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Abstract—In this paper, a scheme for estimating frequencies
and damping factors of multidimensional nuclear magnetic res-
onance (NMR) data is presented. multidimensional NMR data
can be modeled as the sum of several multidimensional damped
sinusoids. The estimated frequencies and damping factors of
multidimensional NMR data play important roles in determining
protein structures. In this paper we present a high-resolution
subspace method for estimating the parameters of NMR data.
Unlike other methods, this algorithm makes full use of the
rank-deficiency and Hankel properties of the prediction matrix
composed of NMR data. Hence, it can estimate the signal param-
eters under low signal-to-noise ratio (SNR) by using a few data
points. The effectiveness of the new algorithm is confirmed by
computer simulations and it is tested by experimental data.

Index Terms—Damped sinusoids, high resolution, multidimen-
sional NMR, parameter estimation.

I. INTRODUCTION

M ULTIDIMENSIONAL nuclear magnetic resonance
(NMR) data can be modeled as the sum of multi-

dimensional damped sinusoids. The frequencies and damping
factors of damped sinusoids are crucial to determining protein
structures using NMR spectroscopy. The frequency resolution
of the fast Fourier transform (FFT)-based algorithms [1], [2]
is limited by the short acquisition time of the NMR data
and measurement noise. Hence, to improve the resolution,
many model-based methods [3]–[27] have been proposed for
the parameter estimation of one-dimensional (1-D) and two-
dimensional (2-D) NMR data. The autoregressive modeling of
NMR data is one of the most commonly used algorithms in the
analysis of 1-D NMR data [8]. In particular, it has been shown
that the methods based on the linear prediction technique can
estimate parameters more accurately than the standard FFT
methods do. This should also be true for 2-D NMR data.

Unfortunately, the existing model-based parameter estima-
tion algorithms for 2-D NMR data are still sensitive to mea-
surement noise, which limits their frequency resolution. The
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subspace methods [19], [20], which provide high-resolution
estimation in many signal processing applications, are good
candidates for NMR spectroscopy to further improve the fre-
quency resolution. The Multiple signal classification (MUSIC)
algorithm [9] is one of the most effective and commonly used
algorithms for 1-D stationary signals. The MUSIC algorithm
can even achieve theCramér-Rao lower bound under some
mild conditions. However, the NMR signals consist of damped
sinusoids, which is, therefore, nonstationary. Therefore, the
original MUSIC algorithm cannot be directly applied to NMR
data. In this paper, we present a novel parameter estimation
method for NMR data based on the subspace techniques, which
we will call M-D DMUSIC algorithm in order to reflect its
capability to estimate the parameters (frequencies and damping
factors) of multidimensional damped sinusoids. Since M-D
MUSIC algorithm makes full use of the rank-deficiency and
Hankel properties of the prediction matrix composed of NMR
data, it can estimate the signal parameters under low signal-to-
noise ratios (SNR’s) by using only few data. The effectiveness
of the new algorithm is demonstrated by computer examples
and the experimental data obtained from National Institutes of
Health (NIH).

The rest of the paper is organized as follows. After a brief
description of the mathematical model of NMR signals in Sec-
tion II, a damped MUSIC (DMUSIC) algorithm for estimating
the parameters of 1-D NMR signals will be presented and
analyzed in Section III. In Section IV, the DMUSIC algorithm
will be generalized to multidimensional NMR signals, by first
extending the results to 2-D NMR signals and then to general
case of M-D NMR signals. A low-complexity peak-searching
algorithm for searching the peaks of M-D DMUSIC spectrum
is described in Section V. Computer examples are presented in
Section VI and the application of the 2-D MUSIC algorithm
to a set of experimental data from NIH is described in Section
VII.

II. M ATHEMATICAL MODEL OF NMR SIGNALS

Before developing the DMUSIC algorithm for multidimen-
sional NMR data, we briefly describe the mathematical model
of M-D NMR data here. For a comprehensive review of NMR
spectroscopy, interested readers should refer to [23]–[25].

