
A GUIDE TO
PROGRAMMING IN
Java™ 2 Platform Standard Edition 5

Beth Brown

JAVA™

A Guide to Programming
in Java™

Java™ 2 Platform Standard Edition 5

Beth Brown

Copyright 2005
by

First Edition

ISBN 1-58003-071-8 (softcover)
ISBN 1-58003-072-6 (hardcover)

All rights reserved. No part of this work covered by the copyright may be reproduced or used
in any form or by any means—graphic, electronic, or mechanical, including photocopying,
recording, taping, or information storage and retrieval systems—without the written permission
of the publisher, with the exception of programs, which may be entered, stored, and executed
in a computer system, but not reprinted for publication or resold in any other form.

Printed in the United States of America

All orders including educational, Canadian, foreign,
FPO, and APO may be placed by contacting:

Lawrenceville Press, Inc.
P.O. Box 704
Pennington, NJ 08534-0704
(609) 737-1148
(609) 737-8564 fax

This text is available in hardcover and softcover editions.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

The text is written and published by Lawrenceville Press, Inc. and is in no way
connected with the Sun® Corporation.

Sun®, Sun® Microsystems, and Java™ are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

Microsoft® Microsoft® Windows®, Visual Basic®, and Microsoft® Calculator are
either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Screen Shots and Icons reprinted with permission
from Microsoft® Corporation.

Mac OS® and Tiger™ are registered trademarks of Apple Computer, Inc. in the
United States and other countries.

ExamView is a registered trademark of FSCreations, Inc.

“JUNE BUGS” poem by Avis Harley used with permission from Boyds Mills Press.

Names of all other products mentioned herein are used for identification purposes
only and may be trademarks of their respective owners.

Preface iii

We have strived to make this the clearest and most comprehensive
Java text available. Our primary objective in this text is to present mate-
rial in clear language with easy to follow examples. To meet this objective,
we use our teaching experiences as well as the feedback, comments, and
suggestions from other experienced instructors to determine how best to
present programming concepts.

 For the best classroom experience for both the student and the instructor,
our comprehensive text book includes hands-on reviews, critical-thinking
questions, and exercises of varying difficulty levels. Additionally, our
Teacher Resource Materials correlate directly to the text book and offer
teaching hints for explaining difficult concepts, additional lessons and
exercises, and a comprehensive question bank for creating tests, quizzes,
and reviews. The Teacher Resource Materials include the applications,
Case Studies, and vocabulary from the text book, as well as answers to
all the reviews and exercises.

 It is our belief that learning to program offers the student an invaluable
opportunity to develop problem-solving skills. The process of defining a
problem, breaking it down into a series of smaller problems, and finally
writing an application to solve it exercises a student’s logical abilities.
Additionally, the student is made aware of the capabilities and limita-
tions of a computer and soon realizes that the programmer—the human
element—is more important than the machine.

 A Guide to Programming in Java is written for a one-term or two-term
course. No previous programming experience is required or assumed. It
is our goal that this text provide students the best possible introduction
to programming using Java and to prepare them for further study in the
IT/programming/computer science field.

Preface

iv A Guide to Programming in Java

 Design and Features
Programming Concepts This text emphasizes the fundamental concepts
of programming so that this knowledge can be applied to other program-
ming languages.

Problem Solving From the very beginning, students are taught to imple-
ment programming solutions with proper algorithm design and code
conventions.

Programming Style Throughout the text, proper programming style
is emphasized so that students can make their applications easy to read,
modify, and debug.

Demonstration Applications and Runs Many demonstration applica-
tions are included, complete with sample runs, so that students are shown
both proper programming techniques and the output actually produced
by an application.

Reviews Numerous reviews are presented throughout each chapter to
provide immediate reinforcement of newly learned concepts. Solutions to
the reviews are included on the Teacher Resource Materials CD.

Case Studies Most chapters end by stating a problem, developing an
appropriate algorithm, and then implementing the solution. The process
of specification, design, implementation, and debugging and testing is
clearly outlined.

