AA242B: MECHANICAL VIBRATIONS

Direct Time-Integration Methods

These slides are based on the recommended textbook: M. Géradin and D. Rixen, "Mechanical Vibrations: Theory and Applications to Structural Dynamics," Second Edition, Wiley, John \& Sons, Incorporated, ISBN-13:9780471975465

Outline

1 Stability and Accuracy of Time-Integration Operators

2 Newmark's Family of Methods

3 Explicit Time Integration Using the Central Difference Algorithm

AA242B: MECHANICAL VIBRATIONS

Stability and Accuracy of Time-Integration Operators

Multistep Time-Integration Methods

- Lagrange's equations of dynamic equilibrium $(\mathbf{p}(t)=\mathbf{0})$

$$
\begin{align*}
\mathbf{M} \ddot{\mathbf{q}}+\mathbf{C} \dot{\mathbf{q}}+\mathbf{K q} & =\mathbf{0} \\
\mathbf{q}(0) & =\mathbf{q}_{0} \tag{1}\\
\dot{\mathbf{q}}(0) & =\dot{\mathbf{q}}_{0}
\end{align*}
$$

- First-order form

$$
\begin{gathered}
\underbrace{\left(\begin{array}{cc}
\mathbf{0} & \mathbf{M} \\
\mathbf{M} & \mathbf{C}
\end{array}\right)}_{\mathbf{A}_{B}} \underbrace{\binom{\ddot{\mathbf{q}}}{\dot{\mathbf{q}}}}_{\dot{\mathbf{u}}}+\underbrace{\left(\begin{array}{cc}
-\mathbf{M} & \mathbf{0} \\
\mathbf{0} & \mathbf{K}
\end{array}\right)}_{-\mathbf{A}_{A}} \underbrace{\binom{\dot{\mathbf{q}}}{\mathbf{q}}}_{\mathbf{u}}=\underbrace{\binom{\mathbf{0}}{\mathbf{0}}}_{\mathbf{0}} \\
\Longrightarrow \dot{\mathbf{u}}=\mathbf{A u} \quad \text { where } \mathbf{A}=\mathbf{A}_{B}^{-1} \mathbf{A}_{A}
\end{gathered}
$$

- Direct time-integration

AA242B: MECHANICAL VIBRATIONS

Stability and Accuracy of Time-Integration Operators

Multistep Time-Integration Methods

- General multistep time-integration method for first-order systems of the form $\dot{\mathbf{u}}=\mathbf{A u}$

$$
\mathbf{u}_{n+1}=\sum_{j=1}^{m} \alpha_{j} \mathbf{u}_{n+1-j}-h \sum_{j=0}^{m} \beta_{j} \dot{\mathbf{u}}_{n+1-j}
$$

where $h=t_{n+1}-t_{n}$ is the computational time-step, $\mathbf{u}_{n}=\mathbf{u}\left(t_{n}\right)$, and

$$
\mathbf{u}_{n+1}=\left[\begin{array}{c}
\dot{\mathbf{q}}_{n+1} \\
\mathbf{q}_{n+1}
\end{array}\right]
$$

is the state-vector calculated at t_{n+1} from the m preceding state vectors and their derivatives as well as the derivative of the state-vector at t_{n+1}

- $\beta_{0} \neq 0$ leads to an implicit scheme - that is, a scheme where the evaluation of \mathbf{u}_{n+1} requires the solution of a system of equations
- $\beta_{0}=0$ corresponds to an explicit scheme - that is, a scheme where the evaluation of \mathbf{u}_{n+1} does not require the solution of any system of equations and instead can be deduced directly from the results at the previous time-steps

AA242B: MECHANICAL VIBRATIONS

Stability and Accuracy of Time-Integration Operators

Multistep Time-Integration Methods

■ General multistep integration method for first-order systems (continue)

$$
\mathbf{u}_{n+1}=\sum_{j=1}^{m} \alpha_{j} \mathbf{u}_{n+1-j}-h \sum_{j=0}^{m} \beta_{j} \dot{\mathbf{u}}_{n+1-j}
$$

- trapezoidal rule (implicit)

$$
\mathbf{u}_{n+1}=\mathbf{u}_{n}+\frac{h}{2}\left(\dot{\mathbf{u}}_{n}+\dot{\mathbf{u}}_{n+1}\right) \Rightarrow\left(\frac{h}{2} \mathbf{A}-\mathbf{I}\right) \mathbf{u}_{n+1}=-\mathbf{u}_{n}-\frac{h}{2} \dot{\mathbf{u}}_{n}
$$

■ backward Euler formula (implicit)

$$
\mathbf{u}_{n+1}=\mathbf{u}_{n}+h \dot{\mathbf{u}}_{n+1} \Rightarrow(h \mathbf{A}-\mathbf{I}) \mathbf{u}_{n+1}=-\mathbf{u}_{n}
$$

■ forward Euler formula (explicit)

$$
\mathbf{u}_{n+1}=\mathbf{u}_{n}+h \dot{\mathbf{u}}_{n} \Rightarrow \mathbf{u}_{n+1}=(\mathbf{I}+h \mathbf{A}) \mathbf{u}_{n}
$$

AA242B: MECHANICAL VIBRATIONS

Stability and Accuracy of Time-Integration Operators

Numerical Example: the One-Degree-of-Freedom Oscillator

■ Consider an undamped one-degree-of-freedom oscillator

$$
\ddot{q}+\omega_{0}^{2} q=0
$$

with $\omega_{0}=\pi \mathrm{rad} / \mathrm{s}$ and the initial displacement

$$
q(0)=1, \dot{q}(0)=0
$$

- exact solution

$$
q(t)=\cos \omega_{0} t
$$

- associated first-order system

$$
\dot{\mathbf{u}}=\mathbf{A} \mathbf{u}
$$

where

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & -\omega_{0}^{2} \\
1 & 0
\end{array}\right]
$$

$\mathbf{u}=[\dot{q}, q]^{T}$, and initial condition

$$
\mathbf{u}(0)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

AA242B: MECHANICAL VIBRATIONS

Stability and Accuracy of Time-Integration Operators

Numerical Example: the One-Degree-of-Freedom Oscillator

- Numerical solution

$$
T=3 s, h=\frac{T}{32}
$$

AA242B: MECHANICAL VIBRATIONS

Stability and Accuracy of Time-Integration Operators

Stability Behavior of Numerical Solutions

- Analysis of the characteristic equation of a time-integration method
- consider the first-order system $\dot{\mathbf{u}}=\mathbf{A u}$
- for this problem, the general multistep method can be written as

$$
\mathbf{u}_{n+1}=\sum_{j=1}^{m} \alpha_{j} \mathbf{u}_{n+1-j}-h \sum_{j=0}^{m} \beta_{j} \dot{\mathbf{u}}_{n+1-j} \Rightarrow \sum_{j=0}^{m}\left[\alpha_{j} \mathbf{I}-h \beta_{j} \mathbf{A}\right] \mathbf{u}_{n+1-j}=0, \quad \alpha_{0}=-1
$$