Since the multidimensional NMR signal is the extension
of the 2-D NMR signal, we first introduce the mathematical
model of 2-D NMR signals. A 2-D NMR signal can be
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expressed by a continuous hypercomplex form as
[23]–[25]

(1)

where is the model order, and denote the angular
frequencies of the magnetization corresponding toand

, respectively, and are the decay constants of
the magnetization, and ’s are the amplitudes of damped
sinusoids.

In our discussion, we employ the commonly used complex
representation , that can be obtained by letting
and in [2]

(2)

where , and
which are called the decay rates.

If the continuous complex 2-D NMR signal is measured at
uniform intervals, for and for , a set of 2-D NMR
data will be obtained as

(3)

where , and
for with being the damping factor. Without
loss of generality, we assume that for

are distinct. It should be pointed out that high SNR
is required in order to estimate the signals with only distinct

’s, but the same ’s, as demonstrated by Fig. 1(d)–(e).
In presence of measurement error or noise , the
measured NMR data can be expressed as

(4)

for and In the above expression
’s are the acquisition times of each time domain. We will

assume in our discussion.
In (3) and (4), if we let , then the mathematical

model of 2-D NMR signal is degenerated into that of 1-D
NMR signal, which can be rewritten as

(5)

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1. Spectrum and contour of DMUSIC algorithm: (a) and (b) when
s1 = �0:2 + j2�0:42; s2 = �0:1 + j2�0:52 and SNR= 40 dB; (c)
and (d) whens1 = �0:2 + j2�0:42; s2 = �0:1 + j2�0:42 and SNR=
40 dB; (e) and (f) whens1 = �0:2 + j2�0:42; s2 = �0:1 + j2�0:42 and
SNR = 60 dB.
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where denotes again the measurement noise and

(6)

for The mathematical model of 2-D NMR
signal can be easily extended to that of-dimensional NMR
signal as

(7)

and

(8)

for In the above expression,
is a time-index vector and

is a complex frequency vector. Similar to the 2-D case,
represents measurement noise anddenotes the model order.
Normally, we have to make sure to be able to
estimate signal parameters.

III. 1-D DMUSIC ALGORITHM

We first present the DMUSIC algorithm for 1-D NMR
signals (1-D MUSIC algorithm). To derive 1-D DMUSIC
algorithm, we will set up an prediction matrix

...
...

...
...

(9)

where We normally choose
to obtain the best performance [4]. The prediction matrix in
the DMUSIC algorithm plays a similar role as the correlation
matrix in the MUSIC algorithm [20]. From (5) and (6), can
be written as (see also, [27])

(10)

where and are theright signal vectorand theright
signal matrix, respectively, defined as

...

(11)

respectively. Theleft signal vector and theleft signal
matrix are similarly defined. is a diagonal matrix
with Thenoise matrix is given
by

...
...

...
...

(12)

If ’s are distinct, then for are
linearly independent, hence is full column rank, and so is

Since the rank of is , the rank of is also equal
to when there is no noise. Since there are many effective
algorithms to estimate the model order [28], [29], in our
algorithm we will assume that is known in advance. In [27],
the authors have used a similar approach to derive their state
space formulation. If there is no noise, by means of singular
value decomposition, can be decomposed into the product
of three matrices

(13)

where and are unitary matrices, is a diagonal matrix,
and denotes Hermitian, i.e., conjugate transpose, operator.
Furthermore, must be of the form

(14)

From (13), we also have

(15)

Denote the -th column of is called
the signal subspacesince

(16)

where is referred to as the subspace that is defined
by the set of all linear combinations of the vectors. From (14)
and (15), we have the followingorthogonality relations

(17)

where From (10), we have

(18)

Since both and are full rank, for
, i.e., for

and Hence, only when
Therefore, can be obtained by finding that

makes
When noise exists, the orthogonality relations (17) no longer

hold. In this case, we can search for signal vectors that are
most closelyorthogonal to the noise subspace. Hence,can
be obtained by finding the peak of the following DMUSIC
spectrum:

(19)

where

(20)

The algorithm is summarized in Table I. The algorithm
discussed above is called the damped MUSIC (DMUSIC)
algorithm. Since the mathematical model of NMR data has
the damped sinusoidal form, it is true that it is nonstationary
in a strict mathematical sense. This is easy to prove and it
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TABLE I
DAMPED MUSIC ALGORITHM

follows directly from standard methods for computing the
autocorrelation function for a random sequence and inter-
ested readers should refer to [30] and [31]. There are two
crucial differences between the DMUSIC algorithm and the
MUSIC algorithm. First of all, the DMUSIC algorithm is
for parameter estimation of damped sinusoidal signals which
are nonstationary, as opposed to MUSIC algorithm which
works for stationary signals. Since the correlation matrix is
not available for nonstationary signals, in DMUSIC algorithm
the prediction matrix is used instead of correlation matrix.
Second, the DMUSIC algorithm searches the plane to
estimate two parameters simultaneously.

IV. M-D DMUSIC A LGORITHM

The DMUSIC algorithm for 1-D NMR signals developed in
the Section III can be extended to the DMUSIC algorithm for
multidimensional NMR signals (M-D DMUSIC).

To obtain a DMUSIC algorithm for the 2-D NMR signals
modeled in (3) and (4), we first generate an
matrix, (21) shown at the bottom of the page, for

Based on , a matrix
is formed

...
...

...
...

(22)
where It is important to notice that the
rank of matrix is

Using a similar procedure to the derivation of 1-D DMUSIC
algorithm, we can form a 2-D DMUSIC spectrum

(23)

where for are the right singular vectors
of corresponding to the smallest singular values and

(24)

and The parameter of 2-D NMR data can be
estimated by finding to maximize the above 2-D DMUSIC
spectrum.

In general, for -dimensional NMR signal,
data matrix is defined as

...
...

...
...

(25)
where indexes correspond to the number of
given data points in each dimension, i.e., we are using an

data matrix and (26), (27) shown at the
bottom of the next page.

The right signal vectorcorresponding to the data matrix
is defined as

...
(28)

where

...
(29)

for and

...
(30)

For vectors ’s for
are linearly independent vectors. Therefore, similar to 1-D
DMUSIC algorithm, the frequency vectorcan be estimated
by finding the peaks of M-D DMUSIC spectrum

and (31)

where vectors are right singular vectors
of corresponding to the smallest singular values.

...
...

...
...

(21)
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TABLE II
2-D PEAK-SEARCHING ALGORITHM

V. LOW-COMPLEXITY 2-D PEAK-SEARCHING METHOD

To estimate the parameters of L-D NMR signals, we have to
find the peaks of L-D DMUSIC spectrum, which is a function
of variables: To find the
peak of the L-D DMUSIC spectrum, we have to calculate
it in a fine lattice, which is a 2L-dimensional search.

Since the damping factors of NMR signals are normally
very small (usually less than 0.3), the following simplified
peak-searching algorithm can be used to reduce the com-
putation of the 2-D DMUSIC spectrum. For convenience,
we rewrite as If the
damping factors of signals are small, then the maxima of

will be near the plane.
Because is convex around its

maxima, is also convex around the
maxima. Hence, has maximum points

for which are near the peaks
of For each maximum
of can be found to maximize

since is

convex. Then, we can find around
that maximizes Repeating the
above procedures, the peaks of can
be searched. The above searching procedures, which are
summarized in Table II, reduces the peak search of a four-
variable function to that of a two-variable function. Therefore,
the computation is significantly reduced.