Chapter Summaries Each chapter ends by summarizing the concepts
and statements covered in the chapter.

Vocabulary Sections Each chapter contains a vocabulary section that
defines new terms. A separate section lists Java keywords, statements,
and classes.

Critical Thinking Written response questions that require critical think-
ing from the student are included at the end of each chapter.

Exercises Each chapter includes a large set of exercises of varying diffi-
culty, making them appropriate for students with a range of abilities. Most
exercises include a demonstration run to help make clear what output is
expected from the student’s application. Exercises based on previous work
are marked with a ö symbol. Answers to the exercises are included on
the Teacher Resource Materials CD.

Indexes In addition to a standard index, an index of the applications
presented in the text is also included.

Appendix A chart of Unicode symbols is included.

Online Resources Materials that complement and extend this text are free
for download and distribution in your class. Information about various
Java compilers is available. Supplemental chapters cover operating systems,
personal finances, introduction to computers, and keyboarding skills are
also provided. Students can download all the files needed to complete the
reviews and exercises from www.lpdatafiles.com.

Preface v

 Teacher Resource Materials
 Our Teacher Resource Materials correlate directly to the text book and
provide all the additional materials required to offer students an excellent
computer applications course. The Teacher Resource Materials feature:

• START_HERE.htm Help files and a guide for using the text and
resource materials.

• Lesson Plans Lessons in PDF format keyed to the chapters in the
text. Each lesson includes assignments, teaching notes, worksheets,
and additional topics.

• Tutorials Flash movie files that provide animations to illustrate
searching and sorting concepts. Each movie is keyed to the text.

• PowerPoint Presentations Topics keyed to the text are in
PowerPoint files for presentation.

• Vocabulary Word files of the vocabulary presented in the text.

• Rubrics Rubrics keyed to exercises in the text for assessment.

• Worksheets Programming assignments that supplement the exer-
cises in the text provide additional reinforcement of concepts.

• Critical Thinking Answers Answers for the critical thinking
questions presented in the text.

• Data files All the files the student needs to complete the reviews
and exercises in the text, as well as the files needed to complete
the worksheets and tests.

• ExamView® Software Question banks keyed to the text and the
popular ExamView® software are included to create tests, quizzes,
and additional assessment materials.

• Answer files Answers to the reviews, exercises, worksheets, and
tests.

 Acknowledgments
 Special thanks to the many instructors who used this text in their
classroom as it was being written. I would especially like to thank the
following instructors for their many comments and suggestions:

Paul Massey Hanna-Westside Extension Campus

Edward Sapienza Peabody Veterans Memorial High School

Timothy Strohm Churchville-Chili Senior High School

Jackie Kyger Marine Military Academy

 Jan Marrelli, a Lawrenceville Press author and editor, has contributed
much to this text. She has used this text as it was being written in her
classroom. The many comments and suggestions from her and her stu-
dents have helped to make this text so clearly written. Jan, an experienced
instructor, has also written many of the critical thinking questions, exer-
cises, and reviews.

vi A Guide to Programming in Java

 Elaine Malfas, senior technical editor at Lawrenceville Press, has pro-
duced the format and layout for this text. The many illustrations have been
created by Elaine as well.

 Thanks also to Joseph Dupree in our Customer Relations Department
for some of the original drawings included in this text.

 The success of this and all of our texts is due to the efforts of Heidi Crane,
Vice President of Marketing at Lawrenceville Press. Joseph Dupree and
Christina Albanesius run our Customer Relations Department and handle
the thousands of orders we receive in a friendly and efficient manner.
Michael Porter is responsible for the excellent service Lawrenceville Press
offers in the shipping of orders.

 About the Author
 Beth A. Brown, a Computer Science graduate of Florida Atlantic
University, is director of development at Lawrenceville Press where she
has coauthored a number of programming and applications texts and
their accompanying Teacher Resource Materials. She has taught computer
applications and programming at the high school level.