■ let $\left\{\mu_{r}\right\}_{r=1}^{r=n}$ be the eigenvalues of \mathbf{A} and \mathbf{X} be the matrix of associated eigenvectors $\left(\mathbf{X}^{-1} \mathbf{A} \mathbf{X}=\operatorname{diag}\left(\mu_{1}, \cdots, \mu_{r}, \cdots, \mu_{n}\right)\right)$

- the characteristic equation associated with $\sum_{j=0}^{m}\left[\alpha_{j} \mathbf{I}-h \beta_{j} \mathbf{A}\right] \mathbf{u}_{n+1-j}=0$ is obtained by searching for a solution of the form

$$
\begin{aligned}
\mathbf{u}_{n+1-m} & =\mathbf{X a} \quad \text { (decomposition on an eigen basis) } \\
\mathbf{u}_{(n+1-m)+1} & =\lambda \mathbf{u}_{n+1-m}=\lambda \mathbf{X} \mathbf{a} \quad \text { (solution form) } \\
\vdots & \\
\mathbf{u}_{n+1} & =\lambda \mathbf{u}_{n}=\cdots=\lambda^{k} \mathbf{u}_{n+1-k}=\cdots=\lambda^{m} \mathbf{X} \mathbf{a}
\end{aligned}
$$

where $\lambda \in \mathbb{C}$ is called the solution amplification factor

AA242B: MECHANICAL VIBRATIONS

Stability and Accuracy of Time-Integration Operators

Stability Behavior of Numerical Solutions

- Analysis of the characteristic equation of a time-integration method (continue)
- hence

$$
\sum_{j=0}^{m}\left[\alpha_{j} \mathbf{I}-h \beta_{j} \mathbf{A}\right] \lambda^{m-j} \mathbf{X} \mathbf{a}=\mathbf{0}
$$

■ since $\mathbf{X}^{-1} \mathbf{A} \mathbf{X}=\operatorname{diag}\left(\mu_{1}, \cdots, \mu_{r}, \cdots, \mu_{n}\right)$, premultiplying the above result by \mathbf{X}^{-1} leads to

$$
\begin{aligned}
& {\left[\sum_{j=0}^{m}\left[\alpha_{j} \mathbf{I}-h \beta_{j} \operatorname{diag}\left(\mu_{1}, \cdots, \mu_{r}, \cdots, \mu_{n}\right)\right] \lambda^{m-j}\right] \mathbf{a}=\mathbf{0}} \\
& \quad \Longrightarrow \sum_{j=0}^{m}\left[\alpha_{j}-h \beta_{j} \mu_{r}\right] \lambda^{m-j}=0, r=1,2, \cdots, n
\end{aligned}
$$

■ hence, the numerical response $\mathbf{u}_{n+1}=\lambda^{m} \mathbf{X}$ a remains bounded if each solution of the above characteristic equation of degree m satisfies $\left|\lambda_{k}\right|<1, k=1, \cdots, m$

AA242B: MECHANICAL VIBRATIONS

Stability and Accuracy of Time-Integration Operators

Stability Behavior of Numerical Solutions

- Analysis of the characteristic equation of a time-integration method (continue)

■ the stability limit is a circle of unit radius
■ in the complex plane of $\mu_{r} h$, the stability limit is therefore given by writing $\lambda=e^{i \theta}, 0 \leq \theta \leq 2 \pi$

$$
\Longrightarrow \mu_{r} h=\frac{\sum_{j=0}^{m} \alpha_{j} e^{i(m-j) \theta}}{\sum_{j=0}^{m} \beta_{j} e^{i(m-j) \theta}}
$$

■ one-step schemes ($m=1$)

$$
\mu_{r} h=\frac{\alpha_{0} e^{i \theta}+\alpha_{1}}{\beta_{0} e^{i \theta}+\beta_{1}}=\frac{-e^{i \theta}+\alpha_{1}}{\beta_{0} e^{i \theta}+\beta_{1}}
$$

AA242B: MECHANICAL VIBRATIONS

Stability and Accuracy of Time-Integration Operators

Stability Behavior of Numerical Solutions

- Analysis of the characteristic equation of a time-integration method (continue)
- one-step schemes ($m=1$) (continue)

$$
\mu_{r} h=\frac{\alpha_{0} e^{i \theta}+\alpha_{1}}{\beta_{0} e^{i \theta}+\beta_{1}}=\frac{-e^{i \theta}+\alpha_{1}}{\beta_{0} e^{i \theta}+\beta_{1}}
$$

- forward Euler: $\alpha_{1}=1, \beta_{0}=0, \beta_{1}=-1 \Rightarrow \mu_{r} h=e^{i \theta}-1$ the solution is unstable in the entire plane except inside the circle of unit radius and center -1
- backward Euler: $\alpha_{1}=1, \beta_{0}=-1, \beta_{1}=0 \Rightarrow \mu_{r} h=1-e^{-i \theta}$ the solution is stable in the entire plane except inside the circle of unit radius and center 1
- trapezoidal rule: $\alpha_{1}=1, \beta_{0}=-\frac{1}{2}, \beta_{1}=-\frac{1}{2} \Rightarrow \mu_{r} h=\frac{2 i \sin \theta}{1+\cos \theta}$ the solution is stable in the entire left-hand plane

AA242B: MECHANICAL VIBRATIONS

Stability and Accuracy of Time-Integration Operators

Stability Behavior of Numerical Solutions

- Analysis of the characteristic equation of a time-integration method (continue)
- application to the single degree-of-freedom oscillator

$$
\ddot{q}+\omega_{0}^{2} q=0, \quad \mathbf{A}=\left[\begin{array}{cc}
0 & -\omega_{0}^{2} \\
1 & 0
\end{array}\right]
$$

- the eigenvalues are $\mu_{r}= \pm i \omega_{0}$

■ the roots $\mu_{r} h$ are located in the unstable region of the forward Euler scheme \Rightarrow amplification of the numerical solution

- the roots $\mu_{r} h$ are located in the stable region of the backward Euler scheme \Rightarrow decay of the numerical solution
- the roots $\mu_{r} h$ are located on the stable boundary of the trapezoidal rule scheme \Rightarrow the amplitude of the oscillations is preserved

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

The Newmark Method

- Taylor's expansion of a function f

$$
f\left(t_{n}+h\right)=f\left(t_{n}\right)+h f^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} f^{\prime \prime}\left(t_{n}\right)+\cdots+\frac{h^{s}}{s!} f^{(s)}\left(t_{n}\right)+\frac{1}{s!} \int_{t_{n}}^{t_{n}+h} f^{(s+1)}(\tau)\left(t_{n}+h-\tau\right)^{s} d \tau
$$