The parameter estimation of higher-dimensional NMR sig-
nals can be decomposed into parameter estimation of lower-
dimensional NMR signals to reduce the computation. Taking
three-dimensional (3-D) NMR signal as an ex-
ample, it is a 2-D NMR signal if is fixed. Hence, the

frequency pairs corresponding to time index and can
be estimated by the 2-D MUSIC algorithm. Similarly, the
frequencies corresponding to can be estimated using the
1-D DMUSIC algorithm. The 3-D complex frequency vector
can be found by searching the peaks of the 3-D DMUSIC
spectrum near all the combinations of the frequency pairs
corresponding to indices and and the frequencies
corresponding to index In this way, parameter estimation
of 3-D NMR signals is simplified into parameter estimation
of 2-D NMR signals and 1-D NMR signals. In fact, the
parameter estimation of higher-dimensional NMR signal can
always be decomposed into the parameter estimations of
corresponding 2-D NMR signals and 1-D NMR signal. It
is also worth mentioning that the complexity of theM-
D DMUSIC algorithm is comparable to the other singular-
value decomposition (SVD)-based algorithms. Since in our
algorithm high-resolution estimates can be achieved using
fewer number of data points, the complexity of the SVD
computation is less than that of existing methods whose
performance relies on using large data matrices. But our
algorithm also involves a 2L-D peak-searching process whose
complexity is heavily reduced by our proposed peak-searching
algorithm. Therefore, the burden of the peak-searching process
is also significantly reduced in our algorithm.

VI. SIMULATION EXAMPLES

Before presenting our estimation results for experimental
data from NIH, we confirm the DMUSIC algorithms by
three simulation examples in this section. In our simulation
examples, the measurement noise is complex white
Gaussian noise with variance that is determined by peak

...
...

...
(26)

for

...
...

...
(27)
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(a)

(b)

Fig. 2. The spectrumP (0; 0;!(1); !(2)) and its contour for synthetic 2-D
NMR signal using 2-D peak-searching method when SNR= 30 dB.

SNR defined as

SNR (32)

Example 1: The synthetic 1-D NMR data is generated by

(33)

where
The data length is , therefore, we pick

For SNR 40 dB, , the 1-D DMUSIC spectrum
and its contour are shown in Fig. 1(a) and (b), respectively.
From these figures, the damping factors and frequencies of the
signal can be estimated simultaneously by finding the peak
on the spectrum. But, if SNR 40 dB, , i.e., two
exponentially damped signals with the same frequency, the
spectrum has just one peak, as indicated by Fig. 1(c) and (d).
Hence, the damping factors of the signals cannot be estimated
correctly under this condition. However, if SNR is increased
to 60 dB, both the damping factors and the frequencies of the
signals can be estimated again as demonstrated by Fig. 1(e)
and (f).

(a)

(b)

Fig. 3. The spectrumP (�(1); �(2); 0:20�; 0:25�) and its contour for syn-
thetic 2-D NMR signal 2-D peak-searching method when SNR= 30 dB.

Example 2: In this example, a set of synthetic 2-D NMR
data is first generated using (3) and (4). The model order

and the frequency pairs are shown in Table III. The
data length is and is, therefore, chosen to be 12 to
achieve best performance.

For SNR 40 dB, the 2-D DMUSIC spectrum, , and
its contour, using 2-D peak-searching algorithm are shown in
Figs. 2 and 3. From the figures, we can see that only
has four peaks on plane with , but
five peaks are found by the 2-D peak-searching algorithm and
the parameters can be estimated successfully as illustrated by
Table III.

From the estimation results in Table III, our estimation
algorithm cannot resolve the fourth and fifth frequency pairs
when SNR 20 dB, since they are to close.

Example 3: The 3-D synthetic NMR signal is generated
by using (7) and (8). The model order is The
frequency vectors are shown in Table IV. The synthetic NMR
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(a)

(b)

Fig. 4. The spectrumP (0; 0;!(1); !(2)) and its contour for 2-D NMR
signal.

TABLE III
ESTIMATED PARAMETERS OF A SYNTHETIC 2-D NMR SIGNAL

signal is corrupted by measurement noise with SNR = 15 dB.
First, we estimate the complex frequency pairs corresponding
to the first two indexes using the simplified 2-D searching
algorithm and the complex frequencies corresponding to the

(a)

(b)

Fig. 5. The spectrumP (�(1); �(2); 0:10�;�0:12�) and its contour for 2-D
NMR signal.

