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AA242B: MECHANICAL VIBRATIONS

Direct Time-Integration Methods

These slides are based on the recommended textbook: M. Géradin and D. Rixen, “Mechanical
Vibrations: Theory and Applications to Structural Dynamics,” Second Edition, Wiley, John &
Sons, Incorporated, ISBN-13:9780471975465
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Outline

Stability and Accuracy of Time-Integration Operators

Newmark’s Family of Methods

Explicit Time Integration Using the Central Difference Algorithm
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|—Stability and Accuracy of Time-Integration Operators

LMultistep Time-Integration Methods

m Lagrange's equations of dynamic equilibrium (p(t) = 0)

Mg+Cq+Kg = 0
q0) = ao
q(0) = @

m First-order form

Ag u

= [ = Au]

m Direct time-integration

—A, u

where A = Ag'A,

o o

)

(Ca)-e)
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|—Stability and Accuracy of Time-Integration Operators
L Multistep Time-Integration Methods

m General multistep time-integration method for first-order systems of
the form i = Au

m m
Upy1 = E QjUpy1—j—h E Bilny1—j
=1 =0

where h = t,1 — t, is the computational time-step, u, = u(t,), and
c-|n+1 ]

it = { dn+1
n

is the state-vector calculated at t,,; from the m preceding state
vectors and their derivatives as well as the derivative of the
state-vector at t,;1
m 3y # 0 leads to an implicit scheme — that is, a scheme where the
evaluation of u,11 requires the solution of a system of equations
m o = 0 corresponds to an explicit scheme — that is, a scheme where
the evaluation of u,+1 does not require the solution of any system of,
equations and instead can be deduced directly from the results at the
previous time-steps

_——
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|—Stability and Accuracy of Time-Integration Operators
L Multistep Time-Integration Methods

m General multistep integration method for first-order systems

(continue)
m

m
Uyl = E Qjupii—j—h g Bint1-j
Jj=0

j=t

m trapezoidal rule (implicit)

h,. .
Upi1 = U, + E(un +Unt1) = (EA —Nupyr = —u, — 2
m backward Euler formula (implicit)
Upy1 = U, + hﬁn+1 = (hA - I)un+1 = —Up

m forward Euler formula (explicit)

Upi1 = U, + hi, = uppr = (1 + hA)u,

5/41
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|—Stability and Accuracy of Time-Integration Operators

L Numerical Example: the One-Degree-of-Freedom Oscillator
m Consider an undamped one-degree-of-freedom oscillator
G+wsq =0
with wy = 7 rad/s and the initial displacement
q(0) =1, 4(0) =0
m exact solution

q(t) = coswot
m associated first-order system

u=Au

[0 -k
=[]
u=[q, q]T, and initial condition
0
1

u(0) = [

where
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|—Stability and Accuracy of Time-Integration Operators

L Numerical Example: the One-Degree-of-Freedom Oscillator

m Numerical solution

T
T:35,h:3*2

2k

7/

= Exact solution
= = = Trapezoidal rule|

AN Euler backward
®. == -Euler forward

41
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|—Stability and Accuracy of Time-Integration Operators
LStability Behavior of Numerical Solutions

m Analysis of the characteristic equation of a time-integration method

m consider the first-order system u = Au )
m for this problem, the general multistep method can be written as

m m m
Upp1 = Z QjUnp1—j — hz Bilthy1—j = Z [ajl — hBjAJup1—j =0, g =—1

j=1 j=0 j=0

m let {pr};=7 be the eigenvalues of A and X be the matrix of
associated eigenvectors (X 'AX = diag(p1, -, fir, "+, [in))

m

m the characteristic equation associated with 3" [ojl — hB;Alups1—; =0 is
j=0

obtained by searching for a solution of the form

Unri—m = Xa (decomposition on an eigen basis)
Unii—m)+1 = AUpri—m = AXa (solution form)
Ui = Mp=-—-=Xup 4=---=X1"Xa - "é‘/

where A € C is called the solution amplification factor

8/41
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|—Stability and Accuracy of Time-Integration Operators
LStability Behavior of Numerical Solutions

m Analysis of the characteristic equation of a time-integration method
(continue)

m hence "
> lajl — hBAIA" Xa =0
j=0

m since X 'AX = diag(pa, -+ , ftr, -+ , itn), premultiplying the above
result by X! leads to

Z[all - hﬂjdlag(:u’h s Myt 7:“’")] )\m_j a=0

Jj=0

= Z[a, hBiu ] A" =0, r=1,2,.