- Application to the velocities and displacements

$$
\begin{align*}
& f=\dot{\mathbf{q}}, s=0 \quad \Rightarrow \quad \dot{\mathbf{q}}_{n+1}=\dot{\mathbf{q}}_{n}+\int_{t_{n}}^{t_{n+1}} \ddot{\mathbf{q}}(\tau) d \tau \\
& f=\mathbf{q}, s=1 \quad \Rightarrow \quad \mathbf{q}_{n+1}=\mathbf{q}_{n}+h \dot{\mathbf{q}}_{n}+\int_{t_{n}}^{t_{n+1}} \ddot{\mathbf{q}}(\tau)\left(t_{n+1}-\tau\right) d \tau \tag{2}
\end{align*}
$$

- Given

■ any approximation $\overline{\mathbf{q}}(\tau)$ of $\ddot{\mathbf{q}}(\tau)$ in the time-interval $\left[t_{n}, t_{n+1}\right]$ and any pair of quadrature rules for approximating the resulting integrals

$$
\int_{t_{n}}^{t_{n+1}} \overline{\mathbf{q}}(\tau) d \tau \text { and } \int_{t_{n}}^{t_{n+1}} \overline{\mathbf{q}}(\tau)\left(t_{n+1}-\tau\right) d \tau
$$

- or any pair of direct approximations of the time-integrals

$$
\int_{t_{n}}^{t_{n+1}} \ddot{\mathbf{q}}(\tau) d \tau \text { and } \int_{t_{n}}^{t_{n+1}} \ddot{\mathbf{q}}(\tau)\left(t_{n+1}-\tau\right) d \tau
$$

(9) leads to a numerical time-integration scheme for solving (1)

Newmark's Family of Methods

The Newmark Method

■ Taylor expansions of $\ddot{\mathbf{q}}_{n}$ and $\ddot{\mathbf{q}}_{n+1}$ around $\tau \in\left[t_{n}, t_{n+1}\right]$

$$
\begin{align*}
\ddot{\mathbf{q}}_{n} & =\ddot{\mathbf{q}}(\tau)+\mathbf{q}^{(3)}(\tau)\left(t_{n}-\tau\right)+\mathbf{q}^{(4)}(\tau) \frac{\left(t_{n}-\tau\right)^{2}}{2}+\cdots \tag{3}\\
\ddot{\mathbf{q}}_{n+1} & =\ddot{\mathbf{q}}(\tau)+\mathbf{q}^{(3)}(\tau)\left(t_{n+1}-\tau\right)+\mathbf{q}^{(4)}(\tau) \frac{\left(t_{n+1}-\tau\right)^{2}}{2}+\cdots \tag{4}
\end{align*}
$$

■ Combine $(1-\gamma)(3)+\gamma(4)$ and extract $\ddot{\mathbf{q}}(\tau)$

$$
\Longrightarrow \ddot{\mathbf{q}}(\tau)=(1-\gamma) \ddot{\mathbf{q}}_{n}+\gamma \ddot{\mathbf{q}}_{n+1}+\mathbf{q}^{(3)}(\tau)\left(\tau-h \gamma-t_{n}\right)+\mathcal{O}\left(h^{2} \mathbf{q}^{(4)}\right)
$$

■ Combine $(1-2 \beta)(3)+2 \beta(4)$ and extract $\ddot{\mathbf{q}}(\tau)$

$$
\Longrightarrow \ddot{\mathbf{q}}(\tau)=(1-2 \beta) \ddot{\mathbf{q}}_{n}+2 \beta \ddot{\mathbf{q}}_{n+1}+\mathbf{q}^{(3)}(\tau)\left(\tau-2 h \beta-t_{n}\right)+\mathcal{O}\left(h^{2} \mathbf{q}^{(4)}\right)
$$

Newmark's Family of Methods

The Newmark Method

- Substitute the $1^{\text {st }}$ expression of $\ddot{\mathbf{q}}(\tau)$ in $\int_{t_{n}}^{t_{n+1}} \ddot{\mathbf{q}}(\tau) d \tau$

$$
\begin{aligned}
\Longrightarrow \int_{t_{n}}^{t_{n+1}} \ddot{\mathbf{q}}(\tau) d \tau & =\int_{t_{n}}^{t_{n+1}}\left((1-\gamma) \ddot{\mathbf{q}}_{n}+\gamma \ddot{\mathbf{q}}_{n+1}+\mathbf{q}^{(3)}(\tau)\left(\tau-h \gamma-t_{n}\right)+\mathcal{O}\left(h^{2} \mathbf{q}^{(4)}\right)\right) d \tau \\
& =(1-\gamma) h \ddot{\mathbf{q}}_{n}+\gamma h \ddot{\mathbf{q}}_{n+1}+\int_{t_{n}}^{t_{n+1}} \mathbf{q}^{(3)}(\tau)\left(\tau-h \gamma-t_{n}\right) d \tau+\mathcal{O}\left(h^{3} \mathbf{q}^{(4)}\right)
\end{aligned}
$$

- Apply the mean value theorem

$$
\begin{aligned}
\Longrightarrow \int_{t_{n}}^{t_{n+1}} \ddot{\mathbf{q}}(\tau) d \tau & =(1-\gamma) h \ddot{\mathbf{q}}_{n}+\gamma h \ddot{\mathbf{q}}_{n+1}+\mathbf{q}^{(3)}(\tilde{\tau})\left[\frac{\left(\tau-h \gamma-t_{n}\right)^{2}}{2}\right]_{t_{n}}^{t_{n+1}}+\mathcal{O}\left(h^{3} \mathbf{q}^{(4)}\right) \\
& =(1-\gamma) h \ddot{\mathbf{q}}_{n}+\gamma h \ddot{\mathbf{q}}_{n+1}+\left(\frac{1}{2}-\gamma\right) h^{2} \mathbf{q}^{(3)}(\tilde{\tau})+\mathcal{O}\left(h^{3} \mathbf{q}^{(4)}\right)
\end{aligned}
$$

■ Substitute the $2^{\text {nd }}$ expression of $\ddot{\mathbf{q}}(\tau)$ in $\int_{t_{n}}^{t_{n+1}} \ddot{\mathbf{q}}(\tau)\left(t_{n+1}-\tau\right) d \tau$

$$
\Longrightarrow \int_{t_{n}}^{t_{n+1}} \ddot{\mathbf{q}}(\tau)\left(t_{n+1}-\tau\right) d \tau=\left(\frac{1}{2}-\beta\right) h^{2} \ddot{\mathbf{q}}_{n}+\beta h^{2} \ddot{\mathbf{q}}_{n+1}+\left(\frac{1}{6}-\beta\right) h^{3} \mathbf{q}^{(3)}(\tilde{\tau})+\widetilde{\mathcal{O}\left(h^{4} \mathbf{q}^{(4)}\right)}
$$

