biases, this study exposed that COMPAS does not o↵er any

fairness advantages over human prediction.

The second study revealed that knowing the race of a defendant does not

significantly a↵ect a person’s accuracy in predicting the defendant’s risk of

recidivism. This finding could have serious implications in the criminal justice

system. Qualms about human judgment in criminal justice are often based

in fears of people’s intentional and unintentional racial biases. If knowing a

defendant’s race does not significantly improve a person’s ability to predict

that defendant’s risk of recidivism, then conducting race-blind processes may

help mitigate racial prejudice in the criminal justice system.

Replicating the COMPAS algorithm contributed an essential perspective of

recidivism prediction. Knowing more information about a defendant does not
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necessarily result in more accurate predictions. Additionally, building more

complex, non-linear classifiers does not enhance predictive ability, suggesting

that demographic and criminal history information is not predictive of recidi-

vism.

The findings of this study could have significant consequences for the realm

of recidivism prediction. The continued use of COMPAS in courtrooms should

be called into question, for it is neither more accurate nor less biased than hu-

man judgment. Because the base rates of recidivism are di↵erent between

white an black defendants, some type of bias is mathematically inevitable in

recidivism prediction, regardless of the prediction mechanism. Furthermore,

our findings indicate that neither more information nor more complex algo-

rithms can enhance recidivism predictions. Therefore, if recidivism predictions

are inevitably biased and only moderately predictive, then perhaps recidivism

is not something worth trying to predict.
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A. Crime Descriptions

Crime descriptions as described in Florida laws [23]. These crime descriptions

appearred in the questions of the study to clarify the particular crime with

which a defendant was charged.

1. Abuse: The intentional infliction of physical or psychological injury

2. Armed Robbery: When a person intentionally and unlawfully takes

money or property from another person through the use of force, vi-

olence, assault, or threat while in possession of a firearm or other deadly

weapon

3. Assault: An intentional and unlawful threat against another person,

coupled with the apparent ability to carry out the threat, which creates

a genuine and reasonable fear that violence or harm is imminent

4. Assault with a Deadly Weapon: An intentional and unlawful threat

against another person with a deadly weapon, or while in the commission

of a felony, which creates a reasonable fear that violence or harm is

imminent

5. Battery: Intentionally causing bodily harm to another person without a

weapon
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6. Battery with a Deadly Weapon: Intentionally causing bodily harm to

another person with a deadly weapon

7. Burglary: Unlawfully entering a dwelling or structure or remaining in

a dwelling or structure after permission to remain has been withdrawn,

with the intent to commit a crime inside

8. Carrying a Concealed Weapon: When a person knowingly carries, on or

about their person, a weapon that is concealed from the ordinary sight

of another person

9. Child Abuse: Intentional infliction of physical or mental injury upon a

child

10. Child Molestation: Intentionally touching the breasts, genitals, or but-

tocks of a child younger than 16 in a lewd or lascivious manner

11. Child Neglect: When a caregiver willfully, or through culpable negli-

gence, fails to provide a child with the care, supervision, and services

necessary to maintain the child’s physical and mental health that a pru-

dent person would consider essential for the well-being of the child

12. Contributing to the Delinquency Of A Minor: When a person over the

age of eighteen commits any act which causes, tends to cause, encourages,

or contributes to a minor become delinquent, dependent, or a child in

need of services
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13. Criminal Damage of less than $1,000: When a person willfully and ma-

liciously damages another person’s property - with damage less than

$1,000

14. Criminal Damage of more than $1,000: When a person willfully and

maliciously damages another person’s property - with damage of more

than $1,000

15. Dealing Cannabis/Marijuana: Possessing cannabis with the intent to sell

or deliver the cannabis

16. Dealing Cocaine: Possessing cocaine with the intent to sell or deliver the

cocaine

17. Dealing Controlled Substances: Possessing a criminalized narcotic or

pharmacological drug with the intent to sell or deliver

18. Disorderly Conduct: Committing an act that corrupts the public morals,

outrages the sense of public decency, or a↵ects the peace and quiet of

persons who may witness them, or engages in brawling, fighting, or other

conduct that constitutes a breach of the peace

19. Disorderly Intoxication: When an intoxicated person endangers the

safety of another person or property, or causes a disturbance in public

20. Domestic Violence: The touching or striking of a family member, house-

hold member, or domestic partner against their will
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21. Driving Under the Influence: Operating a motor vehicle with a blood

