
Electronic Notes in Theoretical Computer Science 45 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume45.html 31 pages

A Probabilistic Polynomial-time Calculus
For Analysis of Cryptographic Protocols

(Preliminary Report)

J. Mitchell 1,3,4

Computer Science Department, Stanford University, Stanford, CA 94305 USA

A. Ramanathan 1

Computer Science Department, Stanford University, Stanford, CA 94305 USA

A. Scedrov 1,2,5

Mathematics Department, University of Pennsylvania, Philadelphia PA
19104-6395 USA

V. Teague 1,6

Computer Science Department, Stanford University, Stanford, CA 94305 USA

Abstract

We describe properties of a process calculus that has been developed for the pur-
pose of analyzing security protocols. The process calculus is a restricted form of
π-calculus, with bounded replication and probabilistic polynomial-time expressions
allowed in messages and boolean tests. In order to avoid problems expressing se-
curity in the presence of nondeterminism, messages are scheduled probabilistically
instead of nondeterministically. We prove that evaluation may be completed in
probabilistic polynomial time and develop properties of a form of asymptotic proto-
col equivalence that allows security to be specified using observational equivalence, a
standard relation from programming language theory that involves quantifying over
possible environments that might interact with the protocol. We also relate process
equivalence to cryptographic concepts such as pseudo-random number generators
and polynomial-time statistical tests.
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1 Introduction

A variety of methods are used for analyzing and reasoning about security pro-
tocols. The main systematic or formal approaches include specialized logics
such as BAN logic [8,13], special-purpose tools designed for cryptographic pro-
tocol analysis [20], and theorem proving [32,31] and model-checking methods
using several general purpose tools described in [24,26,29,34,35]. Although
these approaches differ in significant ways, all reflect the same basic assump-
tions about the way an adversary may interact with the protocol or attempt to
decrypt encrypted messages. In the common model, largely derived from [12]
and suggestions found in [30] (see, e.g., [10]), a protocol adversary is allowed
to nondeterministically choose among possible actions. This is a convenient
idealization, intended to give the adversary a chance to find an attack if there
is one. In the presence of nondeterminism, however, the set of messages an
adversary may use to interfere with a protocol must be restricted severely.
Although the Dolev-Yao-style assumptions make protocol analysis tractable,
they also make it possible to “verify” protocols that are in fact susceptible
to simple attacks that lie outside the adversary model. Another limitation is
that a deterministic or nondeterministic setting does not allow us to analyze
probabilistic protocols.

In this paper we describe some general concepts in security protocol anal-
ysis, mention some of the competing approaches, and describe some technical
properties of a process calculus that was proposed earlier in [23,22] as the ba-
sis for a form of protocol analysis that is formal, yet closer in foundations to
the mathematical setting of modern cryptography. The framework relies on
a language for defining communicating polynomial-time processes [28]. The
reason we restrict processes to probabilistic polynomial time is so that we can
reason about the security of protocols by quantifying over all “adversarial”
processes definable in the language. In effect, establishing a bound on the
running time of an adversary allows us to relax the simplifying assumptions.
Specifically, it is possible to consider adversaries that might send randomly
chosen messages, or perform sophisticated (yet probabilistic polynomial-time)
computation to derive an attack from messages it overhears on the network.
An important aspect of our framework is that we can analyze probabilistic as
well as deterministic encryption functions and protocols. Without a proba-
bilistic framework, it would not be possible to analyze an encryption function
such as ElGamal [14], for which a single plaintext may have more than one
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ciphertext.

Some of the basic ideas of this work are outlined in [23], with the term
language presented in [28] and further example protocols considered in [22].
The closest technical precursor is the Abadi and Gordon spi-calculus [3,2]
which uses observational equivalence and channel abstraction but does not
involve probability or computational complexity bounds; subsequent related
work is cited in [1], for example. Prior work on CSP and security protocols,
e.g., [34,35], also uses process calculus and security specifications in the form
of equivalence or related approximation orderings on processes.

Although our main long-term objective is to base protocol analysis on
standard cryptographic assumptions, this framework may also shed new light
on basic questions in cryptography. In particular, the characterization of “se-
cure” encryption function, for use in protocols, does not appear to have been
completely settled. While the definition of semantic security in [18] appears
to have been accepted, there are stronger notions such as non-malleability [11]
that are more appropriate to protocol analysis. In a sense, the difference is
that semantic security is natural for the single transmission of an encrypted
message, while non-malleability accounts for vulnerabilities that may arise in
more complex protocols. Our framework provides a setting for working back-
wards from security properties of a protocol to derive necessary properties
of underlying encryption primitives. While we freely admit that much more
needs to be done to produce a systematic analysis method, we believe that
a foundational setting for protocol analysis that incorporates probability and
complexity restrictions has much to offer in the future.

2 Preliminaries

2.1 Probabilistic Functions

Definition 2.1 We define a probabilistic function F on the sets X, Y as a
function F : X × Y → [0, 1] that satisfies the following condition:

∀x ∈ X :
∑
y∈Y

F(x, y) ≤ 1 (1)

For some x ∈ X, y ∈ Y , if F(x, y) = p, we say that F takes on the value y at
x with probability p or that F(x) = y with probability p.

2.2 Composition of Probabilistic Functions

Definition 2.2 We define the composition F : X × Z → [0, 1] of two proba-
bilistic functions F1 : X×Y → [0, 1] and F2 : Y ×Z → [0, 1] as a probabilistic
function that satisfies the following condition:

∀x ∈ X.∀z ∈ Z : F(x, z) =
∑
y∈Y

F1(x, y) · F2(y, z) (2)
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We write the composition of F1 and F2 as F2 ◦ F1.

Lemma 2.3 Given two probabilistic functions F1 : X × Y → [0, 1] and F2 :
Y ×Z → [0, 1], the composition F2 ◦F1 = F : X×Z → [0, 1] is a probabilistic
function, i.e., it satisfies the condition ∀x ∈ X :

∑
z∈Z F(x, z) ≤ 1.

Proof. For any fixed x ∈ X:

∑
z∈Z

F(x, z) = ∑
z∈Z

∑
y∈Y

F1(x, y) · F2(y, z) by defn. 2.2

=
∑
y∈Y

F1(x, y) ·
∑
z∈Z

F2(y, z) factoring

≤ 1 by defn. 2.1

Hence, composition is a probabilistic function. ✷

2.3 Terminology

In what follows, P denotes a process, T denotes a term, p(x) denotes one
of an infinity of bandwidth polynomials such that ∀a ∈ N : p(a) ≥ 0. cp(x)

denotes one of a countable infinity Cq(x) of channel names associated with the
polynomial p(x) in such a way that no channel name is associated with more
than one polynomial.

There is a special security parameter, n, that can appear in terms (sec-
tion 2.3.1), as the parameter of the replication operator (defn. 2.13), as the
argument to the bandwidth polynomials, and in contexts (defn. 2.21). The
bandwidth polynomial gives, for each value of n, the maximum number of bits
that can be transmitted on that channel (explored in more detail in defn. 3.3).
The two-place relation ≡ stands for syntactic identity. We denote variables
by the letters x, y and so on. Finally, the function γ(x) is a polynomial such
that ∀a ∈ N : γ(a) ≥ 0.
Definition 2.4 [6] An oracle Turing machine is a Turing machine with an
extra oracle tape and three extra states qquery, qyes and qno. When the machine
enters state qquery control passes to the state qyes if the contents on the oracle
tape are in the oracle set; otherwise, control passes to the state qno.

Given an oracle Turing machine M , we will write M(ϕ,x) to specify the
behavior of M on input x using oracle ϕ.

We only consider binary oracles. Another way of saying this is that the
binary oracle ϕ determines a set Xϕ since we can write Xϕ as {x|ϕ(x)}. Thus,
a query to ϕ is a binary result saying if x ∈ Xϕ.