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

The Newmark Method

- In summary

■ $\forall \gamma$ and $\forall \beta$, the following holds true

$$
\begin{gathered}
\int_{t_{n}}^{t_{n+1}} \ddot{\mathbf{q}}(\tau) d \tau=(1-\gamma) h \ddot{\mathbf{q}}_{n}+\gamma h \ddot{\mathbf{q}}_{n+1}+\mathbf{r}_{n} \\
\int_{t_{n}}^{t_{n+1}} \ddot{\mathbf{q}}(\tau)\left(t_{n+1}-\tau\right) d \tau=\left(\frac{1}{2}-\beta\right) h^{2} \ddot{\mathbf{q}}_{n}+\beta h^{2} \ddot{\mathbf{q}}_{n+1}+\mathbf{r}_{n}^{\prime}
\end{gathered}
$$

where

$$
\begin{aligned}
& \mathbf{r}_{n}=\left(\frac{1}{2}-\gamma\right) h^{2} \mathbf{q}^{(3)}(\tilde{\tau})+\mathcal{O}\left(h^{3} \mathbf{q}^{(4)}\right) ; \quad \mathbf{r}_{n}^{\prime}=\left(\frac{1}{6}-\beta\right) h^{3} \mathbf{q}^{(3)}(\tilde{\tau})+\mathcal{O}\left(h^{4} \mathbf{q}^{(4)}\right) \\
& \text { and } t_{n}<\tilde{\tau}<t_{n+1}
\end{aligned}
$$

■ neglecting each of \mathbf{r}_{n} and \mathbf{r}_{n}^{\prime} on the ground that they are higher-order functions of the time-step h leads to the following family of time-integration schemes (Newmark's family) for solving (1)

$$
\begin{align*}
\dot{\mathbf{q}}_{n+1} & =\dot{\mathbf{q}}_{n}+(1-\gamma) h \ddot{\mathbf{q}}_{n}+\gamma h \ddot{\mathbf{q}}_{n+1} \tag{5}\\
\mathbf{q}_{n+1} & =\mathbf{q}_{n}+h \dot{\mathbf{q}}_{n}+h^{2}\left(\frac{1}{2}-\beta\right) \ddot{\mathbf{q}}_{n}+h^{2} \beta \ddot{\mathbf{q}}_{n+1} \tag{6}
\end{align*}
$$

where γ and β are quadrature parameters

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

The Newmark Method

- Particular values of the parameters γ and β
- $\gamma=\frac{1}{2}$ and $\beta=\frac{1}{6}$ corresponds to linearly interpolating $\ddot{\mathbf{q}}(\tau)$ in $\left[t_{n}, t_{n+1}\right]$

$$
\overline{\overrightarrow{\mathbf{q}}}_{n}(\tau)=\ddot{\mathbf{q}}_{n}+\left(\tau-t_{n}\right)\left(\frac{\ddot{\mathbf{q}}_{n+1}-\ddot{\mathbf{q}}_{n}}{h}\right)
$$

- $\gamma=\frac{1}{2}$ and $\beta=\frac{1}{4}$ corresponds to averaging $\ddot{\mathbf{q}}(\tau)$ in $\left[t_{n}, t_{n+1}\right]$

$$
\overline{\overline{\mathbf{q}}}_{a v}(\tau)=\frac{\ddot{\mathbf{q}}_{n+1}+\ddot{\mathbf{q}}_{n}}{2}
$$

Newmark's Family of Methods

The Newmark Method

- Application to the direct time-integration of $\mathbf{M} \ddot{\mathbf{q}}+\mathbf{C} \dot{\mathbf{q}}+\mathbf{K q}=\mathbf{p}(t)$
- write the equilibrium equation at t_{n+1} and substitute the expressions (5) and (6) into it

$$
\begin{aligned}
\Longrightarrow\left[\mathbf{M}+\gamma h \mathbf{C}+\beta h^{2} \mathbf{K}\right] \ddot{\mathbf{q}}_{n+1} & =\mathbf{p}_{n+1}-\mathbf{C}\left[\dot{\mathbf{q}}_{n}+(1-\gamma) h \ddot{\mathbf{q}}_{n}\right] \\
& -\mathbf{K}\left[\mathbf{q}_{n}+h \dot{\mathbf{q}}_{n}+\left(\frac{1}{2}-\beta\right) h^{2} \ddot{\mathbf{q}}_{n}\right]
\end{aligned}
$$

■ if the time-step h is uniform, $\mathbf{M}+\gamma h \mathbf{C}+\beta h^{2} \mathbf{K}$ can be factored once
■ solve the above system of equations for $\ddot{\mathbf{q}}_{n+1}$

- substitute the result into the expressions (5) and (6) to obtain $\dot{\mathbf{q}}_{n+1}$ and \mathbf{q}_{n+1}

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

Consistency of a Time-Integration Method

- A time-integration scheme is said to be consistent if

$$
\lim _{h \rightarrow 0} \frac{\mathbf{u}_{n+1}-\mathbf{u}_{n}}{h}=\dot{\mathbf{u}}\left(t_{n}\right)
$$

- The Newmark time-integration method is consistent

$$
\lim _{h \rightarrow 0} \frac{\mathbf{u}_{n+1}-\mathbf{u}_{n}}{h}=\lim _{h \rightarrow 0}\left[\begin{array}{c}
(1-\gamma) \ddot{\mathbf{q}}_{n}+\gamma \ddot{\mathbf{q}}_{n+1} \\
\dot{\mathbf{q}}_{n}+\left(\frac{1}{2}-\beta\right) h \ddot{\mathbf{q}}_{n}+\beta h \ddot{\mathbf{q}}_{n+1}
\end{array}\right]=\left[\begin{array}{l}
\ddot{\mathbf{q}}_{n} \\
\dot{\mathbf{q}}_{n}
\end{array}\right]
$$

- Consistency is one necessary condition for convergence

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

Stability of a Time-Integration Method

- A time-integration scheme is said to be stable if there exists an integration time-step $h_{0}>0$ so that for any $h \in\left[0, h_{0}\right]$, a finite variation of the state vector at time t_{n} induces only a non-increasing variation of the state-vector \mathbf{u}_{n+j} calculated at a subsequent time t_{n+j}
- Stability is the other necessary condition for convergence

Newmark's Family of Methods

Stability of a Time-Integration Method

■ Premultiplying Eq. (5) and Eq. (6) by \mathbf{M} and taking into account the equations of equilibrium (1) at t_{n} and t_{n+1} leads after some algebraic manipulations to

$$
\begin{align*}
\mathbf{M} \dot{\mathbf{q}}_{n+1} & =\mathbf{M} \dot{\mathbf{q}}_{n}+h(1-\gamma)\left[-\mathbf{C} \dot{\mathbf{q}}_{n}-\mathbf{K} \mathbf{q}_{n}+\mathbf{p}_{n}\right] \\
& +\gamma h\left[-\mathbf{C} \dot{\mathbf{q}}_{n+1}-\mathbf{K} \mathbf{q}_{n+1}+\mathbf{p}_{n+1}\right] \\
\mathbf{M} \mathbf{q}_{n+1} & =\mathbf{M} \mathbf{q}_{n}+h \mathbf{M} \dot{\mathbf{q}}_{n}+\left(\frac{1}{2}-\beta\right) h^{2}\left[-\mathbf{C} \dot{\mathbf{q}}_{n}-\mathbf{K} \mathbf{q}_{n}+\mathbf{p}_{n}\right] \\
& +\beta h^{2}\left[-\mathbf{C} \dot{\mathbf{q}}_{n+1}-\mathbf{K} \mathbf{q}_{n+1}+\mathbf{p}_{n+1}\right] \tag{7}
\end{align*}
$$

