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TESTING STRATEGIES 
a. A STRATEGIC APPROACH TO SOFTWARE TESTING 

Testing is a set of activities that can be planned in advance and conducted systematically. For this reason 
a template for software testing—a set of steps into which you can place specific test case design 
techniques and testing methods—should be defined for the software process. 
A number of software testing strategies have been proposed in the literature. All provide you with a 
template for testing and all have the following generic  characteristics: 

• To perform effective testing, you should conduct effective technical reviews (Chapter 15). By 
doing this, many errors will be eliminated before testing commences. 

• Testing begins at the component level and works “outward” toward the integration of the entire 
computer-based system. 

• Different testing techniques are appropriate for different software engineering approaches and at 
different points in time. 

• Testing is conducted by the developer of the software and (for large projects) an independent test 
group. 

• Testing and debugging are different activities, but debugging must be accommodated in any 
testing strategy. 

A strategy for software testing must accommodate low-level tests that are necessary to verify that a small 
source code segment has been correctly implemented as well as high-level tests that validate major 
system functions against customer requirements. A strategy should provide guidance for the practitioner 
and a set of milestones for the manager. Because the steps of the test strategy occur at a time when 
deadline pressure begins to rise, progress must be measurable and problems should surface as early as 
possible. 

 Verification and Validation 

Software testing is one element of a broader topic that is often referred to as verification and validation 
(V&V). Verification refers to the set of tasks that ensure that software correctly implements a specific 
function. Validation refers to a different set of tasks that ensure that the software that has been built is 
traceable to customer requirements. Boehm [Boe81] states this another way: 
Verification: “Are we building the product right?” 
Validation: “Are we building the right product?” 
The definition of V&V encompasses many software quality assurance activities (Chapter 16). Verification 
and validation includes a wide array of SQA activities: technical reviews, quality and configuration audits, 
performance monitoring, simulation, feasibility study, documentation review, database review, algorithm 
analysis, development testing, usability testing, qualification testing, acceptance testing, and installation 
testing.  
Although testing plays an extremely important role in V&V, many other activities are also necessary. 
Testing does provide the last bastion from which quality can be assessed and, more pragmatically, errors 
can be uncovered. But testing should not be viewed as a safety net. As they say, “You can’t test in quality. 
If it’s not there before you begin testing, it won’t be there when you’re finished testing.” Quality is 
incorporated into software throughout the process of software engineering. Proper application of 
methods and tools, effective technical reviews, and solid management and measurement all lead to 
quality that is confirmed during testing. Miller [Mil77] relates software testing to quality assurance by 
stating that “the underlying motivation of program testing is to affirm software quality with methods that 
can be economically and effectively applied to both large-scale and small-scale systems.” 

 Organizing for Software Testing 
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For every software project, there is an inherent conflict of interest that occurs as testing begins. The 
people who have built the software are now asked to test the software. This seems harmless in itself; 
after all, who knows the program better than its developers? Unfortunately, these same developers have 
a vested interest in demonstrating that the program is error-free, that it works according to customer 
requirements, and that it will be completed on schedule and within budget. Each of these interests 
mitigate against thorough testing. From a psychological point of view, software analysis and design 
(along with coding) are constructive tasks. The software engineer analyzes, models, and then creates a 
computer program and its documentation. Like any builder, the software engineer is proud of the edifice 
that has been built and looks askance at anyone who attempts to tear it down. When testing commences, 
there is a subtle, yet definite, attempt to “break” the thing that the software engineer has built. From the 
point of view of the builder, testing can be considered to be (psychologically) destructive. So the builder 
treads lightly, designing and executing tests that will demonstrate that the program works, rather than 
uncovering errors. Unfortunately, errors will be present. And, if the software engineer doesn’t find them, 
the customer will! 
There are often a number of misconceptions that you might infer erroneously from the preceding 
discussion: (1) that the developer of software should do no testing at all, (2) that the software should be 
“tossed over the wall” to strangers who will test it mercilessly, (3) that testers get involved with the 
project only when the testing steps are about to begin. Each of these statements is incorrect. 
The software developer is always responsible for testing the individual units (components) of the 
program, ensuring that each performs the function or exhibits the behavior for which it was designed. In 
many cases, the developer also conducts integration testing—a testing step that leads to the construction 
(and test) of the complete software architecture. Only after the software architecture is complete does an 
independent test group become involved.  
The role of an independent test group (ITG) is to remove the inherent problems associated with letting the 
builder test the thing that has been built. Independent testing removes the conflict of interest that may 
otherwise be present. After all, ITG personnel are paid to find errors. 
However, you don’t turn the program over to ITG and walk away. The developer and the ITG work closely 
throughout a software project to ensure that thorough tests will be conducted. While testing is 
conducted, the developer must be available to correct errors that are uncovered. 
The ITG is part of the software development project team in the sense that it becomes involved during 
analysis and design and stays involved (planning and specifying test procedures) throughout a large 
project. However, in many cases the ITG reports to the software quality assurance organization, thereby 
achieving a degree of independence that might not be possible if it were a part of the software 
engineering organization. 

 Software Testing Strategy—The Big Picture 

The software process may be viewed as the spiral illustrated in Figure 17.1. Initially, system engineering 
defines the role of software and leads to software requirements analysis, where the information domain, 
function, behavior, performance, constraints, and validation criteria for software are established. Moving 
inward along the spiral, you come to design and finally to coding. To develop computer software, you 
spiral inward (counterclockwise) along streamlines that decrease the level of abstraction on each turn. 
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A strategy for software testing may also be viewed in the context of the spiral (Figure 17.1). Unit testing 
begins at the vortex of the spiral and concentrates on each unit (e.g., component, class, or WebApp 
content object) of the software as implemented in source code. Testing progresses by moving outward 
along the spiral to integration testing, where the focus is on design and the construction of the software 
architecture. Taking another turn outward on the spiral, you encounter validation testing, where 
requirements established as part of requirements modeling are validated against the software that has 
been constructed. Finally, you arrive at system testing, where the software and other system elements are 
tested as a whole. To test  computer software, you spiral out in a clockwise direction along streamlines 
that broaden the scope of testing with each turn. 
Considering the process from a procedural point of view, testing within the context of software 
engineering is actually a series of four steps that are implemented sequentially. The steps are shown in 
Figure 17.2. Initially, tests focus on each component individually, ensuring that it functions properly as a 
unit. Hence, the name unit testing. Unit testing makes heavy use of testing techniques that exercise 
specific paths in a component’s control structure to ensure complete coverage and maximum error 
detection. Next, components must be assembled or integrated to form the complete software package. 
Integration testing addresses the issues associated with the dual problems of verification and program 
construction. Test case design techniques that focus on inputs and outputs are more prevalent during 
integration, although techniques that exercise specific program paths may be used to ensure coverage of 
major control paths. After the software has been integrated (constructed), a set of high-order tests is 
conducted. Validation criteria (established during requirements analysis) must be evaluated. Validation 
testing provides final assurance that software meets all informational, functional, behavioral, and 
performance requirements. 

 
The last high-order testing step falls outside the boundary of software engineering and into the broader 
context of computer system engineering. Software, once validated, must be combined with other system 
elements (e.g., hardware, people, databases). System testing verifies that all elements mesh properly and 
that overall system function/performance is achieved. 

 Criteria for Completion of Testing 

A classic question arises every time software testing is discussed: “When are we done testing—how do 
we know that we’ve tested enough?” Sadly, there is no definitive answer to this question, but there are a 
few pragmatic responses and early attempts at empirical guidance. 
One response to the question is: “You’re never done testing; the burden simply shifts from you (the 
software engineer) to the end user.” Every time the user executes a computer program, the program is 
being tested. This sobering fact underlines the importance of other software quality assurance activities. 
Another response (somewhat cynical but nonetheless accurate) is: “You’re done testing when you run out 
of time or you run out of money.” 
Although few practitioners would argue with these responses, you need more rigorous criteria for 
determining when sufficient testing has been conducted. The cleanroom software engineering approach 
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(Chapter 21) suggests statistical use techniques [Kel00] that execute a series of tests derived from a 
statistical sample of all possible program executions by all users from a targeted population. Others (e.g., 
[Sin99]) advocate using statistical modeling and software reliability theory to predict the completeness 
of testing. By collecting metrics during software testing and making use of existing software reliability 
models, it is possible to develop meaningful guidelines for answering the question: “When are we done 
testing?” There is little debate that further work remains to be done before quantitative rules for testing 
can be established, but the empirical approaches that currently exist are considerably better than raw 
intuition. 