TABLE IV
ESTIMATED PARAMETERS OF A SYNTHETIC 3-D NMR SIGNAL

third index. Then, we find the 3-D frequency vectors by
searching the maximum points at the all possible combinations
of the complex frequency pairs and the complex frequencies.
The estimated frequency vectors are shown in Table IV.

VII. ESTIMATION RESULTS ON EXPERIMENTAL DATA

The 2-D MUSIC parameter estimation algorithm is used
in experimental NMR data. The measured 2424 2-D NMR
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(a) (b)

Fig. 6. Contour plot ofP (0; 0;!(1); !(2)) for 2-D NMR signal using (a) NmrPipe and (b) our 2-D DMUSIC algorithm.

TABLE V
ESTIMATED PARAMETERS OF A SET OF EXPERIMENTAL 2-D NMR DATA

data was obtained from NIH’s multidimensional NMR spec-
troscopy. The spectrum and its contour are
shown in Fig. 4(a) and (b). From Fig. 4, has
five peaks. The 2-D spectrum
and its contour are shown in Fig. 5(a) and (b). By repeating
Steps 2 and 3 in Table II just twice, we can successfully
estimate the frequencies and the damping factors of the NMR
data, which are listed in Table V.

Fig. 6 compares our algorithm with the present algorithm
in the NmrPipe, which is a standard NMR processing tool in
NIH used by the NMR researchers over the world. Fig. 6(a)
and (b) illustrate the estimation results for the same set of
experimental NMR data, respectively, by the present algorithm
in the NmrPipe tool and the 2-D MUSIC algorithm. Compared
with Fig. 6(b), Fig. 6(a) has many spurious signals, while
our 2-D MUSIC algorithm can estimate signal parameters
effectively without introducing any spurious signal. Hence, our
method has been included in the NmrPipe tool as an effective
algorithm for NMR data processing.

VIII. C ONCLUSION

In this paper, we have proposed a high-resolution technique
for multidimensional NMR spectroscopy, which we call the
M-D MUSIC algorithm. Since the M-D DMUSIC algorithm
makes full use of the rank-deficiency and Hankel properties of
the prediction matrix composed of NMR data, it can estimate
the NMR signal parameters under low SNR by using very few
data points. To reduce the computational complexity, we have
also introduced a peak-searching method to locate the peaks
of the M-D DMUSIC spectrum.

The performance of our algorithms have been tested by
extensive simulation examples and experimental data. The
testing results show that the M-D DMUSIC algorithm can
resolve closely-spaced frequencies and damping factors, which
is one of the most effective algorithms for NMR data. Hence,
it has been included in the NmrPipe tool in NIH and will be
used by the NMR researchers over the world.

ACKNOWLEDGMENT

The authors would like to thank Dr. A. Bax from National
Institute of Health for providing the experimental 2-D NMR
data.

REFERENCES

[1] R. R. Enrst, Advances in Magnetic Resonance, Vol. 2. New York:
Academic, 1966.

[2] J. C. Lindon and A. G. Ferrige, “Digitization and data processing in
Fourier transform NMR,”Progr. NMR Spectrosc., vol. 14, pp. 27–66,
1980.

[3] S. M. Kay and S. L. Marple, Jr., “Spectrum analysis—A modern
perspective,”Proc. IEEE, vol. 69, pp. 1380–1418, 1981.

[4] R. Kumaresan and R. W. Tufts, “Estimating the parameters of exponen-
tially damped sinusoids and pole-zero modeling in noise,”IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 833–840, Dec.
1982.

[5] R. W. Tufts and R. Kumaresan, “Estimation of frequencies of multiple
sinusoids: Making linear prediction perform like maximum likelihood,”
Proc. IEEE, vol. 70, pp. 975–989, 1982.

[6] Y. Bresler and A. Macovski, “Exact maximum likelihood parameter
estimation of superimposed exponential signals in noise,”IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 1081–1089, Oct.
1986.