Newmark's Family of Methods

Stability of a Time-Integration Method

- Equations (7) can be re-written in matrix form as

$$
\mathbf{u}_{n+1}=\mathbf{A}(h) \mathbf{u}_{n}+\mathbf{g}_{n+1}(h)
$$

where \mathbf{A} is the amplification matrix associated with the integration operator

$$
\begin{gathered}
\mathbf{A}(h)=\mathbf{H}_{1}^{-1}(h) \mathbf{H}_{0}(h), \quad \mathbf{g}_{n+1}=\mathbf{H}_{1}^{-1}(h) \mathbf{b}_{n+1}(h) \\
\mathbf{b}_{n+1}=\left[\begin{array}{c}
(1-\gamma) h \mathbf{p}_{n}+\gamma h \mathbf{p}_{n+1} \\
\left(\frac{1}{2}-\beta\right) h^{2} \mathbf{p}_{n}+\beta h^{2} \mathbf{p}_{n+1}
\end{array}\right], \mathbf{H}_{1}=\left[\begin{array}{cc}
\mathbf{M}+\gamma h \mathbf{C} & \gamma h \mathbf{K} \\
\beta h^{2} \mathbf{C} & \mathbf{M}+\beta h^{2} \mathbf{K}
\end{array}\right] \\
\mathbf{H}_{0}=-\left[\begin{array}{cc}
-\mathbf{M}+(1-\gamma) h \mathbf{C} & (1-\gamma) h \mathbf{K} \\
\left(\frac{1}{2}-\beta\right) h^{2} \mathbf{C}-h \mathbf{M} & -\mathbf{M}+\left(\frac{1}{2}-\beta\right) h^{2} \mathbf{K}
\end{array}\right]
\end{gathered}
$$

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

Stability of a Time-Integration Method

- Effect of an initial disturbance
- $\delta \mathbf{u}_{0}=\mathbf{u}_{0}^{\prime}-\mathbf{u}_{0}$

$$
\Longrightarrow \delta \mathbf{u}_{n+1}=\mathbf{A}(h) \delta \mathbf{u}_{n}=\mathbf{A}^{2}(h) \delta \mathbf{u}_{n-1}=\cdots=\mathbf{A}(h)^{n+1} \delta \mathbf{u}_{0}
$$

- consider the eigenpairs of $\mathbf{A}(h)$

$$
\left(\lambda_{r}, \mathbf{x}_{r}\right)
$$

- then

$$
\delta \mathbf{u}_{n+1}=\mathbf{A}^{n+1}(h) \sum_{s=1}^{2 N} a_{s} \mathbf{x}_{s}=\sum_{s=1}^{2 N} a_{s} \lambda_{s}^{n+1} \mathbf{x}_{s}
$$

where N is the dimension of the semi-discrete second-order dynamical system
$\Longrightarrow \delta \mathbf{u}_{n+1}$ will be amplified by the time-integration operator only if the modulus of an eigenvalue of $\mathbf{A}(h)$ is greater than unity $\Longrightarrow \delta \mathbf{u}_{n+1}$ will not be amplified by the time-integration operator if all moduli of all eigenvalues of $\mathbf{A}(h)$ are less than unity

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

Stability of a Time-Integration Method

- Undamped case
- decouple the equations of equilibrium by writing them (for the purpose of analysis) in the modal basis

$$
\mathbf{q}=\mathbf{Q} \mathbf{y}=\sum_{i=1}^{N} y_{i} \mathbf{q}_{a_{i}} \Longrightarrow \ddot{y}_{i}+\omega_{i}^{2} y_{i}=p_{i}(t)
$$

■ apply the Newmark scheme to the i-th modal equation recalled above to obtain the amplification matrix

$$
\mathbf{A}(h)=\left[\begin{array}{cc}
1-\gamma \frac{\omega_{i}^{2} h^{2}}{1+\beta \omega_{i}^{2} h^{2}} & -\omega_{i}^{2} h^{2}\left(1-\frac{\gamma}{2} \frac{\omega_{i}^{2} h^{2}}{1+\beta \omega_{i}^{2} h^{2}}\right) \\
\frac{h}{1+\beta \omega_{i}^{2} h^{2}} & 1-\frac{1}{2} \frac{\omega_{i}^{2} h^{2}}{1+\beta \omega_{i}^{2} h^{2}}
\end{array}\right]
$$

■ characteristic equation is $\lambda^{2}-\lambda\left(2-\left(\gamma+\frac{1}{2}\right) \eta^{2}\right)+1-\left(\gamma-\frac{1}{2}\right) \eta^{2}=0$ where

$$
\eta^{2}=\frac{\omega_{i}^{2} h^{2}}{1+\beta \omega_{i}^{2} h^{2}}
$$

■ characteristic equation has:

- a pair of complex conjugate roots λ_{1} and λ_{2} if

$$
\left(\gamma+\frac{1}{2}\right)^{2}-4 \beta \leq \frac{4}{\omega_{i}^{2} h^{2}} \Leftrightarrow\left(\gamma+\frac{1}{2}\right)^{2} \eta^{2}<4, \quad i=1, \cdots, N(\text { case } 1)
$$

■ two identical real roots if $\left(\gamma+\frac{1}{2}\right)^{2} \eta^{2}=4$ (case 2)
■ two distinct real roots if $\left(\gamma+\frac{1}{2}\right)^{2} \eta^{2}>4$ (case 3)

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

Stability of a Time-Integration Method

- Undamped case (continue)

■ it can be shown that case 1 is the limiting case, in which case

$$
\lambda_{1,2}=\rho e^{ \pm i \phi}
$$

where

$$
\begin{aligned}
& \rho=\sqrt{1-\left(\gamma-\frac{1}{2}\right) \eta^{2}} \\
& \phi=\arctan \left(\frac{\eta \sqrt{1-\frac{1}{4}\left(\gamma+\frac{1}{2}\right)^{2} \eta^{2}}}{1-\frac{1}{2}\left(\gamma+\frac{1}{2}\right) \eta^{2}}\right)
\end{aligned}
$$

- then, the Newmark scheme is stable if

$$
\rho \leq 1 \Rightarrow \gamma \geq \frac{1}{2}
$$

and

$$
\left(\gamma+\frac{1}{2}\right)^{2}-4 \beta \leq \frac{4}{\omega_{i}^{2} h^{2}}, \quad i=1, \cdots, N
$$

\Longrightarrow limitation on the maximum time-step

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

Stability of a Time-Integration Method

■ Undamped case (continue)