b. STRATEGIC ISSUES 

Later in this chapter, I present a systematic strategy for software testing. But even the best strategy will 
fail if a series of overriding issues are not addressed. Tom Gilb [Gil95] argues that a software testing 
strategy will succeed when software testers: 
Specify product requirements in a quantifiable manner long before testing commences. Although the 
overriding objective of testing is to find errors, a good testing strategy also assesses other quality 
characteristics such as portability, maintainability, and usability (Chapter 14). These should be specified 
in a way that is measurable so that testing results are unambiguous. 
State testing objectives explicitly. The specific objectives of testing should be stated in measurable terms. 
For example, test effectiveness, test coverage, meantime- to-failure, the cost to find and fix defects, 
remaining defect density or frequency of occurrence, and test work-hours should be stated within the 
test plan. 
Understand the users of the software and develop a profile for each user category. Use cases that describe 
the interaction scenario for each class of user can reduce overall testing effort by focusing testing on 
actual use of the product. 
Develop a testing plan that emphasizes “rapid cycle testing.” Gilb [Gil95] recommends that a software team 
“learn to test in rapid cycles (2 percent of project effort) of customer-useful, at least field ‘trialable,’ 
increments of functionality and/or quality improvement.” The feedback generated from these rapid cycle 
tests can be used to control quality levels and the corresponding test strategies. 
Build “robust” software that is designed to test itself. Software should be designed in a manner that uses 
antibugging (Section 17.3.1) techniques. That is, software should be capable of diagnosing certain classes 
of errors. In addition, the design should accommodate automated testing and regression testing.  
Use effective technical reviews as a filter prior to testing. Technical reviews (Chapter 15) can be as effective 
as testing in uncovering errors. For this reason, reviews can reduce the amount of testing effort that is 
required to produce highquality software. 
Conduct technical reviews to assess the test strategy and test cases themselves. Technical reviews can 
uncover inconsistencies, omissions, and outright errors in the testing approach. This saves time and also 
improves product quality.  
Develop a continuous improvement approach for the testing process. The test strategy should be measured. 
The metrics collected during testing should be used as part of a statistical process control approach for 
software testing. 

c. TEST STRATEGIES FOR CONVENTIONAL SOFTWARE 

There are many strategies that can be used to test software. At one extreme, you can wait until the system 
is fully constructed and then conduct tests on the overall system in hopes of finding errors. This 
approach, although appealing, simply does not work. It will result in buggy software that disappoints all 
stakeholders. At the other extreme, you could conduct tests on a daily basis, whenever any part of the 
system is constructed. This approach, although less appealing to many, can be very effective. 
Unfortunately, some software developers hesitate to use it. What to do? 
A testing strategy that is chosen by most software teams falls between the two extremes. It takes an 
incremental view of testing, beginning with the testing of individual program units, moving to tests 
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designed to facilitate the integration of the units, and culminating with tests that exercise the constructed 
system. Each of these classes of tests is described in the sections that follow. 

 Unit Testing 

Unit testing focuses verification effort on the smallest unit of software design—the software component 
or module. Using the component-level design description as a guide, important control paths are tested to 
uncover errors within the boundary of the module. The relative complexity of tests and the errors those 
tests uncover is limited by the constrained scope established for unit testing. The unit test focuses on the 
internal processing logic and data structures within the boundaries of a component. This type of testing 
can be conducted in parallel for multiple components. 
 

 
 
Unit-test considerations. Unit tests are illustrated schematically in Figure 17.3. The module interface is 
tested to ensure that information properly flows into and out of the program unit under test. Local data 
structures are examined to ensure that data stored temporarily maintains its integrity during all steps in 
an algorithm’s execution. All independent paths through the control structure are exercised to ensure 
that all statements in a module have been executed at least once. Boundary conditions are tested to 
ensure that the module operates properly at boundaries established to limit or restrict processing. And 
finally, all error-handling paths are tested. Data flow across a component interface is tested before any 
other testing is initiated. If data do not enter and exit properly, all other tests are moot. In addition, local 
data structures should be exercised and the local impact on global data should be ascertained (if 
possible) during unit testing. Selective testing of execution paths is an essential task during the unit test. 
Test cases should be designed to uncover errors due to erroneous computations, incorrect comparisons, 
or improper control flow. Boundary testing is one of the most important unit testing tasks. Software often 
fails at its boundaries. That is, errors often occur when the nth element of an n-dimensional array is 
processed, when the ith repetition of a loop with i passes is invoked, when the maximum or minimum 
allowable value is encountered. Test cases that exercise data structure, control flow, and data values just 
below, at, and just above maxima and minima are very likely to uncover errors. good design anticipates 
error conditions and establishes error-handling paths to reroute or cleanly terminate processing when an 
error does occur. Yourdon [You75] calls this approach antibugging. Unfortunately, there is a tendency to 
incorporate error handling into software and then never test it. A true story may serve to illustrate: 
A computer-aided design system was developed under contract. In one transaction processing module, a 
practical joker placed the following error handling message after a series of conditional tests that invoked 
various control flow branches: ERROR! THERE IS NO WAY YOU CAN GET HERE. This “error message” was 
uncovered by a customer during user training! 
Among the potential errors that should be tested when error handling is evaluated are: (1) error 
description is unintelligible, (2) error noted does not correspond to error encountered, (3) error 
condition causes system intervention prior to error handling, (4) exception-condition processing is 
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incorrect, or (5) error description does not provide enough information to assist in the location of the 
cause of the error. 
Unit-test procedures. Unit testing is normally considered as an adjunct to the coding step. The design of 
unit tests can occur before coding begins or after source code has been generated. A review of design 
information provides guidance for establishing test cases that are likely to uncover errors in each of the 
categories discussed earlier. Each test case should be coupled with a set of expected results. 
Because a component is not a stand-alone program, driver and/or stub software must often be developed 
for each unit test. The unit test environment is illustrated in Figure 17.4. In most applications a driver is 
nothing more than a “main program” that accepts test case data, passes such data to the component (to 
be tested), and prints relevant results. Stubs serve to replace modules that are subordinate (invoked by) 
the component to be tested. A stub or “dummy subprogram” uses the subordinate module’s interface, 
may do minimal data manipulation, prints verification of entry, and returns control to the module  
undergoing testing.  
 
 

 
 
Drivers and stubs represent testing “overhead.” That is, both are software that must be written (formal 
design is not commonly applied) but that is not delivered with the final software product. If drivers and 
stubs are kept simple, actual overhead is relatively low. Unfortunately, many components cannot be 
adequately unit tested with “simple” overhead software. In such cases, complete testing can be postponed 
until the integration test step (where drivers or stubs are also used). Unit testing is simplified when a 
component with high cohesion is designed. When only one function is addressed by a component, the 
number of test cases is reduced and errors can be more easily predicted and uncovered. 

 Integration Testing 

A neophyte in the software world might ask a seemingly legitimate question once all modules have been 
unit tested: “If they all work individually, why do you doubt that they’ll work when we put them 
together?” The problem, of course, is “putting them together”—interfacing. Data can be lost across an 
interface; one component can have an inadvertent, adverse effect on another; subfunctions, when 
combined, may not produce the desired major function; individually acceptable imprecision may be 
magnified to unacceptable levels; global data structures can present problems. Sadly, the list goes on and 
on. 
Integration testing is a systematic technique for constructing the software architecture while at the same 
time conducting tests to uncover errors associated with interfacing. The objective is to take unit-tested 
components and build a program structure that has been dictated by design. 
There is often a tendency to attempt nonincremental integration; that is, to construct the program using a 
“big bang” approach. All components are combined in advance. The entire program is tested as a whole. 
And chaos usually results! A set of errors is encountered. Correction is difficult because isolation of 
causes is complicated by the vast expanse of the entire program. Once these errors are corrected, new 
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ones appear and the process continues in a seemingly endless loop. Incremental integration is the 
antithesis of the big bang approach. The program is constructed and tested in small increments, where 
errors are easier to isolate and correct; interfaces are more likely to be tested completely; and a 
systematic test approach may be applied. In the paragraphs that follow, a number of different 
incremental integration strategies are discussed. 
Top-down integration. Top-down integration testing is an incremental approach to construction of the 
software architecture. Modules are integrated by moving downward through the control hierarchy, 
beginning with the main control module (main program). Modules subordinate (and ultimately 
subordinate) to the main control module are incorporated into the structure in either a depth-first or 
breadth-first manner. 