Preface vii

 Chapter Expectations

Chapter 1 – An Introduction to
Computers
After completing Chapter 1, students
will be able to:
1. Compare and contrast various input, output,

and storage devices.
2. Identify hardware components and explain

their function.
3. Demonstrate knowledge of operating systems.
4. Discuss different computer classifications and

compatibility issues.
5. Differentiate among the levels of programming

languages.
6. Describe communication and networking

components.
7. Understand the binary number system.
8. Describe how data is stored in memory and in

files.
9. Use Internet services to access information and

share resources.
10. Demonstrate proper etiquette and knowledge

of acceptable use policies when using a
network.

11. Discuss social and ethical issues associated
with computer use.

Chapter 2 – Applets and Web
Programming
After completing Chapter 2, students
will be able to:
1. Define terminology associated with the World

Wide Web.
2. Discuss the impact of programming on the

World Wide Web community.
3. Create HTML documents.
4. Explain how a web browser interprets an

HTML document.
5. Use JavaScript to demonstrate how scripts can

enhance a website.
6. Create simple Java applets.
7. Specify custom values for a Java applet that has

been placed in an HTML document.
8. Apply a style sheet to an HTML document.

Chapter 3 – Introducing Java
After completing Chapter 3, students
will be able to:
1. Define terminology associated with object-

oriented programming.
2. Explain why Java is a widely used

programming language.
3. Create Java applications.
4. Describe the process involved in executing a

Java application.
5. Display and format program output.
6. Annotate code properly with comments,

formatting, and indentation.
7. Explain the importance of using code

conventions.
8. Demonstrate algorithm design as a problem-

solving strategy.
9. Use visual organizers to design solutions.

Chapter 4 – Variables and Constants
After completing Chapter 4, students
will be able to:
1. Declare and initialize variables and constants

using the appropriate data type.
2. Choose legal identifiers that follow good

programming style.
3. Differentiate between primitive and abstract

data types.
4. Explain how to access Java packages.
5. Demonstrate how to read data from an input

stream.
6. Write numeric expressions.
7. Apply type casting.
8. Format numeric output.
9. Identify Java keywords.
10. Differentiate between syntax and logic errors.
11. Understand run-time exceptions.
12. Read and understand a problem description,

purpose, and goals.

viii A Guide to Programming in Java

Chapter 5 – Conditional Control
Structures
After completing Chapter 5, students
will be able to:
1. Demonstrate the use of decision structures to

control the flow of a program.
2. Describe how a roundoff error can occur.
3. Generate random numbers.
4. Write compound Boolean expressions.
5. Access methods in the Math class.
6. Modify existing code.
7. Develop code with correct and efficient use of

conditional control structures.
8. Select appropriate test data.
9. Create and modify solutions to problems.

Chapter 6 – Loop Structures and
Strings
After completing Chapter 6, students
will be able to:
1. Demonstrate the use of repetition control

structures.
2. Explain how infinite loops can occur.
3. Differentiate between counters and

accumulators.
4. Use various tools and techniques to debug an

application.
5. Manipulate and compare strings using the

String class and its methods.
6. Develop code with correct and efficient use of

repetitive control structures.
7. Apply problem solving strategies.

Chapter 7 – Chapter Methods
After completing Chapter 7, students
will be able to:
1. Use top-down development and procedural

abstraction to develop problem solutions.
2. Write methods.
3. Use method parameters.
4. Demonstrate the use of method overloading.
5. Return values from a method.
6. Write appropriate method documentation,

including pre- and post-conditions.
7. Identify boundary cases and generate

appropriate test data.
8. Describe code conventions that apply to

methods.

Chapter 8 – Classes and Object-
Oriented Development
After completing Chapter 8, students
will be able to:
1. Understand and instantiate objects.
2. Design and implement a class.
3. Apply functional decomposition.
4. Apply appropriate naming conventions to a

class.
5. Explain the difference between accessor,

modifier, and helper methods.
6. Write constructors.
7. Compare and contrast instance and class

members.
8. Understand class specifications and the

relationships among the classes.
9. Understand and implement a given class

hierarchy.
10. Apply encapsulation.
11. Identify reusable code from existing code.