alcohol content (BAC) of 0.08% or higher

22. Driving with a Revoked License: Driving with a license that has been

revoked

23. Driving with a Suspended License: Driving with a license that has been

suspended

24. Driving with an Expired License: Driving with a license that is expired

25. Drug Tra�cking: To sell, purchase, manufacture, deliver, possess, or

transport a tra�cking amount (i.e., more than personal use) of drugs

26. Escape: When a prisoner escapes or attempts to escape from a place

of confinement, or when an arrested person who is being transported to

or from a place of confinement escapes or attempts to escape from such

lawful confinement

27. Extradition of Defendants: The transfer of an accused criminal by one

state or nation to another

28. Failure to Obey Police O�cer: Failure to obey the orders of a police

o�cer

29. False Imprisonment: When a person either forcibly, by threat, confines,

abducts, imprisons, or restrains another person without lawful authority

against their will, or secretly confines, abducts, imprisons, or restrains

another person without lawful authority against their will
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30. Fleeing the Scene of an Accident: When a person is involved in an

accident or crash and willfully leaves the scene of the accident or crash

without providing their information to the other individuals involved

31. Forgery: When a person falsely makes, alters, counterfeits, or forges a

document that carries legal e�cacy

32. Fraud: Wrongful or criminal deception intended to result in financial or

personal gain

33. Grand Theft: The unlawful taking of property worth more than $300

34. Interference with Tra�c Control Railroad Divide: Unlawfully interfering

with a railroad divide

35. Kidnapping: When a person forcibly, secretly, or by threat confines,

abducts, or imprisons another person against their will, without lawful

authority

36. Loitering: Standing or waiting around idly in a manner unusual for law-

abiding citizens, creating an imminent threat to public safety

37. Manufacturing Cannabis/Marijuana: Manufacturing or cultivating

cannabis

38. O↵ense Against Intellectual Property: Robbing people or companies

of their ideas, inventions, and creative expressionsknown as intellectual

propertywhich can include everything from trade secrets and proprietary

products and parts to movies, music, and software
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39. Open Carrying of Weapon: When a person knowingly carries, on or

about his or her person, a weapon that is not concealed

40. Operating a Vehicle without a Valid Drivers License: Operating a motor

vehicle without a valid drivers license

41. Possession of a Controlled Substance: Possession of a criminalized nar-

cotic or pharmacological drug

42. Possession of Cannabis/Marijuana: Possession of cannabis/marijuana

43. Possession of Cocaine: Possession of cocaine

44. Possession of Ecstasy: Possession of Ecstasy

45. Possession of LSD: Possession of LSD

46. Possession of Meth: Possession of Meth

47. Possession of Morphine: Possession of Morphine

48. Possession of Oxycodone: Possession of Oxycodone

49. Prostitution: Engaging in sex for money

50. Reckless Driving: When you drive a vehicle in a manner that shows a

willful disregard for the safety of persons or property

51. Resisting an O�cer: When a person knowingly and willfully, but not

violently, resists, obstructs, or opposes a law enforcement o�cer engaged

in the execution of legal process, or lawful execution of a legal duty
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52. Resisting an O�cer with Violence: When a person knowingly and will-

fully resists, obstructs, or opposes a law enforcement o�cer by threaten-

ing violence or engaging in violent conduct against the law enforcement

o�cer was engaged in the lawful execution of a legal duty

53. Restraining Order Violation: Violating the terms of a restraining order

54. Robbery: When a person intentionally and unlawfully takes money or

property from another person through the use of force, violence, assault,

or threat

55. Sexual Assault: Sexual assault, also known as rape, sexual abuse and

sexual battery, is defined as unwanted oral, anal or vaginal penetration

by, or union with, the sexual organ of another or the anal or vaginal

penetration of another by any other object

56. Soliciting For Prostitution: When a person solicits, induces, entices, or

procures another person to engage in prostitution, lewdness, or assigna-

tion

57. Stalking: When a person willfully, maliciously, and repeatedly follows,

harasses, or cyberstalks another person

58. Tampering with a Witness: The act of attempting to alter or prevent

the testimony of witnesses within criminal or civil proceedings

59. Tampering With Physical Evidence: When a person alters, destroys,

suppresses or conceals any record, document or thing with purpose to
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impair its verity, legibility or availability in any o�cial proceeding or

investigation

60. Theft: The taking of another person’s property worth less than $300

61. Threat Against Public Servant: An intentional and unlawful threat

against an emergency medical care provider, firefighter, or law enforce-

ment o�cer, coupled with the apparent ability to carry out the threat,

which creates a genuine and reasonable fear that violence or harm is

imminent

62. Trespassing: Willfully entering or remaining on some form of real prop-

erty without authorization, license, or invitation

63. Unlicensed Telemarketing: When an unlicensed commercial telemarket-

ing company or unlicensed salesperson solicits a purchaser for the pur-

pose of attempting to sell consumer goods or services

66



B. Study Demographic

Questions

Each participant answered the following demographic questions.