Definition 2.5 An oracle Turing machine M runs in oracle polynomial time
if there exists a polynomial q such that for all oracles ϕ, M(ϕ,x) halts in time
q(|x|) where x = x1, . . . , xm and |x| = |x1|, . . . , |xm|.
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In order to query the oracle, M must write the number at which it wants
to query the oracle on the oracle tape. If M runs in oracle polynomial time,
then M(x) queries the oracle set with at most q(|x|) bits.
Definition 2.6 Let M be a poly-time oracle Turing machine. We can view
M as a probabilistic poly-time Turing machine if we randomly choose an or-
acle from the space of oracles that can be queried in the time bound of M .
More precisely, let M be an oracle machine running in time bounded by the
polynomial q. Since M(x) can only query the oracle with at most q(x) bits,
we have a finite space of oracles that run in time bounded by q. Call this space
q. Then, we can view M as a probabilistic poly-time Turing machine where
we say that M(x) = y with probability p if, choosing an oracle ϕ uniformly
at random from q, the probability that M(x, ϕ) = y is p.

Given a poly-time probabilistic Turing machine M , we will write M(x) to
specify the behavior of M on input x using a randomly chosen oracle.

Definition 2.7 A probabilistic poly-time Turing machineM computes a prob-
abilistic function F if for all inputs x and for all outputs y we have that
F(x, y) = Prob

[
M(x) = y

]
.

Definition 2.8 A probabilistic function F is poly-time if it is computed by a
probabilistic poly-time Turing machine.

2.3.1 Terms

A functional term calculus based on [19,7] and a semantics for that calculus
are studied in [28]. Though we omit the details here, we do note that terms
can contain the security parameter n as well as a function rand that returns
one random bit.

For each term T with variables x1, . . . , xk, there is a probabilistic poly-time
Turing machine MT of k + 1 inputs and a polynomial qT (v1, . . . , vk+1) such
that the following two theorems hold:

Theorem 2.9 [28] Let T be a term with k variables and let MT be the machine
associated with T . Then MT (a1, . . . , ak, n) halts in time at most qT (|a1|, . . . , |ak|, |n|).
Theorem 2.10 [28] For each probabilistic poly-time function f , there exists
a term T such that MT computes f .

While there may be many assignments of Turing machines to terms that
satisfy the above two theorems, for our purposes the exact nature of the assign-
ment is irrelevant. In fact, we will simply consider the probabilistic poly-time
Turing machine MT to define the meaning of the term T .

Definition 2.11 We write T
r−→e a on inputs x1, . . . , xk if the probability that

MT (x1, . . . , xk, n) = a is r. We say that T evaluates to a with probability r.

Definition 2.12 We define two probabilities here: (1) the probability of two
terms evaluating to the same number, and, (2) the probability of two terms
evaluating to different numbers.
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(i) Prob=

[
T1, T2

]
=

∑
a s1s2,

where a ∈ N, T1
s1−→e a, T2

s2−→e a, and

(ii) Prob�=
[
T1, T2

]
=

∑
〈a1,a2〉 s1s2,

where a1, a2 ∈ N, a1 �= a2, T1
s1−→e a1, T2

s2−→e a2.

2.3.2 Processes

Definition 2.13 The syntax of processes is given by the following grammar:

P ::= 0 (termination)

νcp(|n|) .(P ) (private channel)

cp(|n|)(x).(P ) (input)

cp(|n|)〈T 〉 (output)

[T = T ].(P ) (match)

(P | P ) (parallel composition)

!γ(|n|).(P ) (γ(|n|)-fold replication)

Every input or output on a private channel must appear within the scope of
a ν-operator binding that channel. Otherwise the expression is considered
unevaluable.

Another word about channel names. The polynomial p(|n|) associated with
the channel c is a bandwidth parameter on c—for further details see section
3.3. Also, as mentioned in section 2.3, no channel name is associated with
more than one polynomial.

For simplicity, after fixing n, when we evaluate a process P , we replace all
subexpressions of P of the form !γ(|n|).R with γ(|n|) copies of R in parallel.
Furthermore, we define !γ(|n|).R to be left associative. Finally, we assume that
all channel names and variable names are α-renamed apart.

Finally, in what follows we will tend to omit parentheses if the parse tree
of an expression is unambiguous.

Definition 2.14 We define an input expression as a process of the form
cp(|n|)(x).P and an output expression is of the form cp(|n|)〈T 〉.
Definition 2.15 We call a process expression with no free variables a closed
process expression.

Definition 2.16 Let P be a process expression and let T be a term. If T
is not in the scope of any input operator, we say that T is an exposed term.
Similarly, let [T1 = T2].R be a subexpression of P . We will say that [T1 = T2].R
is an exposed match if it does not appear in the scope of any input operator.
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Definition 2.17 We define the indicator function Eq?0(P ) as a unary func-
tion on processes that has the value 1 when its input is the 0 process and 0
otherwise:

Eq?0(Q) =

{
0 if Q �≡ 0,

1 if Q ≡ 0.

Definition 2.18 outerEval is a probabilistic function on closed process ex-
pressions and closed process expressions with all exposed terms reduced to
atoms and no exposed matches:

outerEval(0,0) = 1
outerEval(νcp(|n|) .(P ), νcp(|n|) .(P

′)) = s1

outerEval(cp(|n|)(x).(Q), cp(|n|)(x).(Q)) = 1
outerEval(cp(|n|)〈T 〉, cp(|n|)〈a〉) = s2

outerEval([T1 = T2].(Q1), Q2)
= s3 · Prob=

[
T1, T2

]
+ Eq?0(Q2) · Prob�=

[
T1, T2

]
outerEval((P1 | P2), (P

′
1 | P ′

2)) = s4 · s5

outerEval(P,Q) = 0 otherwise.

where outerEval(P, P ′) = s1,

a ∈ N, T
s2−→e a,

outerEval(Q1, Q2) = s3,
outerEval(P1, P

′
1) = s4,

outerEval(P2, P
′
2) = s5

If outerEval(P, P ′) = s then we say that P outer-evaluates to P ′ with prob-
ability s, or that P

s−→o P ′.

The match case in the definition of outerEval bears some discussion. Con-
sider the match [T1 = T2].P . We wish to compute the probability of P outer-
evaluating to P ′. There are two distinct cases here:

(i) P ′ �≡ 0, and,

(ii) P ′ ≡ 0.

In the first case, we will only outer-evaluate P if the match succeeds, i.e.,
T1 = T2. In the second case, however, we can arrive at 0 either by passing
the match and outer-evaluating P to 0 or by simply failing the match. Hence,
the probability of outer-evaluating to P ′ is given by the sum of the product
of the probability of passing the match and outer-evaluating P to P ′ and, in
the case that we wish to outer-evaluate to a 0, failing the match—hence the
use of the indicator function in the second term of the sum.

We must be sure, however, that we do not over count in this expression.
From the definition of cases i and ii we can see that P ′ can never satisfy both
cases simultaneously—hence cases i and ii are disjoint. We do not over count
inside case ii as the sets over which we define the two summations in case ii
(one from the Prob=

[
T1, T2

]
term and one from the Prob�=

[
T1, T2

]
term) are
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disjoint.

Lemma 2.19 Let P , Q and R be closed process expressions such that P
s1>0−−−→o

Q and Q
s2>0−−−→o R. Then, Q has all exposed terms reduced to atoms and no

exposed matches, Q ≡ R, and s2 = 1.

Proof. By a straightforward induction on the structure of P . We give a
sketch of the proof.

The bases, P ≡ 0 and P ≡ cp(|n|)〈T 〉, are easy to see.
In the case that P ≡ νcp(|n|) .(P

′) we notice that Q ≡ νcp(|n|) .(Q
′) where

P ′ s1−→o Q′. By the inductive hypothesis, we have that Q′ 1−→o Q′ and the result
follows. In the case that P ≡ cp(|n|)(x).P ′ we notice that P

1−→o Q and the
result follows. In the case that P ≡ [T1 = T2].P

′ we have two cases. If both
T1 and T2 evaluate to the same number then Q ≡ Q′ where P ′ t1−→o Q′. By
the inductive hypothesis Q′ 1−→o Q′ and the result follows. In the case that T1

and T2 evaluate to different numbers we can see that Q ≡ 0 and the result
follows easily. In the case that P ≡ P1 | P2 the inductive hypothesis gives us

that P1

s′1−→o Q1
1−→o Q1 and P2

s′2−→o Q2
1−→o Q2 and the result follows. ✷

So, in a composition of two outerEvals, only the first outerEval does any
work. Specifically, it converts all exposed terms to atoms and eliminates all
exposed matches.