 
Referring to Figure 17.5, depth-first integration integrates all components on a major control path of the 
program structure. Selection of a major path is somewhat arbitrary and depends on application-specific 
characteristics. For example, selecting the left-hand path, components M1, M2 , M5 would be integrated 
first. Next, M8 or (if necessary for proper functioning of M2) M6 would be integrated. Then, the central 
and right-hand control paths are built. Breadth-first integration incorporates all components directly 
subordinate at each level, moving across the structure horizontally. From the figure, components M2, M3, 
and M4 would be integrated first. The next control level, M5, M6, and so on, follows. The integration 
process is performed in a series of five steps: 

1. The main control module is used as a test driver and stubs are substituted for all components 
directly subordinate to the main control module.  

2. Depending on the integration approach selected (i.e., depth or breadth first), subordinate stubs 
are replaced one at a time with actual components. 

3. Tests are conducted as each component is integrated. 
4. On completion of each set of tests, another stub is replaced with the real component. 
5. Regression testing (discussed later in this section) may be conducted to ensure that new errors 

have not been introduced. The process continues from step 2 until the entire program structure is 
built. 

The top-down integration strategy verifies major control or decision points early in the test process. In a 
“well-factored” program structure, decision making occurs at upper levels in the hierarchy and is 
therefore encountered first. If major control problems do exist, early recognition is essential. If depth-
first integration is selected, a complete function of the software may be implemented and demonstrated. 
Early demonstration of functional capability is a confidence builder for all stakeholders. 
Top-down strategy sounds relatively uncomplicated, but in practice, logistical problems can arise. The 
most common of these problems occurs when processing at low levels in the hierarchy is required to 
adequately test upper levels. Stubs replace low-level modules at the beginning of top-down testing; 
therefore, no significant data can flow upward in the program structure. As a tester, you are left with 
three choices: (1) delay many tests until stubs are replaced with actual modules, (2) develop stubs that 
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perform limited functions that simulate the actual module, or (3) integrate the software from the bottom 
of the hierarchy upward. The first approach (delay tests until stubs are replaced by actual modules) can 
cause you to lose some control over correspondence between specific tests and incorporation of specific 
modules. This can lead to difficulty in determining the cause of errors and tends to violate the highly 
constrained nature of the top-down approach. The second approach is workable but can lead to 
significant overhead, as stubs become more and more complex. The third approach, called bottom-up 
integration is discussed in the paragraphs that follow. 
Bottom-up integration. Bottom-up integration testing, as its name implies, begins construction and 
testing with atomic modules (i.e., components at the lowest levels in the program structure). Because 
components are integrated from the bottom up, the functionality provided by components subordinate to 
a given level is always available and the need for stubs is eliminated. A bottom-up integration strategy 
may be implemented with the following steps: 

1. Low-level components are combined into clusters (sometimes called builds) that perform a 
specific software subfunction. 

2. A driver (a control program for testing) is written to coordinate test case input and output. 
3. The cluster is tested. 
4. Drivers are removed and clusters are combined moving upward in the program structure. 

Integration follows the pattern illustrated in Figure 17.6. Components are combined to form clusters 1, 2, 
and 3. Each of the clusters is tested using a driver (shown as a dashed block). Components in clusters 1 
and 2 are subordinate to Ma. Drivers D1 and D2 are removed and the clusters are interfaced directly to 
Ma. Similarly, driver D3 for cluster 3 is removed prior to integration with module Mb. Both Ma and Mb 
will ultimately be integrated with component Mc, and so forth. 

 

As integration moves upward, the need for separate test drivers lessens. In fact, if the top two levels of 
program structure are integrated top down, the number of drivers can be reduced substantially and 
integration of clusters is greatly simplified.  
Regression testing. Each time a new module is added as part of integration testing, the software 
changes. New data flow paths are established, new I/O may occur, and new control logic is invoked. 
These changes may cause problems with functions that previously worked flawlessly. In the context of an 
integration test strategy, regression testing is the reexecution of some subset of tests that have already 
been conducted to ensure that changes have not propagated unintended side effects. 
In a broader context, successful tests (of any kind) result in the discovery of errors, and errors must be 
corrected. Whenever software is corrected, some aspect of the software configuration (the program, its 
documentation, or the data that support it) is changed. Regression testing helps to ensure that changes 
(due to testing or for other reasons) do not introduce unintended behavior or additional errors. 
Regression testing may be conducted manually, by reexecuting a subset of all test  
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cases or using automated capture/playback tools. Capture/playback tools enable the software engineer to 
capture test cases and results for subsequent playback and comparison. The regression test suite (the 
subset of tests to be executed) contains three different classes of test cases: 

• A representative sample of tests that will exercise all software functions. 
• Additional tests that focus on software functions that are likely to be affected by the change. 
• Tests that focus on the software components that have been changed. 

As integration testing proceeds, the number of regression tests can grow quite large. Therefore, the 
regression test suite should be designed to include only those tests that address one or more classes of 
errors in each of the major program functions. 
It is impractical and inefficient to reexecute every test for every program function once a change has 
occurred.  
Smoke testing. Smoke testing is an integration testing approach that is commonly used when product 
software is developed. It is designed as a pacing mechanism for time-critical projects, allowing the 
software team to assess the project on a frequent basis. In essence, the smoke-testing approach 
encompasses the following activities: 

1. Software components that have been translated into code are integrated into a build. A build 
includes all data files, libraries, reusable modules, and engineered components that are required 
to implement one or more product functions. 

2. A series of tests is designed to expose errors that will keep the build from properly performing its 
function. The intent should be to uncover “showstopper” errors that have the highest likelihood of 
throwing the software project behind schedule. 

3. The build is integrated with other builds, and the entire product (in its current form) is smoke 
tested daily. The integration approach may be top down or bottom up. 

The daily frequency of testing the entire product may surprise some readers. However, frequent tests 
give both managers and practitioners a realistic assessment of integration testing progress. McConnell 
[McC96] describes the smoke test in the following manner: 
The smoke test should exercise the entire system from end to end. It does not have to be exhaustive, but 
it should be capable of exposing major problems. The smoke test should be thorough enough that if the 
build passes, you can assume that it is stable enough to be tested more thoroughly. Smoke testing 
provides a number of benefits when it is applied on complex, time critical software projects: 

• Integration risk is minimized. Because smoke tests are conducted daily, incompatibilities and other 
show-stopper errors are uncovered early, thereby reducing the likelihood of serious schedule 
impact when errors are uncovered. 

• The quality of the end product is improved. Because the approach is construction (integration) 
oriented, smoke testing is likely to uncover functional errors as well as architectural and 
component-level design errors. If these errors are corrected early, better product quality will 
result. 

• Error diagnosis and correction are simplified. Like all integration testing approaches, errors 
uncovered during smoke testing are likely to be associated with “new software increments”—that 
is, the software that has just been added to the build(s) is a probable cause of a newly discovered 
error. 

• Progress is easier to assess. With each passing day, more of the software has been integrated and 
more has been demonstrated to work. This improves team morale and gives managers a good 
indication that progress is being made. 

Strategic options. There has been much discussion (e.g., [Bei84]) about the relative advantages and 
disadvantages of top-down versus bottom-up integration testing. In general, the advantages of one 
strategy tend to result in disadvantages for the other strategy. The major disadvantage of the top-down 
approach is the need for stubs and the attendant testing difficulties that can be associated with them. 
Problems associated with stubs may be offset by the advantage of testing major control functions early. 
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The major disadvantage of bottom-up integration is that “the program as an entity does not exist until the 
last module is added” [Mye79]. This drawback is tempered by easier test case design and a lack of stubs. 
Selection of an integration strategy depends upon software characteristics and, sometimes, project 
schedule. In general, a combined approach (sometimes called sandwich testing) that uses top-down tests 
for upper levels of the program structure, coupled with bottom-up tests for subordinate levels may be the 
best compromise.  
As integration testing is conducted, the tester should identify critical modules. A critical module has one 
or more of the following characteristics: (1) addresses several software requirements, (2) has a high level 
of control (resides relatively high in the program structure), (3) is complex or error prone, or (4) has 
definite performance requirements. Critical modules should be tested as early as is possible. In addition, 
regression tests should focus on critical module function.  
Integration test work products. An overall plan for integration of the software and a description of 
specific tests is documented in a Test Specification. This work product incorporates a test plan and a test 
procedure and becomes part of the software configuration. Testing is divided into phases and builds that 
address specific functional and behavioral characteristics of the software. For example, integration 
testing for the SafeHome security system might be divided into the following test phases: 

• User interaction (command input and output, display representation, error processing and 
representation)  

• Sensor processing (acquisition of sensor output, determination of sensor conditions, actions 
required as a consequence of conditions)  

• Communications functions (ability to communicate with central monitoring station) 
• Alarm processing (tests of software actions that occur when an alarm is encountered) 