Chapter 9 – Inheritance and
Polymorphism
After completing Chapter 9, students
will be able to:
1. Extend a class using inheritance.
2. Explain an is-a relationship.
3. Implement a subclass.
4. Define and demonstrate polymorphism.
5. Understand abstract classes.
6. Declare and implement an interface.
7. Extend existing code using inheritance.

Chapter 10 – Arrays
After completing Chapter 10, students
will be able to:
1. Describe types of problems that benefit from

the use of arrays.
2. Create one and two dimensional arrays.
3. Include array parameters in a method

declaration.
4. Understand how to implement arrays with

meaningful indexes.
5. Apply offset array indexes.
6. Manipulate characters in a string.
7. Understand the digital code, Unicode.
8. Apply search algorithms to an array.
9. Use methods in the ArrayList class.
10. Demonstrate the use of the Wrapper classes.

Preface ix

Chapter 11 – GUIS and Event-Driven
Programming
After completing Chapter 11, students
will be able to:
1. Design graphical user interfaces.
2. Use component classes in the Java swing

package.
3. Create event-driven applications.
4. Control the layout of an interface using layout

managers.
5. Use text fields and combo boxes to obtain user

input.
6. Apply color and add images to an interface.

Chapter 12 – Files and Exception
Handling
After completing Chapter 12, students
will be able to:
1. Use the File class to create objects that

represent a file.
2. Write exception handlers.
3. Understand file streams.
4. Read the contents of an existing file.
5. Process numeric data.
6. Create an output file stream.
7. Explain the object serialization and

deserialization processes.

Chapter 13 – Recursion and
Advanced Algorithms
After completing Chapter 13, students
will be able to:
1. Implement the selection sort algorithms.
2. Sort objects using the Comparable interface.
3. Implement the insertion sort algorithm.
4. Define and demonstrate recursion.
5. Implement the mergesort algorithm.
6. Implement the binary search algorithm.
7. Explain the recursive technique, depth-first

searching.
8. Analyze algorithms for efficiency.
9. Design and document sequential search

algorithms.

Chapter 14 – Data Structures
After completing Chapter 14, students
will be able to:
1. Explain how data structures, such as stacks

and queues, can be used to organize data.
2. Use and implement well known data

structures.
3. Describe standard operations associated with

data structures.
4. Choose appropriate data structures.
5. Differentiate between a LIFO and FIFO

structure.

x A Guide to Programming in Java

Table of Contents xi

Table of Contents

Chapter 1 – An Introduction to
Computers
Desktop Computing ...1
Operating Systems and Environment2
Mobile Computing ..4
Programming Languages ..5
Networks ..6
Number Systems ...9
Storing Data in Memory .. 10
What is a File? ... 11
Storage Devices .. 12
Intranet, Extranet, Internet 13
Telecommunications ... 14
Internet Services: Web, E-mail, and
Mailing Lists .. 15
Finding Information on the Web and
Downloading Files .. 16
Internet Privacy Issues ... 18
Internet Acceptable Use Policy 19
The Social and Ethical Implications of
Computer Use .. 19
Protecting Computer Software and Data20
The Ethical Responsibilities of an IT
Professional ..22
Chapter Summary ..22
Vocabulary ...25
Review Questions ... 29
Exercises ... 32

Chapter 2 – Applets and Web
Programming
The World Wide Web ..35
HTML ..36
Creating an HTML Document 37

Review: hello_world.htm38
Review: Computer Viruses Website –
part 1 of 6 ...38

JavaScript ..38
Review: welcome.htm .. 39
Review: Computer Viruses Website –
part 2 of 6 ... 39