Corollary 2.20 Let P and Q be processes and let −→o,m represent the m-fold

composition of −→o. If P
s>0−−→o Q, then Q

1−→o,m Q.

Proof. Directly from lemma 2.19. ✷

Definition 2.21 Let Γ be the set of expressions generated by the following
grammar:

C[ ] ::= [ ]i

νcp(|n|) .(C[ ])

cp(|n|)(x).(C[ ])

P

[T = T ].(C[ ])

(C[ ] | C[ ])
!γ(|n|).(C[ ])

where i ∈ N.

A context is a process expression that is a member of Γ whose “holes”
(indicated by numbered empty square brackets [ ]i) are numbered uniquely.

Given a context C[ ] and processes P1, . . . , Pm, the notation C[P1, . . . , Pm]
means that we substitute the process Pi for the hole [ ]i in C[ ].
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Finally, we will indicate the number of holes is a context by placing an
(often un-numbered) empty square bracket for each hole in the context. For
example, C[ ] will be a one-hole context while D[ ][ ][ ] has three holes.

Definition 2.22 We will say that B is a sub-process of A if there exists a
context C[ ] such that C[B] ≡ A. If C[ ] �≡ [ ] we will say that B is a strict
sub-process of A.

Definition 2.23 Let P and Q be process expressions and cp(|n|) be a channel.
We say that P is bound by cp(|n|) in Q if cp(|n|)(x).D[P ] is a sub-process of Q
for some variable x and some context expression D[ ].

Definition 2.24 Let C[ ] be a context and P a process. Then, C[ ] is
minimal for P if every free variable of P is bound in C[P ] and each channel
to which P is bound in C[P ] binds a free variable of P .

Definition 2.25 The set of schedulable processes S(P ) of an outer-evaluated
process P is defined inductively as:

S(0) = ∅
S(νcp(|n|) .(Q)) = S(Q)

S(cp(|n|)(x).(Q)) = {cp(|n|)(x).(Q)}
S(cp(|n|)〈T 〉) = {cp(|n|)〈T 〉}
S((Q1 | Q2)) = S(Q1) ∪ S(Q2)

Note that every process in S(P ) is either waiting for input or ready to
output.

Definition 2.26 The set of communication triples C(P ) is defined as:

{〈P1, P2, QP1,P2 [ ]〉|P1 ≡ cp(|n|)〈a〉, P2 ≡ cp(|n|)(x).R,

Pi ∈ S(P ),

P ≡ QP1,P2 [P1, P2]}

Given a process P and a context QP1,P2 [ ], P1 and P2 are uniquely deter-
mined.

Example 2.27 Consider the process expression:

P ≡ cp(|n|)〈0〉 | cp(|n|)〈0〉 | cp(|n|)(x).dq(|n|)〈1〉

The process expression cp(|n|)(x).dq(|n|)〈1〉 could receive its input from either
one of the two output expressions. While both communications look the same,
their outputs come from distinct locations in P . We distinguish between the
two communications by associating the context [ ]1 | cp(|n|)〈0〉 | [ ]2 with the
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first communication (the one where the output ‘came’ from the first process
in the parallel composition) and associating the context cp(|n|)〈0〉 | [ ]1 | [ ]2
with the second communication (the pair where the output ‘came’ from the
second process in the parallel composition). So, C(P ) is the set:{
〈cp(|n|)〈0〉, cp(|n|)(x).dq(|n|)〈1〉, [ ]1 | cp(|n|)〈0〉 | [ ]2〉 ,

〈cp(|n|)〈0〉, cp(|n|)(x).dq(|n|)〈1〉, cp(|n|)〈0〉 | [ ]1 | [ ]2〉
}

Definition 2.28 The set of eligible processes E(P ) is defined as:

E(P ) =


C(P )

iff every channel in
C(P ) is public,

C(P )|private channels otherwise.

Note that restricting E(P ) to just private channels anytime C(P ) contains
a private channel ensures that all private communications occurs prior to
public communication. This allows us to “hide” private communications from
a prying observer by making private communications privileged.

3 Evaluation

3.1 Scheduler Reduction

Definition 3.1 We write [a/x]P to mean “substitute a for all free occur-
rences of x in P .” We will define the substitution operation as follows:

[a/x]0 = 0

[a/x] νcp(|n|) .(Q) = νcp(|n|) .([a/x]Q)

[a/x] cp(|n|)(y).(Q) = cp(|n|)(y).([a/x]Q)

[a/x] cp(|n|)(x).(Q) = cp(|n|)(x).(Q)

[a/x] cp(|n|)〈T 〉 = cp(|n|)〈(λx.T ) a〉
[a/x] [T1 = T2].(Q) = [(λx.T1) a = (λx.T2) a].([a/x]Q)

[a/x] (P1 | P2) = ([a/x]P1 | [a/x]P2)

[a/x]!γ(|n|).(Q) = !γ(|n|).([a/x]Q)

We can generalize the substitution operation to contexts, i.e., to substituting
a for all free occurrences of x in C[ ].

Definition 3.2 We define a scheduler S to be a probabilistic function from
sets of communication triples to communication triples such that for every set
of communication triples E, if S(E, e) > 0 then e ∈ E. If S(E, e) = r we will
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say that the scheduler S picks the communication triple e from the set E with
probability r.

Definition 3.3 Let a be a natural number, n the value of the security param-
eter, and S a scheduler. We will say that P reduces to P ′ in one communication
step with respect to S with probability r if and only if:

∃e ≡ 〈P1, P2, QP1,P2 [ ]〉 ∈ E(P ) : S(E(P ), e) = r,

P1 ≡ cp(|n|)〈a〉,
P2 ≡ cp(|n|)(x).P ′

2,

P ′ ≡ QP1,P2 [0, [a
′/x]P ′

2] ,

a′ = a mod 2p(|n|) − 1.

We write this as P
r−→S P ′.

We reduce a modulo 2p(|n|) − 1 in order to ensure that at most only the
p(|n|) least significant bits of a are transmitted.

By stipulating that at most p(|n|) bits of a message can be transmitted we
ensure that we cannot create exponential-time processes out of polynomial-
time process expressions—something that we can do if we allowed arbitrary
length messages to be transmitted. Consider the process expression:

P ≡ !γ(|n|).cp(|n|)(x).cp(|n|)〈x2〉 | cp(|n|)〈2〉
Let the polynomial γ(|x|) return x always. While more complex polynomials
will make the results more dramatic, this choice of γ simplifies matters. It is
clear that P will square its input (here initialized to 2) n times. We will call
the output of this process Pn.

The table below shows outputs for several different values of n:

n Pn |Pn|
1 4=22 2=21

2 16=24 4=22

3 256=28 8=23

4 65, 536=216 16=24

5 4, 294, 967, 296=232 32=25

...
...

...

Clearly, P outputs values of length exponential in n. Now if the output of P is
used as the input to some poly-time process expression Q, then we will obtain
an exponential-time process since Q must run on exponentially long values.
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However, if we truncate the messages transmitted then no message can ever
get too long, i.e., exponentially long.

3.2 Evaluation

3.2.1 Macro-Step Reduction

Intuitively, we define the macro-step reduction of P to P ′ based on the follow-
ing three stage procedure:

(i) We outer-evaluate P , yielding R.

(ii) The scheduler picks a process triple E from E(R) and performs the se-
lected communication. This results in the process expression R′.

(iii) Finally, we outer-evaluate R′, yielding P ′.