Each of these integration test phases delineates a broad functional category within the software and 
generally can be related to a specific domain within the software architecture. Therefore, program builds 
(groups of modules) are created to correspond to each phase. The following criteria and corresponding 
tests are applied for all test phases: 
Interface integrity. Internal and external interfaces are tested as each module (or cluster) is incorporated 
into the structure.  
Functional validity. Tests designed to uncover functional errors are conducted. 
Information content. Tests designed to uncover errors associated with local or global data structures are 
conducted. 
Performance. Tests designed to verify performance bounds established during software design are 
conducted. 
A schedule for integration, the development of overhead software, and related topics are also discussed 
as part of the test plan. Start and end dates for each phase are established and “availability windows” for 
unit-tested modules are defined. A brief description of overhead software (stubs and drivers) 
concentrates on characteristics that might require special effort. Finally, test environment and resources 
are described. Unusual hardware configurations, exotic simulators, and special test tools or techniques 
are a few of many topics that may also be discussed. The detailed testing procedure that is required to 
accomplish the test plan is described next. The order of integration and corresponding tests at each 
integration step are described. A listing of all test cases (annotated for subsequent reference) and 
expected results are also included.  
A history of actual test results, problems, or peculiarities is recorded in a Test Report that can be 
appended to the Test Specification, if desired. Information contained in this section can be vital during 
software maintenance. Appropriate references and appendixes are also presented. 
Like all other elements of a software configuration, the test specification format may be tailored to the 
local needs of a software engineering organization. It is important to note, however, that an integration 
strategy (contained in a test plan) and testing details (described in a test procedure) are essential 
ingredients and must appear. 
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d. TEST STRATEGIES FOR OBJECT-ORIENTED SOFTWARE 

The objective of testing, stated simply, is to find the greatest possible number of errors with a 
manageable amount of effort applied over a realistic time span. Although this fundamental objective 
remains unchanged for object-oriented software, the nature of object-oriented software changes both 
testing strategy and testing tactics (Chapter 19). 

 Unit Testing in the OO Context 

When object-oriented software is considered, the concept of the unit changes. Encapsulation drives the 
definition of classes and objects. This means that each class and each instance of a class packages 
attributes (data) and the operations that manipulate these data. An encapsulated class is usually the focus 
of unit testing. However, operations (methods) within the class are the smallest testable units. Because a 
class can contain a number of different operations, and a particular operation may exist as part of a 
number of different classes, the tactics applied to unit testing must change. 
You can no longer test a single operation in isolation (the conventional view of unit testing) but rather as 
part of a class. To illustrate, consider a class hierarchy in which an operation X is defined for the 
superclass and is inherited by a number of subclasses. Each subclass uses operation X, but it is applied 
within the context of the private attributes and operations that have been defined for the subclass. 
Because the context in which operation X is used varies in subtle ways, it is necessary to test operation X 
in the context of each of the subclasses. This means that testing operation X in a stand-alone fashion (the 
conventional unit-testing approach) is usually ineffective in the object-oriented context. 
Class testing for OO software is the equivalent of unit testing for conventional software. Unlike unit 
testing of conventional software, which tends to focus on the algorithmic detail of a module and the data 
that flow across the module interface, class testing for OO software is driven by the operations 
encapsulated by the class and the state behavior of the class. 

 Integration Testing in the OO Context 

Because object-oriented software does not have an obvious hierarchical control structure, traditional 
top-down and bottom-up integration strategies (Section 17.3.2) have little meaning. In addition, 
integrating operations one at a time into a class (the conventional incremental integration approach) is 
often impossible because of the “direct and indirect interactions of the components that make up the 
class” [Ber93]. There are two different strategies for integration testing of OO systems [Bin94b]. The first, 
thread-based testing, integrates the set of classes required to respond to one input or event for the 
system. Each thread is integrated and tested individually. Regression testing is applied to ensure that no 
side effects occur. The second integration approach, use-based testing, begins the construction of the 
system by testing those classes (called independent classes) that use very few (if any) server classes. 
After the independent classes are tested, the next layer of classes, called dependent classes, that use the 
independent classes are tested. This sequence of testing layers of dependent classes continues until the 
entire system is constructed. The use of drivers and stubs also changes when integration testing of OO 
systems is conducted. Drivers can be used to test operations at the lowest level and for the testing of 
whole groups of classes. A driver can also be used to replace the user interface so that tests of system 
functionality can be conducted prior to implementation of the interface. Stubs can be used in situations in 
which collaboration between classes is required but one or more of the collaborating classes has not yet 
been fully implemented. 
Cluster testing is one step in the integration testing of OO software. Here, a cluster of collaborating classes 
(determined by examining the CRC and object-relationship model) is exercised by designing test cases 
that attempt to uncover errors in the collaborations. 

e. TEST STRATEGIES FOR WEBAPPS 

The strategy for WebApp testing adopts the basic principles for all software testing and applies a strategy 
and tactics that are used for object-oriented systems. The following steps summarize the approach: 
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1. The content model for the WebApp is reviewed to uncover errors. 
2. The interface model is reviewed to ensure that all use cases can be accommodated. 
3. The design model for the WebApp is reviewed to uncover navigation errors. 
4. The user interface is tested to uncover errors in presentation and/or navigation mechanics. 
5. Each functional component is unit tested. 
6. Navigation throughout the architecture is tested. 
7. The WebApp is implemented in a variety of different environmental configurations and is tested 

for compatibility with each configuration. 
8. Security tests are conducted in an attempt to exploit vulnerabilities in the WebApp or within its 

environment. 
9. Performance tests are conducted. 
10. The WebApp is tested by a controlled and monitored population of end users. 

The results of their interaction with the system are evaluated for content and navigation errors, usability 
concerns, compatibility concerns, and WebApp reliability and performance. 
Because many WebApps evolve continuously, the testing process is an ongoing activity, conducted by 
support staff who use regression tests derived from the tests developed when the WebApp was first 
engineered. Methods for WebApp testing are considered in Chapter 20. 

f. VALIDATION TESTING 

Validation testing begins at the culmination of integration testing, when individual components have 
been exercised, the software is completely assembled as a package, and interfacing errors have been 
uncovered and corrected. At the validation or system level, the distinction between conventional 
software, object-oriented software, and WebApps disappears. Testing focuses on user-visible actions and 
user-recognizable output from the system. Validation can be defined in many ways, but a simple (albeit 
harsh) definition is that validation succeeds when software functions in a manner that can be reasonably 
expected by the customer. At this point a battle-hardened software developer might protest: “Who or 
what is the arbiter of reasonable expectations?” If a Software Requirements Specification has been 
developed, it describes all user-visible attributes of the software and contains a Validation Criteria section 
that forms the basis for a validation-testing approach. 

 Validation-Test Criteria 

Software validation is achieved through a series of tests that demonstrate conformity with requirements. 
A test plan outlines the classes of tests to be conducted, and a test procedure defines specific test cases 
that are designed to ensure that all functional requirements are satisfied, all behavioral characteristics 
are achieved, all content is accurate and properly presented, all performance requirements are attained, 
documentation is correct, and usability and other requirements are met (e.g., transportability, 
compatibility, error recovery, maintainability). 
After each validation test case has been conducted, one of two possible conditions exists: (1) The function 
or performance characteristic conforms to specification and is accepted or (2) a deviation from 
specification is uncovered and a deficiency list is created. Deviations or errors discovered at this stage in 
a project can rarely be corrected prior to scheduled delivery. It is often necessary to negotiate with the 
customer to establish a method for resolving deficiencies. 

 Configuration Review 

An important element of the validation process is a configuration review. The intent of the review is to 
ensure that all elements of the software configuration have been properly developed, are cataloged, and 
have the necessary detail to bolster the support activities. The configuration review, sometimes called an 
audit, is discussed in more detail in Chapter 22. 

 Alpha and Beta Testing 
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It is virtually impossible for a software developer to foresee how the customer will really use a program. 
Instructions for use may be misinterpreted; strange combinations of data may be regularly used; output 
that seemed clear to the tester may be unintelligible to a user in the field. 
When custom software is built for one customer, a series of acceptance tests are conducted to enable the 
customer to validate all requirements. Conducted by the end user rather than software engineers, an 
acceptance test can range from an informal “test drive” to a planned and systematically executed series of 
tests. In fact, acceptance testing can be conducted over a period of weeks or months, thereby uncovering 
cumulative errors that might degrade the system over time. If software is developed as a product to be 

used by many customers, it is impractical to perform formal acceptance tests with each one. Most 

software product builders use a process called alpha and beta testing to uncover errors that only the end 

user seems able to find. 