- the algorithm is conditionally stable if

$$
\gamma \geq \frac{1}{2}
$$

- it is unconditionally stable if furthermore $\beta \geq \frac{1}{4}\left(\gamma+\frac{1}{2}\right)^{2}$ - that is,

$$
\gamma \geq \frac{1}{2} \quad \text { and } \quad \beta \geq \frac{1}{4}\left(\gamma+\frac{1}{2}\right)^{2}
$$

- the choice $\gamma=\frac{1}{2}$ and $\beta=\frac{1}{4}$ leads to an unconditionally stable time-integration operator of maximum accuracy

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

Stability of a Time-Integration Method

- Undamped case (continue)

Stability of the Newmark scheme

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

Stability of a Time-Integration Method

- Damped case ($\mathbf{C} \neq \mathbf{0}$)
- consider the case of modal damping
- then, the uncoupled equations of motion are

$$
\ddot{y}_{i}+2 \xi_{i} \omega_{i} \dot{y}_{i}+\omega_{i}^{2} y_{i}=p_{i}(t)
$$

where ξ_{i} is the modal damping coefficient

- consider the case $\gamma=\frac{1}{2}, \beta=\frac{1}{4}$
- an analysis similar to that performed in the undamped case reveals that in this case, the Newmark scheme remains stable as long as $\xi_{i}<1$
- in general, damping has a stabilizing effect for moderate values of ξ_{i}

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

Amplitude and Periodicity Errors

■ Free-vibration of an undamped linear oscillator

$$
\ddot{y}+\omega^{2} y=0 \quad \text { and } \quad y(0)=y_{0}, \dot{y}(0)=0 \quad \mathbf{A}=\left[\begin{array}{cc}
0 & -\omega_{0}^{2} \\
1 & 0
\end{array}\right]
$$

■ the above problem has an exact solution $y(t)=y_{0} \cos \omega t$ which can be written in complex discrete form as $y_{n+1}=e^{i \omega h} y_{n} \Rightarrow$ the exact amplification factor is $\rho_{e x}=1$ and the exact phase is $\phi_{e x}=\omega h$

- the numerical solution satisfies

$$
\mathbf{u}_{n+1}=\left[\begin{array}{c}
\dot{y}_{n+1} \\
y_{n+1}
\end{array}\right]=\mathbf{A}(h) \mathbf{u}_{n}
$$

■ let $\lambda_{1,2}(\beta, \gamma)$ be the eigenvalues of $\mathbf{A}(h, \beta, \gamma)$

- when $\left(\gamma+\frac{1}{2}\right)^{2}-4 \beta \leq \frac{4}{\omega_{i}^{2} h^{2}}, \lambda_{1}$ and λ_{2} are complex-conjugate

$$
\lambda_{1,2}(\beta, \gamma)=\rho(\beta, \gamma) e^{ \pm i \phi(\beta, \gamma)}
$$

where

$$
\rho=\sqrt{1-\left(\gamma-\frac{1}{2}\right) \eta^{2}}, \quad \phi=\arctan \left(\frac{\eta \sqrt{1-\frac{1}{4}\left(\gamma+\frac{1}{2}\right)^{2} \eta^{2}}}{1-\frac{1}{2}\left(\gamma+\frac{1}{2}\right) \eta^{2}}\right), \quad \eta^{2}=\frac{\omega^{2} h^{2}-\frac{1}{1+\beta \omega^{2} h^{2}}}{-}
$$

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

Amplitude and Periodicity Errors

- Free-vibration of an undamped linear oscillator (continue)
- amplitude error

$$
\rho-\rho_{e x}=\rho-1=-\frac{1}{2}\left(\gamma-\frac{1}{2}\right) \omega^{2} h^{2}+\mathcal{O}\left(h^{4}\right)
$$

- relative periodicity error

$$
\frac{\Delta T}{T}=\frac{\Delta \frac{1}{\phi}}{\frac{1}{\phi}}=\frac{\frac{1}{\phi}-\frac{1}{\phi_{e x}}}{\frac{1}{\phi_{e x}}}=\frac{\omega h}{\phi}-1=\frac{1}{2}\left(\beta-\frac{1}{12}\right) \omega^{2} h^{2}+\mathcal{O}\left(h^{3}\right)
$$

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

Amplitude and Periodicity Errors

Algorithm	γ	β	Stability limit ωh	Amplitude error $\rho-1$	Periodicity error $\frac{\Delta T}{T}$
Purely explicit Central difference Fox \& Goodwin	0	$\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{12}$
2.45	$\frac{\omega^{2} h^{2}}{4}$	-			
Linear acceleration	$\frac{1}{2}$	$\frac{1}{6}$	3.46	0	$-\frac{\omega^{2} h^{2}}{24}$
Average constant acceleration	$\frac{1}{2}$	$\frac{1}{4}$	∞	0	$\mathcal{O}\left(h^{3}\right)$

Table: Time-integration schemes of the Newmark family

- The purely explicit scheme $(\gamma=0, \beta=0)$ is useless
- The Fox \& Godwin scheme has asymptotically the smallest phase error but is only conditionally stable
- The average constant acceleration scheme ($\gamma=\frac{1}{2}, \beta=\frac{1}{4}$) is the unconditionally stable scheme with asymptotically the highest accuracy

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

Total Energy Conservation

- Conservation of total energy

■ dynamic system with scleronomic constraints

$$
\frac{d}{d t}(\mathcal{T}+\mathcal{V})=-m \mathcal{D}+\sum_{s=1}^{n_{s}} Q_{s} \dot{q}_{s}
$$

- $\mathcal{T}=\frac{1}{2} \dot{\mathbf{q}}^{T} \mathbf{M} \dot{\mathbf{q}}$ and $\mathcal{V}=\frac{1}{2} \mathbf{q}^{T} \mathbf{K} \mathbf{q}$
- the dissipation function \mathcal{D} is a quadratic function of the velocities ($m=2$)

$$
\mathcal{D}=\frac{1}{2} \dot{\mathbf{q}}^{T} \mathbf{C} \dot{\mathbf{q}}
$$

- external force component of the power balance

$$
\sum_{s=1}^{n_{s}} Q_{s} \dot{q}_{s}=\dot{\mathbf{q}}^{T} \mathbf{p}
$$

■ integration over a time-step $\left[t_{n}, t_{n+1}\right]$

$$
[\mathcal{T}+\mathcal{V}]_{t_{n}}^{t_{n+1}}=\int_{t_{n}}^{t_{n+1}}\left(-\dot{\mathbf{q}}^{T} \mathbf{C} \dot{\mathbf{q}}+\dot{\mathbf{q}}^{T} \mathbf{p}\right) d t
$$