Thus, macro-step reduction is merely shorthand for a procedure whereby we
select a communication to perform and evaluate the result until it becomes nec-
essary for the next communication to be selected. The first outer-evaluation
simply ensures that the process expression on which we perform the commu-
nication step satisfies the condition on S(P ) specified in defn. 2.25. Barring
the first outer-evaluation, then, the evaluation of process expressions becomes
an alternating series of process evaluations (the outer-evaluations) and com-
munication steps. We will define macro-step reduction so that it is just a
communication step followed by a process evaluation—with a preceding pro-
cess evaluation for the reason mentioned above.

Definition 3.4 More precisely, macro-step reduction with respect to scheduler
S is the probabilistic function defined by the composition:

−→o ◦ (−→S ◦ −→o) (3a)

The probability r of the macro-step reduction of P to P ′ is obtained directly
from definition 2.2:

r =
∑

Q,Q′|P a−→oQ
b−→SQ′ c−→oP ′

abc (3b)

We will write the macro-step reduction of P to P ′ with respect to the scheduler
S with probability r as P

r−→1,S P ′.

3.2.2 m-Step Reduction

Definition 3.5 Let P and P ′ be two process expressions. Define the set
PathsP,P ′ as:

{{Q1, . . . , Qm−1}|P p1−→1,S Q1
p2−→1,S · · · pm−1−−−→1,S Qm−1

pm−→1,S P ′}

We call PathsP,P ′ the set of paths from P to P ′.
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Definition 3.6 The probability that P reduces to P ′ in m steps with respect
to the scheduler S is given by: ∑

{Q1,··· ,Qm−1}∈PathsP,P ′

P
p1−→1,SQ1

p2−→1,S ···
pm−1−−−→1,SQm−1

pm−→1,SP ′

p1p2 · · · pm

We write the m-step reduction of P to P ′ with probability r as P
r−→m,S P ′.

3.2.3 Evaluation

Definition 3.7 We say that P evaluates to Q with respect to the scheduler S
if, using the scheduler S, P reduces to Q via some number of macro-steps. We
write the evaluation of P to P ′ with respect to the scheduler S as P ↪→S P ′.

4 Polynomial-Time Bound on Evaluation

We are interested in the worst-case time of evaluation. Since the probability of
a particular reduction has no bearing on the worst-case time of evaluation, we
need not consider the probabilities of the various reductions in our analysis.

Our bound on evaluation will be derived as a certain combination of three
bounds: a bound on the length of any evaluation sequence, a bound on any
outer-evaluation step, and a bound on any communication step.

4.1 A Bound on the Length of any Evaluation Sequence

Definition 4.1 Let P be a process expression. We define inputs(P ), the
number of inputs in P , inductively as follows:

inputs(0) = 0

inputs(νcp(|n|) .(Q)) = inputs(Q)

inputs(cp(|n|)(x).(Q)) = 1 + inputs(Q)

inputs(cp(|n|)〈T 〉) = 0

inputs([T1 = T2].(Q)) = inputs(Q)

inputs((Q1 | Q2)) = inputs(Q1) + inputs(Q2)

inputs(!γ(|n|).(Q)) = γ(|n|) · inputs(Q)

It is clear from the definition that inputs(P ) is a polynomial in |n| that is
positive for all input values.

Definition 4.2 Let P be a process expression. We define outputs(P ), the

292



Mitchell, Ramanathan, Scedrov, and Teague

number of outputs in P , inductively as follows:

outputs(0) = 0

outputs(νcp(|n|) .(Q)) = outputs(Q)

outputs(cp(|n|)(x).(Q)) = outputs(Q)

outputs(cp(|n|)〈T 〉) = 1

outputs([T1 = T2].(Q)) = outputs(Q)

outputs((Q1 | Q2)) = outputs(Q1) + outputs(Q2)

outputs(!γ(|n|).(Q)) = γ(|n|) · outputs(Q)

It is clear from the definition that outputs(P ) is a polynomial in |n| that is
positive for all input values.

The following lemma is straightforward.

Lemma 4.3 Let P be a closed process. Then, for all n and schedulers S,
during any evaluation of P , at most inputs(P ) communication steps occur.

Corollary 4.4 Let P be a closed process. Then, for all n and schedulers S,
during any evaluation of P , at most inputs(P ) macro-steps occur.

4.2 A Bound on Outer-Evaluation Time

Definition 4.5 We have a natural number LT , the length of T , associated
with each term T .

If T is a term, LT is the product of a constant and the syntactic length of
T , i.e., LT = c · length(T ) where c is a constant. More details about LT can
be found in the proof of lemma 4.10.

Definition 4.6 Let P be a process expression and n be the value for the
security parameter. We define a polynomial normlength(P ), the length of P ,
inductively as follows:

normlength(0) = 1

normlength(νcp(|n|) .(Q)) = c+ normlength(Q)

normlength(cp(|n|)(x).(Q)) = c+ normlength(Q)

normlength(cp(|n|)〈T 〉) = c+ LT

normlength([T1 = T2].(Q)) = c+ LT1 + LT2 + normlength(Q)

normlength((Q1 | Q2)) = c+ normlength(Q1) + normlength(Q2)

normlength(!γ(|n|).(Q)) = γ(|n|) · c · normlength(Q)

293



Mitchell, Ramanathan, Scedrov, and Teague

where c is a constant and LT is the length of the term T .

Since the length of a term does not depend on n (i.e., it is a constant for
our purposes), it is clear from the definition that normlength(P ) is polynomial
in |n|. Furthermore, normlength(P ) is positive for all n.

Definition 4.7 Let P be some process. Let p be the set of bandwidth poly-
nomials that appear in P . Note that p is a finite (polynomial in |n| big) set.
For each i ∈ N, let a be the set of the coefficients of the xi terms in each
polynomial in p. Notice that a is finite since p is finite. For each i ∈ N we
define the term ai as the maximum term in a. Since a is finite, the greatest
coefficient is well-defined. We then define the polynomial χ(x) as

∑∞
i=0 aix

i.
Notice that ∀b ∈ N.∀p(x) ∈ p : χ(b) ≥ p(b).

Let P be a process and let χ(x) be defined as per defn. 4.7. We now
specify a Turing machine that will pad out P . The Turing machine initially
rewrites each variable x in P so that it takes up χ(|n|) spaces on the input
tape. It does so by inserting χ(|n|) − 1 blank symbols before the variable so
that x becomes the string � · · · � x. Since the length of P is a polynomial
in the size of n there are at most a polynomial in the size of n variables each
of which have a polynomial in the size of n number of blank symbols inserted
before it. Thus, it is easy to see that padding out the variables of P can be
done by the Turing machine in at most a polynomial in the size of n number
of steps. What this padding does is to ensure that substituting a value for x
can be done without increasing the length of a padded process P (since χ(|n|)
exceeds the size of any bandwidth polynomial and since we only need to write
down at most a bandwidth polynomial number of bits when substituting a
value for a variable, we will always have plenty of space).

During the evaluation of P there can be at most inputs(P ) communication
steps (lemma 4.3). Let T be an arbitrary term in P . Each communication
step during the evaluation of P can hide T behind one level of λ-abstractions;
at the end of evaluation, in the worst case, T will be hidden behind inputs(P )
λ-abstractions. The increase in the length of the term T caused by a single
λ-abstraction is a constant—T becomes (λx.T )a. The symbols added to T are
‘λ’, ‘x’, ‘.’, ‘(’, ‘)’ and ‘a’—recall that a is considered to be χ(|n|) bits long.
Thus, if we add inputs(P ) · c · χ(|n|) blank spaces before each term in P , we
will have enough space around each term to ensure that we can account for the
maximal increase in the size of terms incurred during evaluation due to the
creation of λ-abstractions during communication steps. Again, this padding
can be done in a polynomial in the size of n amount of time since there are
at most a polynomial in the size of n number of terms and inputs(P ) is a
polynomial in the size of n.

Hence, padding P can be done in a polynomial in the size of n amount of
time by a Turing machine.