m hence, the numerical response u,+1 = A™Xa remains bounded if each
solution of the above characteristic equation of degree m satisfies "é‘/
Ael <1, k=1,---,m
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|—Stability and Accuracy of Time-Integration Operators

LStability Behavior of Numerical Solutions

m Analysis of the characteristic equation of a time-integration method
(continue)

m the stability limit is a circle of unit radius
m in the complex plane of p,h, the stability limit is therefore given by
writing A = /%, 0 < 0 < 21

m . .
Z aje'(m—J)G
— urh =3
S el
j=0
m one-step schemes (m = 1)

ape’® + o —e% + oy

rh = - = -
a Boe® 4+ B Boe® + B é -

10/41



AA242B: MECHANICAL VIBRATIONS 11 /41
|—Stability and Accuracy of Time-Integration Operators

LStability Behavior of Numerical Solutions

m Analysis of the characteristic equation of a time-integration method
(continue)

m one-step schemes (m = 1) (continue)

0406'9 + a1 —6'0 + a1

H = Be® + B~ o + B

m forward Euler: a3 =1, fo =0, 1 =—-1= puh= el —1
the solution is unstable in the entire plane except inside the circle of
unit radius and center —1

B backward Euler: a1 =1, o =—-1, 51 =0=puh=1-— e 0
the solution is stable in the entire plane except inside the circle of

unit radius and center 1 1 1 oisind
B trapezoidal rule: a1 =1, o = —=, f1 = —= = purh= _cfsing
D — 1+ cosf

e

11/41
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|—Stability and Accuracy of Time-Integration Operators

LStability Behavior of Numerical Solutions

m Analysis of the characteristic equation of a time-integration method
(continue)

m application to the single degree-of-freedom oscillator

0 fwg}

G+ wiq =0, A:[l 0

B the eigenvalues are u, = +iwp

B the roots p,h are located in the unstable region of the forward Euler
scheme => amplification of the numerical solution

B the roots p,h are located in the stable region of the backward Euler
scheme = decay of the numerical solution

B the roots p,h are located on the stable boundary of the trapezoidal
rule scheme = the amplitude of the oscillations is preserved

e
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I—Newmark’s Family of Methods
L The Newmark Method

m Taylor's expansion of a function f
h? h 1 th+h
Fta+h) = F(ta) + hF(ta) + (1) + -+ A () + 5 / TR ()t + h— ) dr
s! st Jy,

m Application to the velocities and displacements

. . . tnt1
f=q5s=0 = @1 = @+ / G(r)dr
:‘,, thil | (2)
f=q,5s=1 = Q1 = d,+ha,+ / q(7)(ths1 — T)dT
th

m Given
m any approximation q(7) of §(7) in the time-interval [t,, t,+1] and
any pair of quadrature rules for approximating the resulting integrals

tht1 _ thi1l _
/ q(7)dr and / Aq(7)(ta+1 — 7)dT
t) t)

n

m or any pair of direct "approximations of the time-integrals
th1 thy1
/ §(7)d7 and / q(7)(tny1 — T)dT i '*é*/
th th

(9) leads to a numerical time-integration scheme for solving (1)
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I—Newmark’s Family of Methods
L The Newmark Method

m Taylor expansions of 4, and G,+1 around 7 € [t,, tpi1]

a(r) +ad(7)(ty — 7) + q<4>(T)M L@

(tn+1 - T)2

Qny1 = Q(T) + q(3)(7')(t,,+1 — 7‘) + q(4)(7—)f + .- (4)

dn

m Combine (1 —7) (3) + v (4) and extract ¢(7)

= d(7) = (1= 7)dn + Yins1 + 9 (1) (7 — by — t,) + O(h*q¥)
= Combine (1 —23) (3) + 28 (4) and extract d(7)

= d(7) = (1-2B)dn +2B6n 11+ 9% (7)(T — 2h3 — t) + O(K*q™)

e
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I—Newmark’s Family of Methods
L The Newmark Method

tht1
m Substitute the 1% expression of ¢(7) in / q(r)dr
t

n
thtl tht1
= / q(r)dr / ((1 — ¥)dn + Ylnt1 + q (T)(T — hy —t,) + O( h2 ) dr
J t,

n Ytn

. . I+l (3) 3,(4)
= @ hdn+ i+ [ a0 - by = )+ O()