The alpha test is conducted at the developer’s site by a representative group of end users. The software is 
used in a natural setting with the developer “looking over the shoulder” of the users and recording errors 
and usage problems. Alpha tests are conducted in a controlled environment. 
The beta test is conducted at one or more end-user sites. Unlike alpha testing, the developer generally is 
not present. Therefore, the beta test is a “live” application of the software in an environment that cannot 
be controlled by the developer. The customer records all problems (real or imagined) that are 
encountered during beta testing and reports these to the developer at regular intervals. As a result of 
problems reported during beta tests, you make modifications and then prepare for release of 
the software product to the entire customer base. 
A variation on beta testing, called customer acceptance testing, is sometimes performed when custom 
software is delivered to a customer under contract. The customer performs a series of specific tests in an 
attempt to uncover errors before accepting the software from the developer. In some cases (e.g., a major 
corporate or governmental system) acceptance testing can be very formal and encompass many days or 
even weeks of testing. 

g. SYSTEM TESTING 

At the beginning of this book, I stressed the fact that software is only one element of a larger computer-
based system. Ultimately, software is incorporated with other system elements (e.g., hardware, people, 
information), and a series of system integration and validation tests are conducted. These tests fall 
outside the scope of the software process and are not conducted solely by software engineers. However, 
steps taken during software design and testing can greatly improve the probability of successful software 
integration in the larger system.  
A classic system-testing problem is “finger pointing.” This occurs when an error is uncovered, and the 
developers of different system elements blame each other for the problem. Rather than indulging in such 
nonsense, you should anticipate potential interfacing problems and (1) design error-handling paths that 
test all information coming from other elements of the system, (2) conduct a series of tests that simulate 
bad data or other potential errors at the software interface, (3) record the results of tests to use as 
“evidence” if finger pointing does occur, and (4) participate in planning and design of system tests to 
ensure that software is adequately tested. System testing is actually a series of different tests whose 
primary purpose is to fully exercise the computer-based system. Although each test has a different 
purpose, all work to verify that system elements have been properly integrated and perform allocated 
functions. In the sections that follow, I discuss the types of system tests that are worthwhile for software-
based systems. 

 Recovery Testing 

Many computer-based systems must recover from faults and resume processing with little or no 
downtime. In some cases, a system must be fault tolerant; that is, processing faults must not cause overall 
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system function to cease. In other cases, a system failure must be corrected within a specified period of 
time or severe economic damage will occur. 
Recovery testing is a system test that forces the software to fail in a variety of ways and verifies that 
recovery is properly performed. If recovery is automatic (performed by the system itself), reinitialization, 
checkpointing mechanisms, data recovery, and restart are evaluated for correctness. If recovery requires 
human intervention, the mean-time-to-repair (MTTR) is evaluated to determine whether it is within 
acceptable limits. 

 Security Testing 

Any computer-based system that manages sensitive information or causes actions that can improperly 
harm (or benefit) individuals is a target for improper or illegal penetration. Penetration spans a broad 
range of activities: hackers who attempt to penetrate systems for sport, disgruntled employees who 
attempt to penetrate for revenge, dishonest individuals who attempt to penetrate for illicit personal gain. 
Security testing attempts to verify that protection mechanisms built into a system will, in fact, protect it 
from improper penetration. To quote Beizer [Bei84]: “The system’s security must, of course, be tested for 
invulnerability from frontal attack—but must also be tested for invulnerability from flank or rear attack.” 
During security testing, the tester plays the role(s) of the individual who desires to penetrate the system. 
Anything goes! The tester may attempt to acquire passwords through external clerical means; may attack 
the system with custom software designed to break down any defenses that have been constructed; may 
overwhelm the system, thereby denying service to others; may purposely cause system errors, hoping to 
penetrate during recovery; may browse through insecure data, hoping to find the key to system entry. 
Given enough time and resources, good security testing will ultimately penetrate a system. The role of the 
system designer is to make penetration cost more than the value of the information that will be obtained. 

 Stress Testing 

Earlier software testing steps resulted in thorough evaluation of normal program functions and 
performance. Stress tests are designed to confront programs with abnormal situations. In essence, the 
tester who performs stress testing asks: “How high can we crank this up before it fails?” Stress testing 
executes a system in a manner that demands resources in abnormal quantity, frequency, or volume. For 
example, (1) special tests may be designed that generate ten interrupts per second, when one or two is 
the average rate, (2) input data rates may be increased by an order of magnitude to determine how input 
functions will respond, (3) test cases that require maximum memory or other resources are executed, (4) 
test cases that may cause thrashing in a virtual operating system are designed, (5) test cases that may 
cause excessive hunting for disk-resident data are created. Essentially, the tester attempts to break the 
program. A variation of stress testing is a technique called sensitivity testing. In some situations (the most 
common occur in mathematical algorithms), a very small range of data contained within the bounds of 
valid data for a program may cause extreme and even erroneous processing or profound performance 
degradation. Sensitivity testing attempts to uncover data combinations within valid input classes that 
may cause instability or improper processing. 

 Performance Testing 

For real-time and embedded systems, software that provides required function but does not conform to 
performance requirements is unacceptable. Performance testing is designed to test the run-time 
performance of software within the context of an integrated system. Performance testing occurs 
throughout all steps in the testing process. Even at the unit level, the performance of an individual 
module may be assessed as tests are conducted. However, it is not until all system elements are fully 
integrated that the true performance of a system can be ascertained. 
Performance tests are often coupled with stress testing and usually require both hardware and software 
instrumentation. That is, it is often necessary to measure resource utilization (e.g., processor cycles) in an 
exacting fashion. External instrumentation can monitor execution intervals, log events (e.g., interrupts) as 
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they occur, and sample machine states on a regular basis. By instrumenting a system, the tester can 
uncover situations that lead to degradation and possible system failure.  

 Deployment Testing 

In many cases, software must execute on a variety of platforms and under more than one operating 
system environment. Deployment testing, sometimes called configuration testing, exercises the software 
in each environment in which it is to operate. In addition, deployment testing examines all installation 
procedures and specialized installation software (e.g., “installers”) that will be used by customers, and all 
documentation that will be used to introduce the software to end users. As an example, consider the 
Internet-accessible version of SafeHome software that would allow a customer to monitor the security 
system from remote locations. 
The SafeHome WebApp must be tested using all Web browsers that are likely to be encountered. A more 
thorough deployment test might encompass combinations of Web browsers with various operating 
systems (e.g., Linux, Mac OS, Windows). Because security is a major issue, a complete set of security tests 
would be integrated with the deployment test.  

TESTING TACTICS  
h. SOFTWARE TESTING FUNDAMENTALS 

The goal of testing is to find errors, and a good test is one that has a high probability of finding an error. 
Therefore, you should design and implement a computer based system or a product with “testability” in 
mind. At the same time, the tests themselves must exhibit a set of characteristics that achieve the goal of 
finding the most errors with a minimum of effort. 
Testability. James Bach1 provides the following definition for testability: “Software testability is simply 
how easily [a computer program] can be tested.” The following characteristics lead to testable software. 
Operability. “The better it works, the more efficiently it can be tested.” If a system is designed and 
implemented with quality in mind, relatively few bugs will block the execution of tests, allowing testing to 
progress without fits and starts.  
Observability. “What you see is what you test.” Inputs provided as part of testing produce distinct outputs. 
System states and variables are visible or queriable during execution. Incorrect output is easily identified. 
Internal errors are automatically detected and reported. Source code is accessible.  
Controllability. “The better we can control the software, the more the testing can be automated and 
optimized.” All possible outputs can be generated through some combination of input, and I/O formats 
are consistent and structured. All code is executable through some combination of input. Software and 
hardware states and variables can be controlled directly by the test engineer. Tests can be conveniently 
specified, automated, and reproduced. 
Decomposability. “By controlling the scope of testing, we can more quickly isolate problems and perform 
smarter retesting.” The software system is built from independent modules that can be tested 
independently. Simplicity. “The less there is to test, the more quickly we can test it.” The program should 
exhibit functional simplicity (e.g., the feature set is the minimum necessary to meet requirements); 
structural simplicity (e.g., architecture is modularized to limit the propagation of faults), and code 
simplicity (e.g., a coding standard is adopted for ease of inspection and maintenance). 
Stability. “The fewer the changes, the fewer the disruptions to testing.” Changes to the software are 
infrequent, controlled when they do occur, and do not invalidate existing tests. The software recovers 
well from failures.  
Understandability. “The more information we have, the smarter we will test.” The architectural design 
and the dependencies between internal, external, and shared components are well understood. Technical 
documentation is instantly accessible, well organized, specific and detailed, and accurate. Changes to the 
design are communicated to testers. 
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You can use the attributes suggested by Bach to develop a software configuration (i.e., programs, data, 
and documents) that is amenable to testing.  
Test Characteristics. And what about the tests themselves? Kaner, Falk, and Nguyen [Kan93] suggest the 
following attributes of a “good” test:  
A good test has a high probability of finding an error. To achieve this goal, the tester must understand the 
software and attempt to develop a mental picture of how the software might fail. Ideally, the classes of 
failure are probed. For example, one class of potential failure in a graphical user interface is the failure to 
recognize proper mouse position. A set of tests would be designed to exercise the mouse in an attempt to 
demonstrate an error in mouse position recognition. 
A good test is not redundant. Testing time and resources are limited. There is no point in conducting a test 
that has the same purpose as another test. Every test should have a different purpose (even if it is subtly 
different). 
A good test should be “best of breed” [Kan93]. In a group of tests that have a similar intent, time and 
resource limitations may mitigate toward the execution of only a subset of these tests. In such cases, the 
test that has the highest likelihood of uncovering a whole class of errors should be used. 
A good test should be neither too simple nor too complex. Although it is sometimes possible to combine a 
series of tests into one test case, the possible side effects associated with this approach may mask errors. 
In general, each test should be executed separately. 