Using Scripts to Enhance a Website40
Review: Computer Viruses Website –
part 3 of 6 ... 41
Review: System Check – part 1 of 2 41

Java Applets ... 41
Creating Java Applets ... 41
Drawing Shapes and Adding Color43

Review: Hot Air Balloon44
Placing an Applet in an HTML Document 44
Applet Parameters ..44

Review: System Check – part 2 of 245
HTML Tags ..45

Review: Computer Viruses Website –
part 4 of 6 ... 47

Hyperlinks, Tables, and Images47
Review: Computer Viruses Website –
part 5 of 6 ... 49

Style Sheets .. 49
Review: Computer Viruses Website –
part 6 of 6 ... 51

Chapter Summary .. 51
Vocabulary ...53
HTML Tags ..54
Critical Thinking ...55
Exercises ...56

xii Table of Contents

Chapter 3 – Introducing Java
Why Program in Java? .. 59
Objects, Classes, and Packages 59
A Java Application .. 61
Executing a Java Application 62

Review: Greeting .. 62
Displaying Output ..63

Review: AboutMe – part 1 of 264
Formatting Output ..64

Review: AboutMe – part 2 of 265
Code Conventions ...65
Algorithm Design ...66
Chapter Summary .. 67
Vocabulary ... 69
Java .. 70
Critical Thinking ... 71
Exercises ...72

Chapter 4 – Variables and
Constants
Declaring Variables ...77
Using Variables .. 78

Review: RectanglePerimeter 79
Primitive Data Types .. 79

Review: Distance – part 1 of 2 79
Abstract Data Types ..80
Java Packages ...80
Obtaining a Value from the User 81

Review: Distance – part 2 of 2 82
Numeric Expressions ..83

Review: Digits ...84
Type Casting ..84

Review: GradeAvg – part 1 of 285
Review: TempConverter85

Formatting Numeric Output86
Assignment Operators ...86

Review: GradeAvg – part 2 of 2 87
Using Named Constants .. 87
Identifiers and Keywords88

Review: CircleCircumference – part 1 of 288
Programming Errors ..88
Chapter 4 Case Study ...90
Chapter Summary .. 93
Vocabulary ... 95
Java .. 96
Critical Thinking ... 97
Exercises ...99

Chapter 5 – Conditional Control
Structures
The if Statement ... 105
Roundoff Error .. 106

Review: SurfsUp – part 1 of 3 106
The if-else Statement ... 106

Review: SurfsUp – part 2 of 3 107
Review: CircleCircumference – part 2 of 2 ... 107

Nested Statements ... 107
Review: Stages .. 107

The if-else if Statement ... 108
Review: SurfsUp – part 3 of 3 108
Review: Discriminant 108

The switch Statement .. 109
Review: Hurricane ... 110

Generating Random Numbers 110
Review: RandomNum 111

Compound Boolean Expressions 112
Review: Delivery .. 113

The Math Class .. 113
Review: PerfectSquare 114

Chapter 5 Case Study ... 114
Review: RPS – part 1 of 2 118
Review: RPS – part 2 of 2 118

Chapter Summary .. 119
Vocabulary ... 120
Java .. 121
Critical Thinking ... 122
Exercises ... 123

Chapter 6 – Loop Structures and
Strings
The while Statement ... 131
The do-while Statement 131
Infinite Loops .. 132

Review: Prompter .. 133
Counters and Accumulators 133

Review: Evens ... 134
Review: NumbersSum 134
Review: PercentPassing 134

The for Statement .. 135
Review: Factorial .. 136
Review: OddSum ... 136

Debugging Techniques .. 136
Review: Variable Trace 137

The String Class .. 138
Review: AccountSetup 139

Comparing Strings .. 140
Review: FormalGreeting 141

Table of Contents xiii

Chapter 6 Case Study ... 141
Review: WordGuess ... 146

Chapter Summary .. 146
Vocabulary ... 148
Java .. 148
Critical Thinking ... 149
Exercises ... 150