AA242B: MECHANICAL VIBRATIONS

Newmark's Family of Methods

Total Energy Conservation

- Conservation of total energy (continue)
\square note that because \mathbf{M} and \mathbf{K} are symmetric ($\mathbf{M}^{T}=\mathbf{M}$ and $\mathbf{K}^{T}=\mathbf{K}$)

$$
\begin{aligned}
{[\mathcal{T}+\mathcal{V}]_{t_{n}}^{t_{n+1}}=\left[\mathcal{T}_{n+1}-\mathcal{T}_{n}\right]+\left[\mathcal{V}_{n+1}-\mathcal{V}_{n}\right] } & =\frac{1}{2}\left(\dot{\mathbf{q}}_{n+1}-\dot{\mathbf{q}}_{n}\right)^{T} \mathbf{M}\left(\dot{\mathbf{q}}_{n+1}+\dot{\mathbf{q}}_{n}\right) \\
& +\frac{1}{2}\left(\mathbf{q}_{n+1}-\mathbf{q}_{n}\right)^{T} \mathbf{K}\left(\mathbf{q}_{n+1}+\mathbf{q}_{n}\right)
\end{aligned}
$$

■ when time-integration is performed using the Newmark algorithm with $\gamma=\frac{1}{2}, \beta=\frac{1}{4}$, the above variation becomes (see (5) and (6))

$$
[\mathcal{T}+\mathcal{V}]_{t_{n}}^{t_{n+1}}=\frac{1}{2}\left(\mathbf{q}_{n+1}-\mathbf{q}_{n}\right)^{T}\left(\mathbf{p}_{n}+\mathbf{p}_{n+1}\right)-\frac{h}{4}\left(\dot{\mathbf{q}}_{n+1}+\dot{\mathbf{q}}_{n}\right)^{T} \mathbf{C}\left(\dot{\mathbf{q}}_{n+1}+\dot{\mathbf{q}}_{n}\right)
$$

■ when applied to a conservative system ($\mathbf{C}=\mathbf{0}$ and $\mathbf{p}=\mathbf{0}$), preserves the total energy
\square for non-conservative systems, $[\mathcal{T}+\mathcal{V}]_{t_{n}}^{t_{n+1}}=\int_{t_{n}}^{t_{n+1}}\left(-\dot{\mathbf{q}}^{T} \mathbf{C} \dot{\mathbf{q}}+\dot{\mathbf{q}}^{T} \mathbf{p}\right) d t$ and therefore both terms in the right-hand side of the above formula result from numerical quadrature relationships that are consistent with the time-integration operator

$$
\begin{aligned}
\int_{t_{n}}^{t_{n+1}} \dot{\mathbf{q}}^{T} \mathbf{p} d t & \approx\left(\int_{t_{n}}^{t_{n+1}} \dot{\mathbf{q}}^{T} d t\right)\left(\frac{\mathbf{p}_{n}+\mathbf{p}_{n+1}}{2}\right)=\frac{1}{2}\left(\mathbf{q}_{n+1}-\mathbf{q}_{n}\right)^{T}\left(\mathbf{p}_{n}+\mathbf{p}_{n+1}\right) \\
\int_{t_{n}}^{t_{n+1}} \dot{\mathbf{q}}^{T} \mathbf{C} \dot{\mathbf{q}} d t & \approx\left(\int_{t_{n}}^{t_{n+1}} \dot{\mathbf{q}}^{T} d t\right) \mathbf{C}\left(\frac{\dot{\mathbf{q}}_{n}+\dot{\mathbf{q}}_{n+1}}{2}\right)=\frac{1}{2}\left(\mathbf{q}_{n+1}-\mathbf{q}_{n}\right)^{T} \mathbf{C}\left(\frac{\dot{\mathbf{q}}_{n}+\dot{\mathbf{q}}_{\dot{n}+1}}{2}\right) \\
& =\frac{h}{4}\left(\dot{\mathbf{q}}_{n+1}+\dot{\mathbf{q}}_{n}\right)^{T} \mathbf{C}\left(\dot{\mathbf{q}}_{n+1}+\dot{\mathbf{q}}_{n}\right)
\end{aligned}
$$

Explicit Time Integration Using the Central Difference Algorithm

Algorithm in Terms of Velocities

- Central Difference (CD) scheme $=$ Newmark's with $\gamma=\frac{1}{2}, \beta=0$

$$
\begin{align*}
& \dot{\mathbf{q}}_{n+1}=\dot{\mathbf{q}}_{n}+h_{n+1}\left(\frac{\ddot{\mathbf{q}}_{n}+\ddot{\mathbf{q}}_{n+1}}{2}\right) \tag{8}\\
& \mathbf{q}_{n+1}=\mathbf{q}_{n}+h_{n+1} \dot{\mathbf{q}}_{n}+\frac{h_{n+1}^{2}}{2} \ddot{\mathbf{q}}_{n}
\end{align*}
$$

where $h_{n+1}=t_{n+1}-t_{n}$

- Equivalent three-step form
- start with

$$
\begin{equation*}
\mathbf{q}_{n}=\mathbf{q}_{n-1}+h_{n} \dot{\mathbf{q}}_{n-1}+\frac{h_{n}^{2}}{2} \ddot{\mathbf{q}}_{n-1}=\mathbf{q}_{n-1}+h_{n} \underbrace{\left(\dot{\mathbf{q}}_{n-1}+\frac{h_{n}}{2} \ddot{\mathbf{q}}_{n-1}\right)}_{\dot{\mathbf{q}}_{n-\frac{1}{2}}} \tag{9}
\end{equation*}
$$

- divide by h_{n} and subtract the result from \mathbf{q}_{n+1} divided by h_{n+1}
- account for the relationship (8)

$$
\begin{equation*}
\Longrightarrow \ddot{\mathbf{q}}_{n}=\frac{h_{n}\left(\mathbf{q}_{n+1}-\mathbf{q}_{n}\right)-h_{n+1}\left(\mathbf{q}_{n}-\mathbf{q}_{n-1}\right)}{h_{n+\frac{1}{2}} h_{n} h_{n+1}} \tag{10}
\end{equation*}
$$

where $h_{n+\frac{1}{2}}=\frac{h_{n}+h_{n+1}}{2}$

AA242B: MECHANICAL VIBRATIONS

Explicit Time Integration Using the Central Difference Algorithm

Algorithm in Terms of Velocities

- Case of a constant time-step h

$$
\ddot{\mathbf{q}}_{n}=\frac{\mathbf{q}_{n+1}-2 \mathbf{q}_{n}+\mathbf{q}_{n-1}}{h^{2}}
$$

- Efficient implementation

■ use a lumped mass matrix \mathbf{M}
■ initialize: $\ddot{\mathbf{q}}_{0}=\mathbf{M}^{-1}\left(\mathbf{p}_{0}-\mathbf{K} \mathbf{q}_{0}\right)$ and $\dot{\mathbf{q}}_{\frac{1}{2}}=\dot{\mathbf{q}}_{0}+\frac{h_{1}}{2} \ddot{\mathbf{q}}_{0}$
$■$ increment the displacement: $\mathbf{q}_{n}=\mathbf{q}_{n-1}+h_{n} \dot{\mathbf{q}}_{n-\frac{1}{2}}$ (see (9))
■ compute the acceleration: $\ddot{\mathbf{q}}_{n}=\mathbf{M}^{-1}\left(\mathbf{p}_{n}-\mathbf{K} \mathbf{q}_{n}\right)$ (enforce equilibrium at t_{n})