Jtp

m Apply the mean value theorem

+ O(h*q™)

thi1 . . =y — )2 ]
— / "Nd(r)dr = (1= )hdn+ vhén + a0 (F) [7( o t) ]
tn

2

tn

N . 1 .
(1= Dhin +yhinar + (5 = DHa?(F) + O(h*a®)

th1
m Substitute the 2" expression of q(7) in / q(7)(thy1 — 7)dT
t

n

= [" 4 =T = (5= B + B + (5 — ARV + <'9<'i7“é‘”

n
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I—Newmark’s Family of Methods
L The Newmark Method

m In summary
m VYV~ and Vf3, the following holds true

i1 . .
/ q(7)dT = (1 — v)hdn + vhdpe1 +1a
t,

Y tn

thtl 1 2.. 2.. ’
/ Q) (tris = )dr = (5 = 8) Hin + Bh%nss + 1,
t,

n

where

1 . 1 .
= (5-7) RO+ 0way = (5 - 8) ) + O

and t, < 7 < tay1
m neglecting each of r, and r, on the ground that they are higher-order

functions of the time-step h leads to the following family of
time-integration schemes (Newmark's family) for solving (1)

Qnt1 = Qo+ (1 - W)hdn + vhdn+1 (5)
. 1 .. ..
qn+1 = dn + hqn + h2 (5 - ﬂ) dn + h25qn+1 . (6%i/

where 7y and (3 are quadrature parameters
16 /41
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L Newmark’s Family of Methods
L The Newmark Method
m Particular values of the parameters v and 3

1 1 . . L .
"7=3 and 8 = 3 corresponds to linearly interpolating q(7) in

[tny tn+1]
An(T) =80 + (1 — ) (7(]"“,7_ Qn)
1 1 L .
"y=3 and 8 = 7 corresponds to averaging q(7) in [tn, tat+1]
aav(T) — qn+12+ qn

q(t)

17/41
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I—Newmark’s Family of Methods
L The Newmark Method

m Application to the direct time-integration of Mg + Cq + Kq = p(t)

m write the equilibrium equation at t,+1 and substitute the expressions
(5) and (6) into it

= [M + vhC + B’ K]ént1 = Pns1 — Clan + (1 — 7)héj]
. 1 ..
-K [qn + han + (5 - ,6’) h2qn}
m if the time-step h is uniform, M + vhC + Bh*K can be factored once
m solve the above system of equations for ¢n+1

m substitute the result into the expressions (5) and (6) to obtain qnt1
and qnt1

e
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I—Newmark’s Family of Methods

LConsistency of a Time-Integration Method

m A time-integration scheme is said to be consistent if

. Upi1 — Uy .
lim —— =u(t,
i a(tn
m The Newmark time-integration method is consistent
(1 - ’Y)dn +Ynt1 ..
ol 7 Y . 1 ) ) —| 9
h—0 h h—0 | Qn + (2 - ﬁ) ha, + Bhani1 [ an ]

m Consistency is one necessary condition for convergence

e
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I—Newmark’s Family of Methods
L Stability of a Time-Integration Method

m A time-integration scheme is said to be stable if there exists an
integration time-step hg > 0 so that for any h € [0, hg], a finite
variation of the state vector at time t, induces only a non-increasing
variation of the state-vector u,,; calculated at a subsequent time
thtj

m Stability is the other necessary condition for convergence

20/41
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I—Newmark’s Family of Methods

L Stability of a Time-Integration Method

m Premultiplying Eq. (5) and Eq. (6) by M and taking into account
the equations of equilibrium (1) at t, and t,1 leads after some
algebraic manipulations to

qu+1 =
+
Mq,1 =

+

Mq, +.h(1 —7)[-Can — Ka, + ps]
Yh[—CQns1 — KAni1 + Poi]

. 1 .
qu + hMQn + (E - ﬂ)hz[—cqn - an + pn]
6h2[7CQn+1 - an+1 + pn+1] (7)

21/41
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I—Newmark’s Family of Methods
L Stability of a Time-Integration Method

m Equations (7) can be re-written in matrix form as
Upi1 = A(h)u, + gny1(h)

where A is the amplification matrix associated with the integration
operator

A(h) = Hil(h)HO(h)’ gnt+1 = Hfl(h)bn+1(h)