i. WHITE-BOX TESTING 

White-box testing, sometimes called glass-box testing, is a test-case design philosophy that uses the 
control structure described as part of component-level design to derive test cases. Using white-box 
testing methods, you can derive test cases that (1) guarantee that all independent paths within a module 
have been exercised at least once, (2) exercise all logical decisions on their true and false sides, (3) 
execute all loops at their boundaries and within their operational bounds, and (4) exercise internal data 
structures to ensure their validity. 

j. BASIS PATH TESTING 

Basis path testing is a white-box testing technique first proposed by Tom McCabe [McC76]. The basis path 
method enables the test-case designer to derive a logical complexity measure of a procedural design and 
use this measure as a guide for defining a basis set of execution paths. Test cases derived to exercise the 
basis set are guaranteed to execute every statement in the program at least one time during testing. 

 Flow Graph Notation 

Before we consider the basis path method, a simple notation for the representation of control flow, called 
a flow graph (or program graph) must be introduced.3 The flow graph depicts logical control flow using 
the notation illustrated in Figure 18.1. Each structured construct (Chapter 10) has a corresponding flow 
graph symbol. 
 

 
 
To illustrate the use of a flow graph, consider the procedural design representation in Figure 18.2a. Here, 
a flowchart is used to depict program control structure. Figure 18.2b maps the flowchart into a 
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corresponding flow graph (assuming that no compound conditions are contained in the decision 
diamonds of the flowchart). Referring to Figure 18.2b, each circle, called a flow graph node, represents 
one or more procedural statements. A sequence of process boxes and a decision diamond can map into a 
single node. The arrows on the flow graph, called edges or links, represent flow of control and are 
analogous to flowchart arrows. An edge must terminate at a node, even if the node does not represent 
any procedural statements (e.g., see the flow graph symbol for the if-then-else construct). Areas bounded 
by edges and nodes are called regions. When counting regions, we include the area outside the graph as a 
region.4 

 

 
When compound conditions are encountered in a procedural design, the generation of a flow graph 
becomes slightly more complicated. A compound condition occurs when one or more Boolean operators 
(logical OR, AND, NAND, NOR) is present in a conditional statement. Referring to Figure 18.3, the 
program design language (PDL) segment translates into the flow graph shown. Note that a separate node 
is created for each of the conditions a and b in the statement IF a OR b. Each node that contains a 
condition is called a predicate node and is characterized by two or more edges emanating from it. 

 Independent Program Paths 

An independent path is any path through the program that introduces at least one new set of processing 
statements or a new condition. When stated in terms of a flow graph, an independent path must move 
along at least one edge that has not been traversed before the path is defined. For example, a set of 
independent paths for the flow graph illustrated in Figure 18.2b is 
Path 1: 1-11 
Path 2: 1-2-3-4-5-10-1-11 
Path 3: 1-2-3-6-8-9-10-1-11 
Path 4: 1-2-3-6-7-9-10-1-11 
Note that each new path introduces a new edge. The path  
1-2-3-4-5-10-1-2-3-6-8-9-10-1-11  
is not considered to be an independent path because it is simply a combination of already specified paths 
and does not traverse any new edges. Paths 1 through 4 constitute a basis set for the flow graph in Figure 
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18.2b. That is, if you can design tests to force execution of these paths (a basis set), every statement in the 
program will have been guaranteed to be executed at least one time and every condition will have been 
executed on its true and false sides. It should be noted that the basis set is not unique. In fact, a number of 
different basis sets can be derived for a given procedural design. 
How do you know how many paths to look for? The computation of cyclomatic complexity provides the 
answer. Cyclomatic complexity is a software metric that provides a quantitative measure of the logical 
complexity of a program. When used in the context of the basis path testing method, the value computed 
for cyclomatic complexity defines the number of independent paths in the basis set of a program and 
provides you with an upper bound for the number of tests that must be conducted to ensure that all 
statements have been executed at least once. 
Cyclomatic complexity has a foundation in graph theory and provides you with an extremely useful 
software metric. Complexity is computed in one of three ways: 
1. The number of regions of the flow graph corresponds to the cyclomatic complexity. 
2. Cyclomatic complexity V(G) for a flow graph G is defined as  
    V(G)=E - N + 2 
     where E is the number of flow graph edges and N is the number of flow graph nodes. 
3. Cyclomatic complexity V(G) for a flow graph G is also defined as 
    V(G)=P + 1 
     where P is the number of predicate nodes contained in the flow graph G. 
Referring once more to the flow graph in Figure 18.2b, the cyclomatic complexity can be computed using 
each of the algorithms just noted: 
1. The flow graph has four regions. 
2. V(G) _ 11 edges _ 9 nodes _ 2 _ 4. 
3. V(G) _ 3 predicate nodes _ 1 _ 4. 
Therefore, the cyclomatic complexity of the flow graph in Figure 18.2b is 4. More important, the value for 
V(G) provides you with an upper bound for the number of independent paths that form the basis set and, 
by implication, an upper bound on the number of tests that must be designed and executed to guarantee 
coverage of all program statements. 

 Deriving Test Cases 

The basis path testing method can be applied to a procedural design or to source code. In this section, I 
present basis path testing as a series of steps. The procedure average, depicted in PDL in Figure 18.4, will 
be used as an example to illustrate each step in the test-case design method. Note that average, although 
an extremely simple algorithm, contains compound conditions and loops. The following steps can be 
applied to derive the basis set: 

1. Using the design or code as a foundation, draw a corresponding flow graph. A flow graph is 
created using the symbols and construction rules presented in Section 18.4.1. Referring to the PDL 
for average in Figure 18.4, a flow graph is created by numbering those PDL statements that will be 
mapped into corresponding flow graph nodes. The corresponding flow graph is shown in Figure 
18.5. 

2. Determine the cyclomatic complexity of the resultant flow graph. The cyclomatic complexity 
V(G) is determined by applying the algorithms described in Section 18.4.2. It should be noted that 
V(G) can be determined without developing a flow graph by counting all conditional statements in 
the PDL (for the procedure average, compound conditions count as two) and adding 1. Referring 
to Figure 18.5,  
V(G) = 6 regions  
V(G) = 17 edges - 13 nodes +  2 = 6 
V(G) = 5 predicate nodes + 1 = 6 
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3. Determine a basis set of linearly independent paths. The value of V(G) provides the upper 
bound on the number of linearly independent paths through the program control structure. In the 
case of procedure average, we expect to specify six paths: 
Path 1: 1-2-10-11-13 
Path 2: 1-2-10-12-13 
Path 3: 1-2-3-10-11-13 
Path 4: 1-2-3-4-5-8-9-2-. . . 
Path 5: 1-2-3-4-5-6-8-9-2-. . . 
Path 6: 1-2-3-4-5-6-7-8-9-2-. . . 
The ellipsis (. . .) following paths 4, 5, and 6 indicates that any path through the remainder of the 
control structure is acceptable. It is often worthwhile to identify predicate nodes as an aid in the 
derivation of test cases. In this case, nodes 2, 3, 5, 6, and 10 are predicate nodes. 

 
 

 
4. Prepare test cases that will force execution of each path in the basis set. Data should be 

chosen so that conditions at the predicate nodes are appropriately set as each path is tested. Each 
test case is executed and compared to expected results. Once all test cases have been completed, 
the tester can be sure that all statements in the program have been executed at least once. 
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It is important to note that some independent paths (e.g., path 1 in our example) cannot be tested in 
stand-alone fashion. That is, the combination of data required to traverse the path cannot be achieved in 
the normal flow of the program. In suchcases, these paths are tested as part of another path test. 