Definition 4.8 Let P be a process expression and n be the value for the
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security parameter. We define a polynomial length(P ), the padded length of
P , inductively as follows:

length(0) = 1

length(νcp(|n|) .(Q)) = c+ length(Q)

length(cp(|n|)(x).(Q)) = c+ χ(|n|) + length(Q)

length(cp(|n|)〈T 〉) = c1 + LT + inputs(P ) · c2 · χ(|n|)
length([T1 = T2].(Q)) = c+ (d1 + LT1 + inputs(P ) · d2 · χ(|n|))

+ (e1 + LT2 + inputs(P ) · e2 · χ(|n|)) + length(Q)

length((Q1 | Q2)) = c+ length(Q1) + length(Q2)

length(!γ(|n|).(Q)) = γ(|n|) · c · length(Q)
where c, c1, c2, d1, d2, e1, e2 are constants and LT is the length of the term T .

Since the length of a term does not depend on n (i.e., it is a constant for
our purposes), it is clear from the definition that length(P ) is polynomial in
|n|. Furthermore, length(P ) is positive for all n.

The rationale behind the construction of length(P ) should be clear given
the discussion of padding on page 15. Essentially, for technical reasons, we
assume that a variable has length χ(|n|) (see lemma 4.10 where χ(x) is a
polynomial bigger everywhere than any bandwidth polynomial that appears
in P . This allows us to substitute values for variables without pushing symbols
around since the variables leave enough space for any conceivable value. Ad-
ditionally, each term leaves enough blank space for the λ-abstractions created
by communication steps (recall that at most inputs(P ) such communication
steps can occur during evaluation).

In what follows, we shall mean by the phrase “length of P” the padded
length of P and not the unpadded (normal) length of P unless otherwise
explicitly stated.

Let us observe that the length does not increase as a result of macro-steps.

Lemma 4.9 Let P be a closed process and R a process such that R is the result
of performing some number of macro-steps on P . Then for all n, length(R) ≤
length(P ).

We now show that any outer-evaluation step may be carried out on a
probabilistic polynomial-time Turing machine. We rely on the assignment of
probabilistic polynomial-time Turing machines MT to terms T discussed in
section 2.3.1.

Lemma 4.10 Let T1, . . . , Tm be terms and let MT1 , . . . ,MTm be their associ-
ated probabilistic polynomial-time Turing machines. Let P be a closed pro-
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cess containing terms (λx1 · · ·λxr.Tj) a1 · · · ar, where 1 ≤ j ≤ m. From
MT1 , . . . ,MTm one can construct a probabilistic Turing machine that outer-
evaluates P in time polynomial in |n|.

Proof. Let us make the following two assumptions. First, we assume that
variables have length χ(|n|). This ensures that when we substitute a value
(recall that the length of values are limited by the appropriate bandwidth
polynomials due to the truncation in the communication step) for a variable,
it is easy to replace the variable with the value, i.e., we do not need to “push”
forward the symbols following the variable in order to make room for the value
we want to write down.

Second, we assume that when we evaluate a term, we only write down
the χ(|n|) least significant bits of the resultant value. In principle we allow
arbitrarily large values to be written down—it is only during communication
that these values are truncated. However, this means that as terms evaluate
the process expression we are working on might arbitrarily increase in size.
Since the only time a value created by a term evaluation is used occurs when
we communicate the value, truncating the value at creation does not change
anything. It is true that values generated by term evaluations are used in the
match—however we do not write down these values; we simply write down
either 0 or the result of outer-evaluating the process expression bound to the
match.

The result of these two assumptions is that each outer-evaluation either
does not change the length of the process or decreases the length of the process
(by replacing inputs and outputs with 0s and evaluating matches).

If we pad P prior to outer-evaluating it we can guarantee these assump-
tions. Furthermore the padding can be done, as we have seen, in a polynomial
in size n amount of time.

We will now construct the desired probabilistic Turing machine, pTM. Es-
sentially, the pTM must evaluate each exposed term and each exposed match
in P (it is easy to determine if a term or match is exposed—every time an in-
put operator, say cp(|n|)(x).P , is encountered, we consider every subexpression
of P as being not exposed). Since we know that P will only contain terms that
are substitution instances of terms from the set {T1, . . . , Tm}, we can associate
each term Ui from P with an algorithm MTi′ where Ti′ is the term of which
Ui is a substitution instance. By theorem 2.9 we have that MTi′ computes,
in polynomial time, the value to which Ti′ evaluates on some input. Since Ui

is a substitution instance of Ti′ we have that Ui ≡ (λx1 · · ·λxr.Ti′) a1 · · · ar.
Hence, we can compute the value of Ui by evaluatingMTi′ at a1, . . . , ar and n.

So we define our pTM so that when it encounters a substitution instance
of one of those m terms, it invokes the appropriate algorithm (in the case
that it encountered Ui ≡ (λx1 · · ·λxi.Ti′) a1 . . . ai, it invokes MTi′ at a1, . . . , a1

and n). Recall that each communication step creates λ-substitution instances
of terms, i.e., the substitution of values into terms is delayed until term-
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evaluation time. So, our pTM evaluates each exposed term it encounters by
evaluating the associated algorithm at the values specified by the substitution
instance. Evaluating a match simply involves evaluating the two terms and
writing either the 0 or outer-evaluating the bound process.

How much does this cost in the sense of time complexity? The pTM
“touches” each syntactic element of the process expression P . Whenever it
hits a term (λx1 · · ·λxi.T ) a1 · · · ai, it evaluates T by evaluating the algorithm
MT at a1, . . . , ai. This takes a polynomial qT (|a1|, . . . , |ai|, |n|) time. So, the
cost of outer-evaluating P on a pTM is a function of both the length of P
and the costs of evaluating each exposed term that the pTM encounters. The
length of P is given inductively in defn. 4.8 as length(P ). Assuming that
there are terms U1, . . . , Us in P out of which the first i are exposed, the cost
of outer-evaluating P is:

t1(P ) = c · length(P ) +
i∑

j=1

(LUj
+ qTj

(|a1|, . . . , |aα(Uj)|, |n|)
)

(5a)

where Ux ≡ (λx1 · · ·λxb.Tx) a1 · · · ab and α(Ux) = b. The LUx term accounts
for the cost of actually determining the α(Ux) arguments to Tx. Finally, the
term c · length(P ) accounts for the cost of parsing a padded P to determine
whether a term or an expression is exposed or not (note that the expansion in
length caused by padding P is accounted for in the definition of length(P )).

We observe that any argument to Tx is at most χ(|n|) bits long. Hence
t1(P ) ≤ t2(P ) where t2(P ) is:

c · length(P ) +
i∑

j=1


LUj

+ qTj
(

α(Uj) times︷ ︸︸ ︷
χ(|n|), . . . , χ(|n|), |n|)


 (5b)

But, qTj
then becomes just a function of χ(|n|) and |n|. Since LUj

does not
depend on n, we can rewrite t2(P ) as:

τ(P ) = c · length(P ) +
i∑

j=1

(
q′Uj
(χ(|n|), |n|)

)
(5c)

where q′Uj
(χ(|n|), |n|) = LUj

+ qTj
(

α(Uj) times︷ ︸︸ ︷
χ(|n|), . . . , χ(|n|), |n|).

Thus, clearly τ(P ) is a polynomial in |n| (as length(P ) is polynomial in
|n|) that bounds the amount of time the pTM takes to outer-evaluate P . ✷

¿From probabilistic Turing machines MT1 , . . . ,MTm we have constructed a
probabilistic Turing machine that outer-evaluates P for all values of n. So, we
will say that the pTM is uniformly constructed from the pTMsMT1 , . . . ,MTm .
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Definition 4.11 We define κ(P ), the cost of outer-evaluating a closed process
expression P , as:

κ(P ) = c · length(P ) +
s∑

j=1

(
q′Tj
(χ(|n|), |n|)

)

where the process P has the terms T1, . . . , Ts and q′Tj
is defined as for equation

(5c) and c is a constant that accounts for the cost of parsing a padded P to
determine exposed expressions and terms.