. 1(1 — 7)hpn + Yhpoi1 [ M4k ~hK
= (5 - B) Wpn+ Bhppey |7 2T BRC M+ BhK

—M + (1 — ~v)hC (1 —~)hK :|
2

HU__{ <1—5)h2c—hm —M+<%—ﬂ>h2K

e
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I—Newmark’s Family of Methods
L Stability of a Time-Integration Method

m Effect of an initial disturbance

m fup = u6 — Ug
— Oup1 = A(h)du, = A’(h)dup,_1 = --- = A(h)" " 6uo
m consider the eigenpairs of A(h)
(Ar, x/)

m then

2N 2N

Sun1 = A" (h) Z asxs = Z as Al xs
s=1 s=1

where N is the dimension of the semi-discrete second-order

dynamical system

= dup41 will be amplified by the time-integration operator only if

the modulus of an eigenvalue of A(h) is greater than unity

23 /41

= dupt1 will not be amplified by the time-integration operator if ,a,L&i/

moduli of all eigenvalues of A(h) are less than unity

23/41
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I—Newmark’s Family of Methods
L Stability of a Time-Integration Method

m Undamped case
B decouple the equations of equilibrium by writing them (for the purpose of analysis) in

the modal basis
N

. 2
a=Qy=>_ya, = j +wiy = pi(t)
i=1
B apply the Newmark scheme to the i-th modal equation recalled above to obtain the
amplification matrix

2,2 2,2
w2k w?h
loy—ls =Wl (11— F—iy
A(h) = 1+Bw2h 1+Bwh
N 1-1 wih?
1+Bw?h? 2 1+Bw?h?

B characteristic equation is A — X (2 — (v + 3)1n?) + 1 — (v — 3)n? = 0 where

242
2 wih

n = 1+ﬂw,'2h2

B characteristic equation has:
B a pair of complex conjugate roots A\; and Ay if
1)2 4 12 2 P —
O+3)° -4 Fp e () <4 i=1 o Nasel) ”é_/

B two identical real roots if (v + %)2 n? = 4 (case 2)

m two distinct real roots if (v + %)2 n? > 4 (case 3)

24/41
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I—Newmark’s Family of Methods
L Stability of a Time-Integration Method

m Undamped case (continue)
m it can be shown that case 1 is the limiting case, in which case
M2 = pe?

where

1
= 1—(~v—2)n2
P (7 2)n
m/1—z(v+ 3

¢ = arctan
1-3(y+3)m?

m then, the Newmark scheme is stable if

p<l=y2

N =

and

1\’ 4 ,
—> limitation on the maximum time-step

25/41
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I—Newmark’s Family of Methods
L Stability of a Time-Integration Method

m Undamped case (continue)
m the algorithm is conditionally stable if

V2

N =

1 2
(’Y + E) — that

1 1 1\?
> = d > = —
7_2 an /3_4<v+2>

NN

m it is unconditionally stable if furthermore g >

is,

m the choice v = %

time-integration operator of maximum accuracy
o

1 i
and 5 = 1 leads to an unconditionally stable

26 /41
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I—Newmark’s Family of Methods

L Stability of a Time-Integration Method

m Undamped case (continue)

— |
B Il
&
~N
1 unconditionally :/N
stable %’
@ <
g
1/2 2
3
1/4 conditionally stable
/ (y+ %)’ - 4B < 4/w’h?

1/2 1 3/2 2

Stability of the Newmark scheme

27 /41
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I—Newmark’s Family of Methods
L Stability of a Time-Integration Method

m Damped case (C # 0)

m consider the case of modal damping
m then, the uncoupled equations of motion are

Vi + 2&iwiyi + w,—2yi = pi(t)
where &; is the modal damping coefficient

_ 1 1
m consider the case y = =, B =~

m an analysis similar to that performed in the undamped case reveals
that in this case, the Newmark scheme remains stable as long as
&<1

m in general, damping has a stabilizing effect for moderate values of &;

e
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I—Newmark’s Family of Methods
L Amplitude and Periodicity Errors

m Free-vibration of an undamped linear oscillator

1 0
m the above problem has an exact solution y(t) = yp coswt which can
be written in complex discrete form as yp,+1 = ei“’hyn = the exact
amplification factor is pex = 1 and the exact phase is ¢ex = wh
m the numerical solution satisfies

Upi1 = |: Yn+1 :| — A(h)u,,

y+wy=0 and y(0) =y, y(0)=0 A=

Ynt+1

m let A12(3,7) be the eigenvalues of A(h, 3,7)
m when (7 + %)2 —4p8 < #, A1 and A2 are complex-conjugate