- increment the velocity at half time-step (formula results from (10))

$$
\dot{\mathbf{q}}_{n+\frac{1}{2}}=\dot{\mathbf{q}}_{n-\frac{1}{2}}+h_{n+\frac{1}{2}} \ddot{\mathbf{q}}_{n} \Leftrightarrow \ddot{\mathbf{q}}_{n}=\frac{\dot{\mathbf{q}}_{n+\frac{1}{2}}-\dot{\mathbf{q}}_{n-\frac{1}{2}}}{h_{n+\frac{1}{2}}}
$$

- Stability condition: for $\gamma=1 / 2$ and $\beta=0,\left(\gamma+\frac{1}{2}\right)^{2}-4 \beta \leq \frac{4}{\omega_{c r}^{2} h^{2}} \Rightarrow \omega_{c r} h \leq 2$ where $\omega_{c r}$ is the highest frequency contained in the model - this condition is also known as the Courant condition
- $h_{c r}=\frac{2}{\omega_{c r}}$ is referred to here as the maximum Courant stability time-step

AA242B: MECHANICAL VIBRATIONS

Explicit Time Integration Using the Central Difference Algorithm

Application Example: the Clamped-Free Bar Excited by an End Load

- Clamped bar subjected to a step load at its free end
- Model made of $N=20$ finite elements with equal length $I=\frac{L}{N}$

- lumped mass matrix
- Eigenfrequencies of the continuous system

$$
\omega_{\text {cont }_{r}}=(2 r-1) \frac{\pi}{2} \sqrt{\frac{E A}{m L^{2}}}=\left(\frac{2 r-1}{N}\right) \frac{\pi}{2} \sqrt{\frac{E A}{m l^{2}}}=\left(\frac{2 r-1}{N}\right) \frac{\pi}{2}
$$

AA242B: MECHANICAL VIBRATIONS

Explicit Time Integration Using the Central Difference Algorithm

Application Example: the Clamped-Free Bar Excited by an End Load

- Finite element stiffness and mass matrices

$$
\mathbf{M}=\frac{m}{2}\left[\begin{array}{cccccc}
2 & & & & & \\
& 2 & 2 & & 0 & \\
& & & & & \\
& 0 & & & 2 & \\
& & & & & 1
\end{array}\right] \mathbf{K}=\frac{E A}{l}\left[\begin{array}{cccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & 0 & \\
& -1 & 2 & \ddots & & \\
& & \ddots & \ddots & -1 & \\
& 0 & & -1 & 2 & -1 \\
& & & & -1 & 1
\end{array}\right]
$$

- Analytical frequencies of the discrete system

$$
\begin{aligned}
\omega_{r}=2 \sqrt{\frac{E A}{m l^{2}}} \sin \left(\left(\frac{2 r-1}{2 N}\right) \frac{\pi}{2}\right) & =2 \sin \left(\left(\frac{2 r-1}{2 N}\right) \frac{\pi}{2}\right), \quad r=1,2, \cdots N \\
& \Rightarrow \quad \omega_{c r}<\omega_{c r}(r=N, N \rightarrow \infty)=2
\end{aligned}
$$

- Critical time-step for the CD algorithm

$$
\omega_{c r} h_{c r}=2 \Rightarrow h_{c r}=1
$$

AA242B: MECHANICAL VIBRATIONS

Explicit Time Integration Using the Central Difference Algorithm

Application Example: the Clamped-Free Bar Excited by an End Load

AA242B: MECHANICAL VIBRATIONS

Explicit Time Integration Using the Central Difference Algorithm

Application Example: the Clamped-Free Bar Excited by an End Load

■ $h=1.0012$

AA242B: MECHANICAL VIBRATIONS

Explicit Time Integration Using the Central Difference Algorithm

Restitution of the Exact Solution by the Central Difference Method

- For the clamped-free bar example, the CD method computes the exact solution when $h=h_{\text {cr }}$
■ Comparison of the exact solution of the continuous free-vibration bar problem and the analytical expression of the numerical solution
\square denote by $q_{j, n}$ the value of the j-th d.o.f. at time t_{n}
- if $q_{j, n}$ is not located at the boundary, it satisfies (see (11))

$$
\frac{m l}{h^{2}}\left(q_{j, n+1}-2 q_{j, n}+q_{j, n-1}\right)+\frac{E A}{l}\left(-q_{j-1, n}+2 q_{j, n}-q_{j+1, n}\right)=0
$$

- the general solution of the above problem is

$$
\begin{equation*}
q_{j, n}=\underbrace{\sin (j \mu+\phi)}_{\text {spatial component }} \underbrace{[a \cos n \theta+b \sin n \theta]}_{\text {temporal component }} \tag{12}
\end{equation*}
$$

- comparing the above expression to the exact harmonic solution of the continuous form of this free-vibration problem (which can be derived analytically)

$$
\Longrightarrow n \theta=\omega t=\omega n h \Rightarrow \frac{\theta}{h}=\omega_{n u m}
$$

AA242B: MECHANICAL VIBRATIONS

Explicit Time Integration Using the Central Difference Algorithm

Restitution of the Exact Solution by the Central Difference Method

- Comparison of the exact solution of the free-vibration bar problem and the analytical expression of the numerical solution (continue)
- introduce the exact expression for $q_{j, n}$ in the CD scheme

$$
2\left[(1-\cos \mu)-\lambda^{2}(1-\cos \theta)\right] q_{j, n}=0
$$

where $\lambda^{2}=\left(\frac{m l^{2}}{E A}\right) \frac{1}{h^{2}}=\frac{1}{h^{2}} \Rightarrow 1-\cos \theta=\frac{1}{\lambda^{2}}(1-\cos \mu)$
■ make use of the boundary conditions in space $\left(q_{0, n}=0\right.$, and plug (12) in the last equation in (11))

$$
\Longrightarrow \phi=0 \text { and } \mu_{r}=\left(\frac{2 r-1}{N}\right) \frac{\pi}{2}, \quad r \in \mathbb{N}^{*}
$$

$$
\Longrightarrow 1-\cos \theta_{r}=\frac{1}{\lambda^{2}}\left(1-\cos \mu_{r}\right)
$$

■ special case $\lambda^{2}=1\left(h=h_{c r}=1\right) \Rightarrow \theta_{r}=\mu_{r}$ and

$$
\omega_{n u m_{r}}=\frac{\theta_{r}}{h}=\mu_{r}=\left(\frac{2 r-1}{N}\right) \frac{\pi}{2} \sqrt{\frac{E A}{m l^{2}}}=\left(\frac{2 r-1}{N}\right) \frac{\pi}{2}
$$

\Longrightarrow the r-th numerical frequency coincides with the r-th
 eigenfrequency of the continuous system