Whereas τ(P ) is the time needed to outer-evaluate just the exposed terms
and matches in P , κ(P ) is the cost of outer-evaluating every term and match
in P . The following lemma is immediate.

Lemma 4.12 Let P be a closed process. Then, τ(P ) ≤ κ(P ).

It may also be shown that macro-steps do not increase the cost of outer-
evaluation.

Lemma 4.13 Let P be a closed process expression and S a scheduler. Let R
be a process such that R is obtained by performing a finite number of macro-
steps on P . Then for all n and k, κ(R) ≤ κ(P ).

Thus we also obtain

Lemma 4.14 Let P be a closed process. Let R be a process such that P
evaluates to R in at most m macro-steps. Then τ(R) ≤ κ(P ).

4.3 A Bound on the Communication Step

Lemma 4.15 Let P be a closed process and π a communication triple. Then
there exists a pTM such that for all P , π, n and k, the pTM performs the
communication step indicated by π on P in time polynomial in |n|.
Proof. We begin by padding P . This allows us to assume, as we did in the
proof of lemma 4.10, that variables are χ(|n|) bits long. This means that we
can easily substitute values for variables by simply overwriting the variable.

In order to perform the communication step, we make one pass to remove
the input and output specified in π. Specifically, we rewrite the subexpression
cp(|n|)(x).Q specified as the input in π with �����Q (where � is a special
character that the pTM ignores—this allows us to delete subexpressions of
P without having to push symbols around) and we rewrite the subexpression
cp(|n|)〈a〉 specified as the output in π with ���0. So, the pTM performs a
pass, prior to performing the substitution indicated by the communication
step, to eliminate the input and output process expressions.

We then make another pass over the process replacing all instances of x
with a. Since we assume that all channels are α-renamed apart and that both
a and x are at most χ(|n|) bits long, we can do this substitution without any

298



Mitchell, Ramanathan, Scedrov, and Teague

real effort except when we create a λ-substitution instance out of a term T .
When this happens, we need to insert symbols. However, each communication
step adds one level of λ-abstraction; so, when we write the process down we
leave sufficient room around each term T , i.e., we add some fixed amount of
blank space after each term. Since the notation for a single λ-abstraction is
constant sized and the value to apply to that λ-abstraction is at most χ(|n|)
bits long, a fixed amount of space per term will suffice. We added this extra
space to each term during the initial pass that padded out P . Essentially, we
are adding a polynomial in |n| amount of padding to the process—the length
of the expression is a polynomial in |n| and an upper-bound on the number of
terms in the process.

Then, we can easily perform the needed rewriting necessitated by the com-
munication step without moving symbols around. Thus, a single pass over the
process should suffice to perform the communication step.

So, the time needed to perform the communication step is just σ(P ) =
c0 · length(P ) where c0 is a constant that accounts for the multiple passes (one
to eliminate the input and output expressions and another to perform the sub-
stitutions indicated by the communication step) and length(P ) accounts for
the increased length caused by padding out P . Clearly, σ(P ) is a polynomial
in |n| since length(P ) is such a polynomial. ✷

Definition 4.16 Let P be a process expression. We notice that if there
are inputs(P ) inputs and outputs(P ) outputs in P , then there are at most
inputs(P ) · outputs(P ) communication steps possible. Let ci be the constant
factor that accounts for the multiples passes incurred during the evaluation of
the ith communication step (meaning, the ith communication out of the set
of inputs(P ) · outputs(P ) communication steps; not the communication taken
at the ith evaluation step).

We define ϕ(P ), the cost of performing a substitution given by a commu-
nication triple π on the closed process expression P , as:

ϕ(P ) = c0 · length(P ) + c1 · length(P ) + · · ·+ ck · length(P )

where k = inputs(P ) · outputs(P ).
σ(P ) is the time needed to perform the substitution specified by π. How-

ever, ϕ(P ) is meant to bound the cost of any substitution that might possibly
occur in the course of evaluating P . A process has inputs(P ) inputs and
outputs(P ) outputs. Since an arbitrary substitution consists of one input ex-
pression and one output expression, there are at most inputs(P ) · outputs(P )
possible communications that can occur. At any communication step (by
lemma 4.4, there are at most inputs(P ) such steps), only one potential com-
munication occurs. Hence ϕ is an upper bound on the time needed to perform
any communication that might occur in the evaluation of P .

It is clear that
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Lemma 4.17 Let P be a closed process. Then, σ(P ) ≤ ϕ(P ).

It follows from lemmas 4.9 and 4.17 that

Lemma 4.18 Let P be a closed process expression and S a scheduler. Let R
be a process such that R is obtained by a finite number of macro-steps from
P . Then for all n, σ(R) ≤ ϕ(P ).

4.4 A Bound on Evaluation Time

We now use the bounds obtained in the previous three subsections to obtain
a polynomial bound on total evaluation time.

Definition 4.19 Let P be a process expression. We define an evaluation
context for P as a context C[ ] of the form:

c1p1(|n|)(x1) . . . cipi(|n|)(xi).[ ] | c1p1(|n|)〈a1〉 | · · · | ctpt(|n|)〈at〉
where t = i+ inputs(P ), there are no free variables in C[P ], aj ∈ N, and each
x1, · · · , xi either appears free in P or does not appear at all in P .

We will sometimes specify that the evaluation context C[ ] is an (i, t)-
evaluation context, meaning that it has i inputs and t outputs.

If P is a process and C[ ] is an evaluation context for P , then C[P ] is a
closed process.

Definition 4.20 Let P ≡ P1 | · · · | Pm be a process such that P is the
result of outer-evaluating some process expression Q. If, for each Pi such that
Pi ≡ cp(|n|)(x).P ′

i there does not exist a Pj with j �= i such that Pj ≡ cp(|n|)〈a〉,
we say that P is a normal form.

It should be clear from defn. 4.20 that if a process P is a normal form,
then P cannot be further evaluated as E(P ) = ∅.
Theorem 4.21 Let P be a process expression. Then, there exists a polyno-
mial q(x) with all positive coefficients such that for all n, all poly-time sched-
ulers S and minimal evaluation contexts C[ ] for P , the process C[P ] evaluates
to a normal form on a probabilistic Turing machine in time at most q(|n|).

The idea behind this theorem is that given a process P (that is possibly
not closed) and an evaluation context C[ ] that closes P and provides P with
all the necessary inputs, C[P ] evaluates, on a probabilistic Turing machine,
to a normal form in at most polynomial time.

Proof. By lemma 4.3, we have that at most inputs(C[P ]) (recall that this is
a polynomial in |n|—see defn. 4.1) communication steps (and hence macro-
steps) occur during the evaluation. Thus, all we need to do is determine the
time it takes to perform a macro-step.

We note that the second outer-evaluation of a macro-step composes with
the first outer-evaluation of the next macro-step. Since outer-evaluation is
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idempotent (lemma 2.19), neither the probability distribution nor the resul-
tant process changes as a consequence of the double outer-evaluation. All that
happens is that we take a little extra time.

The time to outer-evaluate any process that can be obtained by a reduction
from C[P ] on a Turing machine is given by lemma 4.14 as a polynomial in
|n|—call this qo(|n|). Recall that outer-evaluation is performed by making a
pass over the process expression and replacing each exposed term that has
no free variables with a number (truncated so that its size doesn’t exceed the
band-width of the channel). In the case of matches, we do not write down
the value of the two terms being compared. Instead we outer-evaluate the
bound process or write down 0. Since the length of C[P ] is polynomial in |n|
outer-evaluation takes time polynomial in |n|.