 Graph Matrices 

The procedure for deriving the flow graph and even determining a set of basis paths is amenable to 
mechanization. A data structure, called a graph matrix, can be quite useful for developing a software tool 
that assists in basis path testing. A graph matrix is a square matrix whose size (i.e., number of rows and 
columns) is equal to the number of nodes on the flow graph. Each row and column corresponds to an 
identified node, and matrix entries correspond to connections (an edge) between nodes. A simple 
example of a flow graph and its corresponding graph matrix [Bei90] is shown in Figure 18.6. 

 
Referring to the figure, each node on the flow graph is identified by numbers, while each edge is 
identified by letters. A letter entry is made in the matrix to correspond to a connection between two 
nodes. For example, node 3 is connected to node 4 by edge b. 
To this point, the graph matrix is nothing more than a tabular representation of a flow graph. However, 
by adding a link weight to each matrix entry, the graph matrix can become a powerful tool for evaluating 
program control structure during testing. The link weight provides additional information about control 
flow. In its simplest form, the link weight is 1 (a connection exists) or 0 (a connection does not exist). But 
link weights can be assigned other, more interesting properties: 
 The probability that a link (edge) will be execute. 
 The processing time expended during traversal of a link 
 The memory required during traversal of a link 
 The resources required during traversal of a link. 

Beizer [Bei90] provides a thorough treatment of additional mathematical algorithms that can be applied 
to graph matrices. Using these techniques, the analysis required to design test cases can be partially or 
fully automated. 

k. CONTROL STRUCTURE TESTING 

The basis path testing technique described in Section 18.4 is one of a number of techniques for control 
structure testing. Although basis path testing is simple and highly effective, it is not sufficient in itself. In 
this section, other variations on control structure testing are discussed. These broaden testing coverage 
and improve the quality of white-box testing. 

 Condition Testing 

Condition testing [Tai89] is a test-case design method that exercises the logical conditions contained in a 
program module. A simple condition is a Boolean variable or a relational expression, possibly preceded 
with one NOT (¬) operator. A relational expression takes the form 
E1 <relational-operator> E2  
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where E1 and E2 are arithmetic expressions and <relational-operator> is one of the following: <, <=, !=_, _, 
(nonequality), . or =>. A compound condition is composed of two or more simple conditions, Boolean 
operators, and parentheses. We assume that Boolean operators allowed in a compound condition include 
OR (_), AND (&), and NOT (¬). A condition without relational expressions is referred to as a Boolean 
expression. 
If a condition is incorrect, then at least one component of the condition is incorrect. Therefore, types of 
errors in a condition include Boolean operator errors (incorrect/missing/extra Boolean operators), 
Boolean variable errors, Boolean parenthesis errors, relational operator errors, and arithmetic 
expression errors. The condition testing method focuses on testing each condition in the program to 
ensure that it does not contain errors. 

 Data Flow Testing 

The data flow testing method [Fra93] selects test paths of a program according to the locations of 
definitions and uses of variables in the program. To illustrate the data flow testing approach, assume that 
each statement in a program is assigned a unique statement number and that each function does not 
modify its parameters or global variables. For a statement with S as its statement number, 
DEF(S) = {X | statement S contains a definition of X} 
USE(S) = {X | statement S contains a use of X} 
If statement S is an if or loop statement, its DEF set is empty and its USE set is based on the condition of 
statement S. The definition of variable X at statement S is said to be live at statement S’ if there exists a 
path from statement S to statement S’ that contains no other definition of X. 
A definition-use (DU) chain of variable X is of the form [X, S, S’], where S and S’ are statement numbers, X is 
in DEF(S) and USE(S’), and the definition of X in statement S is live at statement S’. 
One simple data flow testing strategy is to require that every DU chain be covered at least once. We refer 
to this strategy as the DU testing strategy. It has been shown that DU testing does not guarantee the 
coverage of all branches of a program. However, a branch is not guaranteed to be covered by DU testing 
only in rare situations such as if-then-else constructs in which the then part has no definition of any 
variable and the else part does not exist. In this situation, the else branch of the if statement is not 
necessarily covered by DU testing. 

 Loop Testing 

Loops are the cornerstone for the vast majority of all algorithms implemented in software. And yet, we 
often pay them little heed while conducting software tests. Loop testing is a white-box testing technique 
that focuses exclusively on the validity of loop constructs. Four different classes of loops [Bei90] can be 
defined: simple loops, concatenated loops, nested loops, and unstructured loops (Figure 18.7). 
Simple loops. The following set of tests can be applied to simple loops, where n is the maximum number 
of allowable passes through the loop. 

1. Skip the loop entirely. 
2. Only one pass through the loop. 
3. Two passes through the loop. 
4. m passes through the loop where m < n. 
5. n - 1, n, n + 1 passes through the loop. 

Nested loops. If we were to extend the test approach for simple loops to nested loops, the number of 
possible tests would grow geometrically as the level of nesting increases. This would result in an 
impractical number of tests. Beizer [Bei90] suggests an approach that will help to reduce the number of 
tests: 
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1. Start at the innermost loop. Set all other loops to minimum values. 
2. Conduct simple loop tests for the innermost loop while holding the outer loops at their minimum 

iteration parameter (e.g., loop counter) values. Add other tests for out-of-range or excluded values. 
3. Work outward, conducting tests for the next loop, but keeping all other outer loops at minimum 

values and other nested loops to “typical” values. 
4. Continue until all loops have been tested. 

Concatenated loops. Concatenated loops can be tested using the approach defined for simple loops, if 
each of the loops is independent of the other. However, if two loops are concatenated and the loop 
counter for loop 1 is used as the initial value for loop 2, then the loops are not independent. When the 
loops are not independent, the approach applied to nested loops is recommended. 
Unstructured loops. Whenever possible, this class of loops should be redesigned to reflect the use of the 
structured programming constructs (Chapter 10). 

l. BLACK-BOX TESTING 

Black-box testing, also called behavioral testing, focuses on the functional requirements of the software. 
That is, black-box testing techniques enable you to derive sets of input conditions that will fully exercise 
all functional requirements for a program. Black-box testing is not an alternative to white-box techniques. 
Rather, it is a complementary approach that is likely to uncover a different class of errors than whitebox 
methods. 
Black-box testing attempts to find errors in the following categories: (1) incorrect or missing functions, 
(2) interface errors, (3) errors in data structures or external database access, (4) behavior or 
performance errors, and (5) initialization and termination errors. 
Unlike white-box testing, which is performed early in the testing process, blackbox testing tends to be 
applied during later stages of testing (see Chapter 17). Because black-box testing purposely disregards 
control structure, attention is focused on the information domain. Tests are designed to answer the 
following questions: 
 How is functional validity tested? 
 How are system behavior and performance tested? 
 What classes of input will make good test cases? 
 Is the system particularly sensitive to certain input values? 
 How are the boundaries of a data class isolated? 
 What data rates and data volume can the system tolerate? 
 What effect will specific combinations of data have on system operation? 
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By applying black-box techniques, you derive a set of test cases that satisfy the following criteria 
[Mye79]: (1) test cases that reduce, by a count that is greater than one, the number of additional test 
cases that must be designed to achieve reasonable testing, and (2) test cases that tell you something 
about the presence or absence of classes of errors, rather than an error associated only with the specific 
test at hand. 

 Graph-Based Testing Methods 

The first step in black-box testing is to understand the objects5 that are modeled in software and the 
relationships that connect these objects. Once this has been accomplished, the next step is to define a 
series of tests that verify “all objects have the expected relationship to one another” [Bei95]. Stated in 
another way, software testing begins by creating a graph of important objects and their relationships and 
then devising a series of tests that will cover the graph so that each object and relationship is exercised 
and errors are uncovered. 