Chapter 7 – Methods
Program Development Using Methods 157
Writing Methods ... 159

Review: TimeConverter 160
Method Parameters ... 160

Review: SpanishNumbers 161
Review: DisplayBox – part 1 of 2 162

Method Overloading .. 162
Review: DisplayBox – part 2 of 2 163

The return Statement .. 163
Review: Exponentiation 164

Documenting Methods .. 164
Review ... 165

Chapter 7 Case Study ... 165
Review: GradeConverter 171

Chapter Summary .. 171
Vocabulary ... 173
Java .. 173
Critical Thinking ... 174
Exercises ... 175

Chapter 8 – Classes and Object-
Oriented Development
What is an Object? .. 179
Designing and Writing a Class 180

Review: Circle – part 1 of 4 182
Review: Coin – part 1 of 2 182

Writing Constructors .. 183
Review: Circle – part 2 of 4 184
Review: Rectangle – part 1 of 5 184

Instance and Class Members 184
Review: Circle – part 3 of 4 185
Review: Rectangle – part 2 of 5 185

The Object Class .. 185
Review: Circle – part 4 of 4 187
Review: Rectangle – part 3 of 5 187
Review: Coin – part 2 of 2 187

Classes Using Classes ... 187
Review: Bank .. 191

Object-Oriented Development 191
Review: Carnival .. 195

Chapter 8 Case Study ... 196
Review: RPS2 – part 1 of 2 202
Review: RPS2 – part 2 of 2 202

Chapter Summary .. 202
Vocabulary ...204
Java ..205
Critical Thinking ...206
Exercises ...208

Chapter 9 – Inheritance and
Polymorphism
Extending a Class .. 213
Implementing a Subclass 214

Review: Puck – part 1 of 2 216
Polymorphism ... 217

Review: Music – part 1 of 2 221
Abstract Classes ..222

Review: Music – part 2 of 2225
Interfaces ..225

Review: Disk ...227
Review: Puck – part 2 of 2227
Review: Rectangle – part 4 of 4227
Review: Rectangle – part 4 of 5227

Chapter 9 Case Study ...227
Review: SalesCenter ...234

Chapter Summary ..234
Vocabulary ...236
Java ..236
Critical Thinking ... 237
Exercises ...238

Chapter 10 – Arrays
Declaring Arrays ... 239
Using Arrays .. 240

Review: StudentRoster 241
Review: Squares ... 241
Review: Reverse ... 241

Array Parameters .. 241
Arrays with Meaningful Indexes 242

Review: DiceRolls – part 1 of 2 243
Review: DiceRolls – part 2 of 2 243
Review: NumberCounts 243

Characters and Arrays ... 244
Review: CountLetters 246
Review: NameBackwards 246

Searching an Array ... 246
Review: FindName .. 247

Two-Dimensional Arrays 247
The ArrayList Class .. 252

xiv Table of Contents

Wrapper Classes ..253
Review: HighestGrade255

Chapter 10 Case Study ...255
Review: LocalBank ..264

Chapter Summary ..264
Vocabulary ... 265
Java .. 265
Critical Thinking ... 266
Exercises ... 267

Chapter 11 – GUIs and
Event-Driven Programming
What is a GUI? ... 275
The Swing Package ... 275

Review: Name – part 1 of 2 278
The JButton Class .. 278
Handling Events .. 279

Review: Name – part 2 of 2 281
Review: NumClicks ... 281

Controlling Layout .. 281
Review: Sunflower ...284
Review: Riddle ..284

Getting Input from the User285
Review: DivisibleBy3 287

Combo Boxes ...288
Review: MetricConversion 290

Changing Colors ... 291
Adding Images .. 292

Review: Roll .. 294
Using Nested Classes to Handle Events 295
Chapter 11 Case Study ... 298

Review: BreakAPlate303
Chapter Summary ..304
Vocabulary ...305
Java ..306
Critical Thinking ...307
Exercises ...309