Figure B.1: Age
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Figure B.2: Gender

Figure B.3: Race
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Figure B.4: Education Level
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C. Catch-Trial Questions

These questions appeared at random points in the study to check if a partici-

pant was paying attention to the task. Each question has an easily identifiable

correct answer. If a participant answered any of these questions incorrectly,

their response was not used in the study.

Figure C.1: Question to check if participant was paying attention. Correct
answer is “Yes”.
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Figure C.2: Question to check if participant was paying attention. Correct
answer is “Yes”.

Figure C.3: Question to check if participant was paying attention. Correct
answer is “No”.
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D. Results by Demographic

The results of the participants in the first study were analyzed by their various

demographics to determine whether one’s identity a↵ected their accuracy in

predicting recidivism.

Of the 400 participants, 214 self-identified as male and 185 self-identified as

female. One participant self-identified as agender, so they were not included in

either demographic. The average accuracy of the male participants was 62.1%,

and the average accuracy of the female participants was also 62.5%. These

accuracies were compared through a matched-pairs t-test of the 20 indepen-

dent blocks. The test statistic was not significant at the 0.05 critical alpha

level, t(19)= -0.5327, p= 0.6004. Therefore, there is not su�cient evidence to

suggest that the di↵erence in accuracy between the male participants and the

female participants is significantly di↵erent.

Of the 400 participants, 173 reported to be 34 years old or younger, and

227 reported to be over 34 years old. The average accuracy of the younger

participants was 62.4%, and the average accuracy of the older participants

was 62.2%. The test statistic for a matched-pairs t-test was not significant at

the 0.05 critical alpha level, t(19)= 0.4232, p= 0.6769. Therefore, there is not

su�cient evidence to suggest that the di↵erence in accuracy of the younger

participants and the older participants is significantly di↵erent.
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Of the 400 participants, 184 reported to have a Bachelors Degree or higher

(Masters Degree, Doctoral Degree, or Professional Degree), and 216 reported

to have an education level below a Bachelors Degree. The average accuracy of

the participants with the higher level of education was 62.2%, and the aver-

age accuracy of the participants with the lower level of education was 62.4%.

The test statistic for a matched-pairs t-test was not significant at the 0.05

critical alpha level, t(19)= -0.2836, p= 0.7798. Therefore, there is not su�-

cient evidence to suggest that the di↵erence in accuracy of the more educated

participants and the less educated participants is significantly di↵erent.

When asked about their race and ethnicity, 309 of the 400 participants

identified as white. Because there were so few non-white participants, the

accuracies of various races were not examined.

The results of this analysis suggest that ones demographic did not a↵ect

their accuracy in predicting recidivism.
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E. Performance Comparison

Between Studies by

Defendant Race

The individual and crowd performances on the black and white defendants

from each study were directly compared using matched-pairs t-tests of the 20

blocks to determine if the absence of race a↵ected the participants’ ability to

predict recidivism for either race. Shown in Table E.1 are the results of these

tests for the individual participant responses. Shown in Table E.2 are the

results of these tests for the crowd performance. No values were significantly

di↵erent between the studies.
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Category Without Race (%) With Race (%) t(19) p-value

Black Accuracy 63.8 62.7 -1.6519 0.1150
Black False Positive 43.9 46.7 1.8367 0.0819
Black False Negative 31.5 29.8 -1.5345 0.1414

White Accuracy 63.8 65.0 1.5290 0.1427
White False Positive 33.8 30.9 -1.5815 0.1303
White False Negative 40.0 40.3 0.2631 0.7953

Table E.1: Results of t-tests comparing race performance.

Category Without Race (%) With Race(%) t(19) p-value

Black Accuracy 68.2 66.2 -1.7955 0.0885
Black False Positive 37.1 40.0 1.3580 0.1904
Black False Negative 29.2 30.1 0.6111 0.5484

White Accuracy 67.6 67.6 -0.0147 0.9884
White False Positive 27.2 26.2 -0.4383 0.6661
White False Negative 40.2 42.1 0.7080 0.4875

Table E.2: Results of t-tests comparing race performance for crowd.
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