 
To accomplish these steps, you begin by creating a graph—a collection of nodes that represent objects, 
links that represent the relationships between objects, node weights that describe the properties of a node 
(e.g., a specific data value or state behavior), and link weights that describe some characteristic of a link. 
The symbolic representation of a graph is shown in Figure 18.8a. Nodes are represented as circles 
connected by links that take a number of different forms.  
A directed link (represented by an arrow) indicates that a relationship moves in only one direction. A 
bidirectional link, also called a symmetric link, implies that the relationship applies in both directions. 
Parallel links are used when a number of different relationships are established between graph nodes. 
As a simple example, consider a portion of a graph for a word-processing application (Figure 18.8b) 
where 
Object #1 _ newFile (menu selection) 
Object #2 _ documentWindow 
Object #3 _ documentText 
Referring to the figure, a menu select on newFile generates a document window. 
The node weight of documentWindow provides a list of the window attributes that are to be expected 
when the window is generated. The link weight indicates that the window must be generated in less than 
1.0 second. An undirected link establishes a symmetric relationship between the newFile menu selection 
and documentText, and parallel links indicate relationships between documentWindow and 
documentText. In reality, a far more detailed graph would have to be generated as a precursor to test-
case design. You can then derive test cases by traversing the graph and covering each of the relationships 
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shown. These test cases are designed in an attempt to find errors in any of the relationships. Beizer 
[Bei95] describes a number of behavioral testing methods that can make use of graphs: 
Transaction flow modeling. The nodes represent steps in some transaction (e.g., the steps required to 
make an airline reservation using an online service), and the links represent the logical connection 
between steps (e.g., flightInformationInput is followed by validationAvailabilityProcessing). The data 
flow diagram (Chapter 7) can be used to assist in creating graphs of this type. 
Finite state modeling. The nodes represent different user-observable states of the software (e.g., each of 
the “screens” that appear as an order entry clerk takes a phone order), and the links represent the 
transitions that occur to move from state to state (e.g., orderInformation is verified during 
inventoryAvailabilityLook- up and is followed by customerBillingInformation input). The state diagram 
(Chapter 7) can be used to assist in creating graphs of this type.  
Data flow modeling. The nodes are data objects, and the links are the transformations that occur to 
translate one data object into another. For example, the node FICA tax withheld (FTW) is computed from 
gross wages (GW) using the relationship, FTW = 0.62 x GW.  
Timing modeling. The nodes are program objects, and the links are the sequential connections between 
those objects. Link weights are used to specify the required execution times as the program executes.  
A detailed discussion of each of these graph-based testing methods is beyond the scope of this book. If 
you have further interest, see [Bei95] for a comprehensive coverage. 

 Equivalence Partitioning 

Equivalence partitioning is a black-box testing method that divides the input domain of a program into 
classes of data from which test cases can be derived. An ideal test case single-handedly uncovers a class 
of errors (e.g., incorrect processing of all character data) that might otherwise require many test cases to 
be executed before the general error is observed. 
Test-case design for equivalence partitioning is based on an evaluation of equivalence classes for an input 
condition. Using concepts introduced in the preceding section, if a set of objects can be linked by 
relationships that are symmetric, transitive, and reflexive, an equivalence class is present [Bei95]. An 
equivalence class represents a set of valid or invalid states for input conditions. Typically, an input 
condition is either a specific numeric value, a range of values, a set of related values, or a Boolean 
condition. Equivalence classes may be defined according to the following guidelines: 

1. If an input condition specifies a range, one valid and two invalid equivalence classes are defined. 
2. If an input condition requires a specific value, one valid and two invalid equivalence classes are 

defined. 
3. If an input condition specifies a member of a set, one valid and one invalid equivalence class are 

defined. 
4. If an input condition is Boolean, one valid and one invalid class are defined.  

By applying the guidelines for the derivation of equivalence classes, test cases for each input domain data 
item can be developed and executed. Test cases are selected so that the largest number of attributes of an 
equivalence class are exercised at once. 

 Boundary Value Analysis 

A greater number of errors occurs at the boundaries of the input domain rather than in the “center.” It is 
for this reason that boundary value analysis (BVA) has been developed as a testing technique. Boundary 
value analysis leads to a selection of test cases that exercise bounding values. 
Boundary value analysis is a test-case design technique that complements equivalence partitioning. 
Rather than selecting any element of an equivalence class, BVA leads to the selection of test cases at the 
“edges” of the class. Rather than focusing solely on input conditions, BVA derives test cases from the 
output domain as well [Mye79]. 
Guidelines for BVA are similar in many respects to those provided for equivalence partitioning: 
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1. If an input condition specifies a range bounded by values a and b, test cases should be designed 
with values a and b and just above and just below a and b. 

2. If an input condition specifies a number of values, test cases should be developed that exercise the 
minimum and maximum numbers. Values just above and below minimum and maximum are also 
tested. 

3. Apply guidelines 1 and 2 to output conditions. For example, assume that a temperature versus 
pressure table is required as output from an engineering analysis program. Test cases should be 
designed to create an output report that produces the maximum (and minimum) allowable 
number of table entries.  

4. If internal program data structures have prescribed boundaries (e.g., a table has a defined limit of 
100 entries), be certain to design a test case to exercise the data structure at its boundary. 

Most software engineers intuitively perform BVA to some degree. By applying these guidelines, boundary 
testing will be more complete, thereby having a higher likelihood for error detection. 

 Orthogonal Array Testing 

There are many applications in which the input domain is relatively limited. That is, the number of input 
parameters is small and the values that each of the parameters may take are clearly bounded. When these 
numbers are very small (e.g., three input parameters taking on three discrete values each), it is possible 
to consider every input permutation and exhaustively test the input domain. However, as the number of 
input values grows and the number of discrete values for each data item increases, exhaustive testing 
becomes impractical or impossible.  
Orthogonal array testing can be applied to problems in which the input domain is relatively small but too 
large to accommodate exhaustive testing. The orthogonal array testing method is particularly useful in 
finding region faults—an error category associated with faulty logic within a software component.  
To illustrate the difference between orthogonal array testing and more conventional “one input item at a 
time” approaches, consider a system that has three input items, X, Y, and Z. Each of these input items has 
three discrete values associated with it. There are 33 _ 27 possible test cases. Phadke [Pha97] suggests a 
geometric view of the possible test cases associated with X, Y, and Z illustrated in Figure 18.9. Referring 
to the figure, one input item at a time may be varied in sequence along each input axis. This results in 
relatively limited coverage of the input domain (represented by the left-hand cube in the figure).  
When orthogonal array testing occurs, an L9 orthogonal array of test cases is created. The L9 orthogonal 
array has a “balancing property” [Pha97]. That is, test cases (represented by dark dots in the figure) are 
“dispersed uniformly throughout the test domain,” as illustrated in the right-hand cube in Figure 18.9. 
Test coverage across the input domain is more complete. 
 

 
To illustrate the use of the L9 orthogonal array, consider the send function for a fax application. Four 
parameters, P1, P2, P3, and P4, are passed to the send function. Each takes on three discrete values. For 
example, P1 takes on values:  
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P1 = 1, send it now  
P1 =  2, send it one hour later  
P1 _ 3, send it after midnight  
P2, P3, and P4 would also take on values of 1, 2, and 3, signifying other send functions. 
If a “one input item at a time” testing strategy were chosen, the following sequence of tests (P1, P2, P3, 
P4) would be specified: (1, 1, 1, 1), (2, 1, 1, 1), (3, 1, 1, 1), (1, 2, 1, 1), (1, 3, 1, 1), (1, 1, 2, 1), (1, 1, 3, 1), (1, 
1, 1, 2), and (1, 1, 1, 3). Phadke [Pha97] assesses these test cases by stating: 
Such test cases are useful only when one is certain that these test parameters do not interact. They can detect logic faults 
where a single parameter value makes the software malfunction. These faults are called single mode faults. This method cannot 
detect logic faults that cause malfunction when two or more parameters simultaneously take certain values; that is, it cannot 
detect any interactions. Thus its ability to detect faults is limited. 

Given the relatively small number of input parameters and discrete values, exhaustive testing is possible. 
The number of tests required is 34 _ 81, large but manageable. All faults associated with data item 
permutation would be found, but the effort required is relatively high. 
The orthogonal array testing approach enables you to provide good test coverage with far fewer test 
cases than the exhaustive strategy. An L9 orthogonal array for the fax send function is illustrated in 
Figure 18.10. 

 
Phadke [Pha97] assesses the result of tests using the L9 orthogonal array in the following manner: 
Detect and isolate all single mode faults. A single mode fault is a consistent problem with any level of 
any single parameter. For example, if all test cases of factor P1 _ 1 cause an error condition, it is a single 
mode failure. In this example tests 1, 2 and 3 [Figure 18.10] will show errors. By analyzing the 
information about which tests show errors, one can identify which parameter values cause the fault. In 
this example, by noting that tests 1, 2, and 3 cause an error, one can isolate [logical processing associated 
with “send it now” (P1 _ 1)] as the source of the error. Such an isolation of fault is important to fix the 
fault.  
Detect all double mode faults. If there exists a consistent problem when specific levels of two 
parameters occur together, it is called a double mode fault. Indeed, a double mode fault is an indication of 
pairwise incompatibility or harmful interactions between two test parameters. 
Multimode faults. Orthogonal arrays [of the type shown] can assure the detection of only single and 
double mode faults. However, many multimode faults are also detected by these tests. 
You can find a detailed discussion of orthogonal array testing in [Pha89]. 