[7] M. A. Rahman and K. B. Yu, “Total least squares approach for frequency
estimation using linear prediction,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-35, pp. 1440–1454, Oct. 1987.

[8] D. S. Stephenson, “Linear prediction and maximum entropy methods
in NMR spectroscopy,”Progr. NMR Spectrosc., vol. 20, pp. 515–626,
1988.

[9] S. A. Meyer, D. L. Orth, M. A. Morgenstern, and D. W. Noid, “MUSIC
analysis applied to NMR,”J. Magn. Reson.vol. 86, pp. 406–409, 1990.

[10] L. Mitschang, C. Cieslar, T. A. Holak, and H. Oschkinat, “Application
of the Karhunen–Loeve transformation to the suppression of undesired
resonances in the three-dimensional NMR,”J. Magn. Reson.vol. 92,
pp. 208–217, 1991.

[11] W. Dreher, P. Bornert, and D. Leibfritz, “Signal dependent preprocess-
ing of NMR data using the constrained least square method,”J. Magn.
Reson., vol. 97, pp. 376–381, 1992.



86 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 45, NO. 1, JANUARY 1998

[12] V. U. Reddy and L. B. Biradar, “SVD-based information theoretic
criteria for detection of the number of damped/undamped sinusoids and
their performance analysis,”IEEE Trans. Signal Processing, vol. 41,
pp. 2872–2881, Sept. 1993.

[13] H. Gesmar and J. J. Led, “Spectral estimation of two-dimensional NMR
signal-apply linear prediction to both dimensions,”J. Magn. Reson.vol.
76, pp. 575–586, 1988.

[14] C. F. Tirendi and J. F. Martin, “Fast linear prediction processing in
two-dimensional NMR spectroscopy,”J. Magn. Reson., vol. 81, pp.
577–585, 1989.

[15] M. M. Barbieri and P. Barone, “A two-dimensional Prony’s method
for spectral estimation,”IEEE Trans. Signal Processing, vol. 40, pp.
2747–2756, 1992.

[16] Y. Hua, “Estimating two-dimensional frequencies by matrix enhance-
ment and matrix pencil,”IEEE Trans. Signal Processing, vol. 40, pp.
2267–2280, 1992.

[17] J. J. Sacchini, W. M. Steedly, and R. L. Moses, “Two-dimensional Prony
modeling and parameter estimation,”IEEE Trans. Signal Processing,
vol. 41, pp. 3127–3137, 1993.

[18] S. Van Huffel, H. Chen, C. Decanniere, and P. Van Hecke, “Algorithm
for time-domain NMR data fitting based on total least squares,”J. Magn.
Reson., vol. 110, pp. 228–237, 1994.

[19] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Trans. Antennas Propagat., vol. AP-34, pp. 276–280, 1986.

[20] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-
Hall, 1991.

[21] H. Barkhuijsen, R. De Beer, and D. Van Ormondt, “Improved algorithm
for noniterative time-domain model fitting to exponentially damped
magnetic resonance signals,”J. Magn. Reson., vol. 73, p. 553, 1987.

[22] W. Pijnappel, A. Van Den Boogaart, R. De Beer, and D. Van Ormondt,
“SVD-based quantification of magnetic resonance signals,”J. Magn.
Reson., vol. 97, p. 122, 1992.

[23] A. Bax, “A simple description of two-dimensional NMR spectroscopy,”
Bull. Magn. Reson., vol. 7, pp. 167–183, 1985.

[24] J. Nuzillard and R. Freeman, “Oversampling in two-dimensional NMR,”
J. Magn. Reson., vol. 110, pp. 252–256, 1994.

[25] M. A. Delsuc, “Spectral representation of 2D NMR spectra by hyper-
complex numbers,”J. Magn. Reson., vol 77, pp. 119–124, 1988.

[26] Y. Li, K. J. R. Liu, and J. Razavilar, “A parameter estimation scheme for
damped sinusoidal signals based on low-rank Hankel approximation,”
IEEE Trans. Signal Processing, vol. 45, pp. 481–486, Feb. 1997.