The time to perform any communication step that might arise in the eval-
uation of C[P ] is given by lemma 4.18 as a polynomial, qc, in |n|. Recall that
a communication step that substitutes a for x is performed by making a pass
over the process expression and replacing each instance of the variable x with
a. Since the length of C[P ] is polynomial in |n| communication takes time
polynomial in |n|.
However, there is an additional cost incurred in actually selecting the com-

munication step. It requires a single pass over the process expression to build
S(C[P ]) and then time proportional in |S(C[P ])| to build E(C[P ]). But there
are at most inputs(C[P ]) input expressions and outputs(C[P ]) output expres-
sions in C[P ]. Consequently |S(C[P ])| is at most inputs(C[P ])·outputs(C[P ])
which is a polynomial in |n|. Consequently, generating E(C[P ]) from C[P ]
takes polynomial in |n| time.
Furthermore, the scheduler is defined to be poly-time, i.e., given the eli-

gible process set E(C[P ]), the scheduler takes a polynomial in |E(C[P ])| =
|S(C[P ])|2 amount of time to choose a communication step. But this is just a
polynomial in |n|. Hence, in order to generate E(C[P ]) and make a choice we
require a polynomial, qd, in |n| amount of time. Since macro-steps do not in-
crease the length of a process expression, qd is an upper-bound on the amount
of time required to schedule a communication when evaluating R where R is
a process expression obtained from C[P ] via some number of macro-steps.

Hence the time needed for evaluation q is given by:

inputs(C[P ]) ·
(
qo(|n|) + qd(|n|) + qc(|n|) + qo(|n|)

)
(6)

which is just a polynomial in |n|. ✷

5 Equivalence

Definition 5.1 We define an observation to be a test on a particular public
channel for a particular natural number. More precisely, we will define Obs
to be the set of all possible observations, i.e., the set of pairs 〈i, cp(|n|)〉 where
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i ∈ [0..2p(|n|)− 1] is a natural number and cp(|n|) is a public channel. If, during
an evaluation of process expression P , the scheduler selects the communication
triple 〈cp(|n|)〈i〉, cp(|n|)(x).P ′, Qcp(|n|)〈i〉,cp(|n|)(x).P ′〉 we will say that the observable
〈i, cp(|n|)〉 ∈ Obs was observed and write P ❀ 〈i, cp(|n|)〉.
Definition 5.2 Let ∆ be the set of expressions generated by the following
sub-grammar of the one which produces contexts (see defn. 2.21):

C[ ] ::= [ ]i

cp(|n|)(x).(C[ ])

P

[T = T ].(C[ ])

(C[ ] | C[ ])
!γ(|n|).(C[ ])

where i ∈ N.

An adversarial context is a process expression that is a member of ∆—∆
is just the subset of the set of contexts (Γ) where a hole doesn’t appear in the
scope of a ν-operator. As for a standard context, the “holes” are numbered
uniquely.

Definition 5.3 A process P may contain the security parameter n (section
2.3). We will write Pm to signify that the parameter n is assigned the natural
number m. A process family P is the set 〈Pi| i ∈ N〉. Since contexts may
contain the process parameter n, we can define the context family C[ ] and
the adversarial context family C[ ] analogously.
We evaluate a process family by picking a value for n and then evaluating

the indicated member of the process family. In this manner we can extend
all the concepts regarding process expressions and contexts to process and
context families.

Definition 5.4 We define P to be the set of all process families, C to be
the set of all context families and A to be the set of all adversarial context
families.

5.1 Observational Equivalence

Definition 5.5 Let P be a process family. We will say that the channel name
cq(|n|) appears in P just when there are inputs and outputs on cq(|n|) that are
subexpressions of P .
Definition 5.6 Let P and Q be two process families. Let q be the set of
polynomials q(x) such that ∀y : q(y) > 0. We will say that P and Q are
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observationally equivalent if:

∀q(x) ∈ q.∀C[ ] ∈ A.∀o ∈ Obs.∃no.∀n > no :∣∣ Prob[Cn[Pn] ❀ o
]− Prob[Cn[Qn] ❀ o

]∣∣ ≤ 1

q(n)

If this is so, we will write that P ∼= Q.
It is our goal to define adversaries to a protocol as adversarial contexts.

Then, we will be able to prove security properties by stating observational
equivalences.

The idea here is that if two process families are the same, then no adver-
sarial context (i.e., attacker) can distinguish between the two with significant
probability once the security parameter gets large enough—the probability of
one process family producing an observable is indistinguishable (to within an
arbitrary polynomial factor) from the probability of the other process family
producing that same observable.

However, if we forced observational equivalence to hold under all con-
texts, then we are essentially saying that adversaries can attack a protocol
by changing the way a protocol executes (by specifying the scope of a pri-
vate channel and, thereby, being able to read values transmitted on private
channels). However, such attacks do not seem appropriate given our model of
adversary capabilities. Hence, we discount such contexts from our definition
of observational equivalence.

We can only guarantee such a property in the case that n is large enough
as most any security system can be defeated by brute-force searches if the
search-space is small enough. So, even though a context (i.e., a brute force
search over, say, keys) may distinguish two process families (that is break one
protocol and not the other), once we up the security parameter sufficiently,
that context will get defeated.

Proposition 5.7 ∼= is an equivalence relation.

Because the definition of observational equivalence involves all adversarial
contexts (definition 5.6), it is plain that

Property 5.8 (SUBST-EQ) P ∼= Q ⇐⇒ ∀C[ ] ∈ A : C[P ] ∼= C[Q].
We shall refer to the property SUBST-EQ as the rule of substitutive equiva-

lence.

A series of properties follow immediately from SUBST-EQ.

Property 5.9 (REPL-EQ) If P ∼= Q then !r(|n|).P ∼= !r(|n|).Q where r is a
polynomial such that ∀a ∈ N : r(a) ≥ 0.
Property 5.10 (OUTPUTS-EQ) If P ∼= Q then:

c1p(|n|)〈m1〉 | · · · | cip(|n|)〈mi〉 | P ∼= c1p(|n|)〈m1〉 | · · · | cip(|n|)〈mi〉 | Q
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Property 5.11 (MATCH-EQ) If P ∼= Q then [T1 = T2].P ∼= [T1 = T2].Q.
Property 5.12 (REST-SUBST-EQ) Let A ⊆ {R|R is a process family} be a
set such that 0 ∈ A. Let P and Q be process families. Then,

∀A ∈ A. (A | P ∼= A | Q) ⇐⇒ P ∼= Q.

Property 5.13 (PARALLEL-COMP) If P1
∼= P2 and Q1

∼= Q2, then P1 | Q1
∼=

P2 | Q2.

Another basic property of observational equivalence involves the relation-
ship among the probabilistic polynomial-time computable functions, the terms
of our calculus, and the polynomial-time oracle Turing machines, described in
section 2.3.1.

Property 5.14 (EQ-DISTRIB) Let f and g be probabilistic polynomial-time
computable functions such that range(f) = range(g) = X ⊆ N and both f
and g induce the same distribution on X. Let Tf be the term such that MTf

computes f and Tg be the term such that MTg computes g. Then there exists
a polynomial q such that cq(|n|)〈Tf〉 ∼= cq(|n|)〈Tg〉.

6 Cryptographic examples

Let us show that our asymptotic notion of observational equivalence be-
tween probabilistic polynomial-time processes coincides with the traditional
notion of indistinguishability by polynomial-time statistical tests, a standard
way of characterizing cryptographically strong pseudorandom number gener-
ators [37,17,16,25,15].

6.0.1 Pseudorandom Number Generators

We begin by recalling several standard notions from cryptographic literature
[37,17,16,25,15].

Definition 6.1 [function ensemble] A function ensemble f is an indexed fam-
ily of functions {fn : An → Bn}n∈N.

The reader might wish to review defns. 2.4, 2.5, 2.6, 2.7 and 2.8 for details
before proceeding.

Definition 6.2 A function ensemble f : An → Bn is uniform if there exists a
single Turing machine M that computes f for all values of n, i.e., M(n, x) =
fn(x).

Definition 6.3 A uniform function ensemble f : An → Bn is poly-time if
there exists a polynomial q and a single Turing machine M such that M(n, x)
computes fn(x) in time at most q(|n|, |x|).
Definition 6.4 A uniform function ensemble f : An × Bn → [0, 1] is proba-
bilistic poly-time if there exists a single probabilistic poly-time Turing machine
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M such that M(n) computes fn.