M2(B,7) = p(B,)e )
_ L\ o g e | VA i+ 30 - w?h%éﬁ/
p= —< >777 ¢ = arctan W , ﬂ—m

29/41
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I—Newmark’s Family of Methods
L Amplitude and Periodicity Errors

m Free-vibration of an undamped linear oscillator (continue)
m amplitude error
1 1
p_pex:p_]-:_* Y- = w2h2+(9(h4)
2 2
m relative periodicity error
AL 1_ 1
ﬂzl_w_ih_lzl(5_i)w2h2+@(h3)

= T =
T v o} 2 12

o=

e
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I—Newmark’s Family of Methods

L Amplitude and Periodicity Errors

acceleration

Stability | Amplitude Periodicity
Algorithm v B limit error error
AT
wh P 2—21 S
Purely explicit 0 0 0 % —
2
Central difference % 0 2 0 — %
Fox & Goodwin L 2.45 0 o(h*)
. . 1 1 w?h?
Linear acceleration 3 5 3.46 0 5
2,2
Average constant i 1 L) 0 woh”

Table: Time-integration schemes of the Newmark family

m The purely explicit scheme (v =0, 8 = 0) is useless

m The Fox & Godwin scheme has asymptotically the smallest phase

error but is only conditionally stable

1
4

31/41

1
m The average constant acceleration scheme (y = > B = —)is the é

unconditionally stable scheme with asymptotically the highest

accuracy
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I—Newmark’s Family of Methods
LTotal Energy Conservation

m Conservation of total energy
m dynamic system with scleronomic constraints

d =

s=1

T = %quq and V = %qTKq

m the dissipation function D is a quadratic function of the velocities
1.7...
D=>q C
54 Cq

m external force component of the power balance
ns
. T
D> Qg =a'p
s=1

m integration over a time-step [tn, tnt1]

e

32/41
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TVt = [ (-aTca+ Tt
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I—Newmark’s Family of Methods
LTotal Energy Conservation

m Conservation of total energy (continue)
B note that because M and K are symmetric (M” = M and K” = K)

1. . . .
[T+ V]EZ-H = [777+1 - 7:7] + [Vn+1 - Vn] = E(qn+1 - Qn)TM(QN+1 + Cln)

1
+ E(qn+1 - Qn)TK(qn+1 + qn)

B when time-integration is performed using the Newmark algorithm with

¥ = 5 B = T the above variation becomes (see (5) and (6))

1 h . . . .
[T+ V]i:Jrl = 5(‘1!&1 - Qn)T(Pn + Pnt1) — Z(qn+1 + QN)TC(Qn+1 +4,)

B when applied to a conservative system (C = 0 and p = 0), preserves the total energy

¢ . T -

B for non-conservative systems, [T + V], 1l — jtn"“(quCq + " p)dt and therefore
both terms in the right-hand side of the above formula result from numerical
quadrature relationships that are consistent with the time-integration operator

thil | thil Pn + Pnt1 1
/ q'pdt =~ (/ qut) (%) = 5@ = a0) (P + poi1)
tn
”*1 qn + Ant1 1 qn + CI +1
Cl——— —(qnt1 — l3In
2 T2
h
1

"t
/ 47 cqdt
tn
(Qns1 + qn) C(4ns1 + dn)

Q
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|—Explicit Time Integration Using the Central Difference Algorithm

L Algorithm in Terms of Velocities

= Central Difference (CD) scheme = Newmark's with v = %, 3 =0

. . qn + dn 1

dnt1 = Aot hn+1(%) (8)
h? 1

dn+1 = qp+ hn+1qn + ’72+ qn

where h,11 = thy1 — ty
m Equivalent three-step form

m start with
. h .. . hn ..
qn = Qn-1 + thnfl + 7qn71 =(gn-1 + hn qn—1 + 7%71 (9)
—_————
q,_1
2
m divide by h, and subtract the result from q,+1 divided by h,+1
m account for the relationship (8)

hn(qn+1 - qn) - hn+1(qn - qn—l) (10%

— a, =
ar hy 3y hnhn

— hn + hn+l

where hn+% 2 34741
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|—Explicit Time Integration Using the Central Difference Algorithm

L Algorithm in Terms of Velocities

m Case of a constant time-step h

_ Gn+1 — 20np +Qp—1

Eln h2

m Efficient implementation

B use a lumped mass matrix M

L 1 . . hy
initialize: o = M™"(po — Kqo) and 41 = qo + qu
2
increment the displacement: q, = q,—1+ hnq, 1 (see (9))
2

compute the acceleration: ¢, = M_l(p,, — Kaq,) (enforce equilibrium at t,)
increment the velocity at half time-step (formula results from (10))