[27] S. Y. Kung, K. S. Arun, and D. V. Bhaskar Rao, “State-space and
singular-value decomposition-based approximation methods for the har-
monic retrieval problem,”J. Opt. Soc. Amer., vol. 73, pp. 1799–1811,
1983.

[28] G. W. Stewart, “Perturbation theory for the singular value decomposi-
tion,” in SVD and Signal Processing, II. Amsterdam, the Netherlands:
: Elsevier Science, 1991, pp. 99–109.

[29] G. H. Golub and C. F. Van Loan,Matrix Computation, 2nd ed.
Baltimore, MD: Johns Hopkins Press, 1989.

[30] A. Leon-Garcia,Probability and Random Processes for Electrical Engi-
neering. Reading, MA: Addison-Wesley, 1994.

[31] A. V. Balakrishnan,Introduction to Random Processes in Engineering.
New York: Wiley, 1995.

Ye (Geoffrey) Li was born in Jiangsu, China. He
received the B.Eng. and M.Eng. degrees in 1983
and 1986, respectively, from the Department of
Wireless Engineering, Nanjing Institute of Tech-
nology, Nanjing, China. He received the Ph.D.
degree in 1994 from the Department of Electrical
Engineering, Auburn University, Auburn, AL.

From March 1986 to May 1991, he was a Teach-
ing Assistant and then a Lecturer with the National
Mobile Communication Laboratory, Southeast Uni-
versity, China. From September 1991 to September

1994, he was a Research and Teaching Assistant with the Department of
Electrical Engineering, Auburn University. From September 1994 to May
1996. He was a Post-Doctoral Research Associate with the Department
of Electrical Engineering and Institute for Systems Research, University
of Maryland at College Park. Since May 1996, he has been in Wireless
Systems Research Department, AT&T Labs-Research, Redbank, NJ. His
general research interests include digital communications, wireless mobile
systems, and statistical signal processing and its applications.

Javad Razavilar received the B.Sc. degree in elec-
trical engineering from Sharif University of Tech-
nology, Tehran, Iran, in 1989. Since 1993, he has
pursued graduate study at the University of Mary-
land at College Park, where he received the M.Sc.
degree in electrical engineering in 1995. He is
currently completing the Ph.D. degree in electrical
engineering at the same university while holding a
Graduate Research Assistantship from Institute for
Systems Research.

Mr. Razavilar is a member of IEEE Signal Pro-
cessing Society. His research interests are in the fields of statistical signal
processing, digital communications, and wireless networks.

K. J. Ray Liu (S’86–M’86–SM’93) received the
B.S. degree from the National Taiwan University in
1983 and the Ph.D. degree from the University of
California, Los Angeles, in 1990, both in electrical
engineering.

Since 1990 he has been with Electrical Engineer-
ing Department and Institute for Systems Research
of University of Maryland at College Park, where
he is an Associate Professor. During his sabbat-
ical leave in 1996–97, he was Visiting Associate
Professor at Stanford University, Stanford, CA. His

research interests span all aspects of signal processing with application to
image and video, wireless communications, networking, and medical and
biomedical technology.

Dr. Liu has received numerous awards, including: the 1994 National Science
Foundation Young Investigator Award, the IEEE Signal Processing Society’s
1993 Senior Award (Best Paper Award), the George Corcoran Award in
1994 for outstanding contributions to electrical engineering education and the
1995–96 Outstanding Systems Engineering Faculty Award in recognition of
outstanding contributions in interdisciplinary research, both from the Univer-
sity of Maryland. He is an Associate Editor of IEEE TRANSACTIONS ONSIGNAL

PROCESSING, a Guest Editor of special issues on Multimedia Signal Processing
and Technology of PROCEEDINGS OF THEIEEE, a Guest Editor of special issue
on Signal Processing for Wireless Communications of IEEE TRANSACTIONS ON

VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, a member of the Design
and Implementation of Signal Processing Systems Technical Committee, and
a founding member of Multimedia Signal Processing Technical Committee of
IEEE Signal Processing Society.