Definition 6.5 A poly-time statistical test A : {0, 1}m(|n|) × {0, 1} → [0, 1] is
a {0, 1}-valued probabilistic poly-time function ensemble.
Definition 6.6 [pseudorandom number generator] Let q(x) be a positive poly-
nomial. A pseudorandom number generator (PRNG) is a uniform polynomial
time function ensemble f : {0, 1}k(|n|) → {0, 1}l(|n|) such that for all poly-time
statistical tests A:

∀q(x).∃no.∀n > no :
∣∣ Probs∈R{0,1}k(|n|)

[A(fn(s)) = “1”
]

− Probr∈R{0,1}l(|n|)
[A(r) = “1”]∣∣ ≤ 1

q(n)

In general, f : {0, 1}k(|n|) → {0, 1}l(|n|) is an interesting PRNG only when
∀x ∈ N.l(x) > k(x).

The reader might wish to review the definition of a probabilistic func-
tion (defn. 2.1) and composition of probabilistic functions (defn. 2.2) before
proceeding.

Definition 6.7 Let f : {ε} × {0, 1}q(|n|) → [0, 1] be a probabilistic poly-time
function ensemble. 7 Let Tf be a term such that MTf

computes f . Then,
we say that cq(|n|)〈Tf〉 is the characteristic process family for f with respect to
channel cq(|n|).

Let f : {ε} × {0, 1}q(|n|) → [0, 1] be a probabilistic poly-time function
ensemble and let Pf ≡ cq(|n|)〈Tf〉 be its characteristic process family with
respect to channel cq(|n|). Then it is easy to see that ∀i ∈ N : Prob

[
f(ε) =

i
]
= Prob

[
((cq(|n|)(x).0) | Pf ) ❀ 〈i, cq(|n|)〉

]
. This is the probability that Pf is

willing to communicate i on channel cq(|n|).

Lemma 6.8 Let A : {0, 1}m(|n|) × {0, 1} → [0, 1] be a poly-time statistical
test. Let f : {ε} × {0, 1}m(|n|) → [0, 1] be a probabilistic poly-time function
ensemble and let Pf be its characteristic process family with respect to channel
cm(|n|). Then one can construct an adversarial context family CA[ ] using
a new channel d1, such that for any fixed value for n, it is the case that
∀i ∈ N : Prob

[
(A ◦ f)(ε) = i

]
= Prob

[CA[Pf ] ❀ 〈i, d1〉
]
.

Proof. If A is a poly-time statistical test then using theorem 2.10 we can
construct the context family CA[ ] ≡ ((d1(x).0) | (cm(|n|)(x).d1〈TA〉 | [ ]).
Note that CA[ ] is an adversarial context family.

By assumption, Pf is the characteristic process family for f with respect
to channel cm(|n|). Furthermore, TA is produced from A using theorem 2.10.
Hence, the observables 〈0, d1〉 or 〈1, d1〉 are observed during evaluation of
7 ε is a dummy symbol. We wish to define a probabilistic function ensemble that takes no
input and produces a probabilistic output. However {}×A = {} where A is any set. Hence,
we have function take as input a single dummy value ε.
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CA[Pf ]. The probability that 〈0, d1〉 is observed must be the same as the
probability that (A ◦ f)(ε) = 0. Similarly, the probability that 〈1, d1〉 is
observed must be the same as the probability that (A ◦ f)(ε) = 1. ✷

We will say that an adversarial context family so constructed is a poly-time
attacker.

Definition 6.9 Let P be a process family and o an observable. We will say
that f : {ε} × {0, 1} → [0, 1] is an indicator for P with respect to o when
Prob

[P ❀ o
]
= Prob

[
f(ε) = 1

]
and Prob

[P �❀ o
]
= Prob

[
f(ε) = 0

]
.

Lemma 6.10 Let C[ ] be an adversarial context family and let o be an observ-
able. Let f : {ε} × {0, 1}m(|n|) → [0, 1] be any probabilistic poly-time function
ensemble and let Pf be its characteristic process family. Then one can specify
a poly-time statistical test t from the pair 〈C[ ], o〉 such that t◦f is an indicator
for C[Pf ] with respect to the observable o.

Proof. We construct t as follows. We compute t◦f by evaluating C[dq(|n|)〈Tf〉]
(whereMTf

computes f) and returning 1 if the observable o was generated and

0 otherwise. It is easy to see that Prob
[
(t ◦ f)(ε) = 1] = Prob[C[dq(|n|)〈Tf〉] ❀

o
]
and that Prob

[
(t ◦ f)(ε) = 0] = Prob[C[dq(|n|)〈Tf〉] �❀ o

]
. ✷

Clearly, given an adversarial context family and a process family, each
potential observable defines a poly-time statistical test.

We can now prove that an algorithm taking short strings to long strings
is pseudorandom if and only if the process given by the algorithm, when
evaluated on a short random input, is observationally equivalent to the process
that returns a long random seed.

Definition 6.11 A function ensemble f : {ε} × {0, 1}l(|n|) → [0, 1] is ran-
dom poly-time if f with respect to n is a poly-time function such that ∀x ∈
{0, 1}l(|n|) : f(ε, x) = 1

2l(|n|) .

Theorem 6.12 Let f ′ : {0, 1}k(|n|) → {0, 1}l(|n|) (∀x ∈ N.l(x) > k(x)) be a
uniform poly-time function ensemble. Let r : {ε} × {0, 1}l(|n|) → [0, 1] and
s : {ε} × {0, 1}k(|n|) → [0, 1] be uniform poly-time random function ensembles.
Define f as f ′ ◦ s. Let F (resp. R) be the characteristic process family for f
(resp. r).

Then, f ′ is a PRNG if and only if F ∼= R.

Let MTr compute r and let MTf
compute f . Then, F is a process family

that, essentially, transmits a random seed generated by s to f ′ (a candidate
PRNG—note that the type of f ′ ◦ s is {ε} × {0, 1}l(|n|) → [0, 1]) via function
composition, and then transmits the value output by Tf on a public channel.
In contrast, R is a process family that simply transmits the value output by
Tr (a function that returns truly random values of the same length as those
generated by Tf ) on a public channel.
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Proof. Assume that F ∼= R and that, by way of producing a contradiction,
f ′ is not a PRNG. Then, we have that there exists a poly-time statistical test
A that distinguishes between the output of f ′ given a random input value (a
seed) and the output of a truly random source. That is to say:

∃q(x).∀no.∃n > no :
∣∣ Probx∈R{0,1}k(|n|)

[A(f ′(x)) = “1”
]

− Proby∈R{0,1}l(|n|)
[A(y) = “1”]∣∣ > 1

q(n)

But we have that ∀j ∈ N : Probx∈R{0,1}k(|n|)
[
f ′(x) = j

]
= Prob

[
(f ′ ◦ s)(ε) = j

]
and ∀j ∈ N : Proby∈R{0,1}l(|n|)

[
y = j

]
= Prob

[
r(ε) = j

]
. Hence, by lemma 6.8,

we can construct a poly-time attacker C[ ] that distinguishes between F and
R with the same probability that A distinguishes between f and r. So C[ ]
will distinguish between F and R with probability greater than 1

q(n)
for some

polynomial q (as A distinguishes between f and r with probability greater
than 1

q(n)
), thus producing a contradiction.

Now, assume that f ′ is a PRNG and that, by way of producing a contradic-
tion, F �∼= R. Then we have that for some polynomial p there exists an adver-
sarial context family D[ ] that distinguishes between the two processes with
probability greater than 1

p(n)
for some polynomial p. Let the distinguishing ob-

servation be 〈i, dq(|n|)〉. We notice that Prob
[D[F ] ❀ 〈j, cl(|n|)〉

]
= Prob

[
f(ε) =

j
]
where j ∈ N and that Prob

[D[R] ❀ 〈j, cl(|n|)〉
]
= Prob

[
r(ε) = j

]
. We

can then use lemma 6.10 to construct a poly-time statistical test that distin-
guishes between the output of f and a truly random source with precisely the
same probability that D[ ] distinguishes between F and R, thereby creating
a contradiction. ✷
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