] ) ) ) 4,,1—9,_1
9.1 =9, 1 +h 180 & b= ———

m Stability condition: for y =1/2 and 8 =0, ('y + %)2 —48 < w24h2 = werh < 2 where
cr
wer is the highest frequency contained in the model — this condition is also known as the
Courant condition é -

B he =

is referred to here as the maximum Courant stability time-step
Wer

35/41
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|—Explicit Time Integration Using the Central Difference Algorithm

LApplicatitm Example: the Clamped-Free Bar Excited by an End Load

m Clamped bar subjected to a step load at its free end

m Model made of N = 20 finite elements with equal length | = N

EA F
. B
> 1 6263 ¢ ( ) @ 6 196 20 &—>

1 2 3

17 18 19 20

<

L
® lumped mass matrix
m Eigenfrequencies of the continuous system

w | EA 2r—1\ n© | EA 2r—1
Weont: = (2r =D5\ T =" )3V mE ~ "W

NS

36/41
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|—Explicit Time Integration Using the Central Difference Algorithm

LApplication Example: the Clamped-Free Bar Excited by an End Load

m Finite element stiffness and mass matrices

2 1
2
5 0 1 2 1 0
ml 2 EA —1 2
M=— K=—
2 /
—1
0 2 1 0 -1 2 -1
-1 1

m Analytical frequencies of the discrete system

EA . 2r— 1\ =« . 2r— 1\ =«
—— sin - = 2sin -, r=1,2, ---N
2 2N 2

w, =2
mi2 2N
wer < wer(r=N,N = c0) =2

=

m Critical time-step for the CD algorithm

Werher =2 = he =1

37/41



AA242B: MECHANICAL VIBRATIONS 38/41
|—Explicit Time Integration Using the Central Difference Algorithm
LApplication Example: the Clamped-Free Bar Excited by an End Load

m h=1 h=0.707

Node 1 Node 10

Displacement
Displacement
=)

0 50 100 150 0 50 100 150
Time Time

Node 20 Node 10

Displacement
N
S
Velocity

0 50 100 150 ~o 50 100 150
Time Time

38/41



AA242B: MECHANICAL VIBRATIONS 39/41
|—Explicit Time Integration Using the Central Difference Algorithm
LApplication Example: the Clamped-Free Bar Excited by an End Load

m h=1.0012

Node 10 Node 20

—h = 1.0012 80 —h =1.0012

Displacement
o
Displacement

0 50 100 150 [ 50 100 150
Time Time
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|—Explicit Time Integration Using the Central Difference Algorithm
LRestitution of the Exact Solution by the Central Difference Method

m For the clamped-free bar example, the CD method computes the
exact solution when h = h,,
m Comparison of the exact solution of the continuous free-vibration bar

problem and the analytical expression of the numerical solution
m denote by g;,, the value of the j-th d.o.f. at time t,
m if gj,n is not located at the boundary, it satisfies (see (11))
ml EA
52 (i1 = 2Gj0 + Gjn—1) + =~ (=Gj—1n + 2Gj.0 — Gj41.n) =0
m the general solution of the above problem is

Gj.n = sin(ju+ ¢) [acosnd + bsin nd] (12)

spatial component temporal component

m comparing the above expression to the exact harmonic solution of
the continuous form of this free-vibration problem (which can be
derived analytically)
e
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|—Explicit Time Integration Using the Central Difference Algorithm
LRestitution of the Exact Solution by the Central Difference Method

m Comparison of the exact solution of the free-vibration bar problem
and the analytical expression of the numerical solution (continue)
m introduce the exact expression for gj , in the CD scheme

2[(1 — cos ) — A*(1 — cos0)]gj.n =0

EA) 2 R
m make use of the boundary conditions in space (qo,n =0, and plug
(12) in the last equation in (11))

= ¢=0and y, = (¥3*) 3, reN

Py 1 1 1
whereA2:<m ) =57 = 1—cosf = (1 —cosp)

1
=1—cosf, = F(l — COos fir)
m special case A2 =1 (h=he=1) =0, = pu, and

w _&_ _(2r—1 ™ ﬂ_ 2r—1 ™
me = = =T )2V e TN ) 2

= the r-th numerical frequency coincides with the r-th
eigenfrequency of the continuous system
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