Chapter 12 – Files and Exception
Handling
What is a File? .. 311
The File Classes ... 311

Review: MyFile – part 1 of 2 312
Handling Exceptions .. 312

Review: MyFile – part 2 of 2 313
The File Streams .. 313
The FileReader and BufferedReader Classes 314

Review: Assignment .. 315

Processing Numeric Data 316
Review: Stats – part 1 of 2 317

The FileWriter and BufferedWriter Classes 317
Review: Stats – part 2 of 2 319

Object Serialization ... 319
Review: Roster .. 322

Chapter 12 Case Study ... 323
Review: LocalBank2 .. 328

Chapter Summary .. 329
Vocabulary ...330
Java ..330
Critical Thinking ... 331
Exercises ... 332

Chapter 13 – Recursion and
Advanced Algorithms
Selection Sort ... 337
Sorting Objects .. 339

Review: ArrayListSort 341
Insertion Sort ... 341

Review: ObjectsInsertionSort343
Recursion ..343

Review: RecursiveFactorial345
Mergesort ...345

Review: ObjectsMergesort348
Binary Search ...349

Review: SearchLocations 351
Review: ObjectsBinarySearch 352
Review: BinarySearch2 352

Depth-First Searching .. 352
Review: DetectColonies – part 1 of 3356
Review: DetectColonies – part 2 of 3356
Review: DetectColonies – part 3 of 3356

Algorithm Analysis ..356
Chapter Summary .. 357
Vocabulary ...358
Java ..358
Critical Thinking ... 359
Exercises ... 361

Chapter 14 – Data Structures
The Stack Data Structure365
The Stack Class ..366

Review: Stack2 ..368
Review: Stack3 .. 369

The Queue Data Structure 369
The Queue Class ... 370

Review: Queue2 .. 372
Review: Queue3 .. 372

Table of Contents xv

The Linked List Data Structure 373
The LinkedList Class .. 374

Review: LinkedList – part 1 of 3 376
Review: LinkedList – part 2 of 3 376
Review: LinkedList – part 3 of 3 376

Chapter Summary .. 377
Vocabulary ... 377
Critical Thinking ... 378
Exercises ... 379

Appendix A – Unicode
Unicode ... 381

Index
Index ...383

xvi Table of Contents

Chapter 1 An Introduction to Computers 1

sa
mp
le

This chapter discusses current computing technologies, networks, the
Internet, and the World Wide Web. Issues related to computers, including
privacy, viruses, and copyright are also discussed.

 Desktop Computing
 A desktop computer and its components are designed to fit on or under
a desk:

���������

�����������������
���������������

�����
��������

�������

• The physical components of the computer, such as the monitor and
system unit, are called hardware.

• Data and instructions are entered into the computer using input
devices, such as a keyboard, mouse, scanner, microphone, digital
camera, CD-RW/DVD drive, and disk drive.

• A PC becomes much more versatile when peripheral devices, such as
printers and scanners, are added. A peripheral device is attached
to a port on the computer. There are different types of ports, such
as serial, parallel, FireWire, USB, and Bluetooth ports.

• Computers process data into meaningful, useful information.
Processed data is conveyed using output devices. Monitors and
printers display data, CD-RWs, disk drives, and memory keys store
data, and speakers communicate audio output.

 The base unit also contains the motherboard, which is the main circuit
board. The motherboard contains several components:

• Expansion boards are circuit boards that connect to the motherboard
to add functionality to the computer. Examples include sound
cards and video adapters.

TIP Desktop computers are
referred to as either PCs or
MACS.

Scanner
A scanner is an input device
that uses a laser to create a
digital image from artwork
such as photos and drawings.
The digitized image can then
be incorporated into an elec-
tronic document.

Printers
A laser printer uses a laser and
toner to generate characters
and graphics on paper. An ink
jet printer uses an ink cartridge
to place very small dots of ink
onto paper to create characters
and graphics.

Chapter 1
An Introduction to Computers

2 Chapter 1 An Introduction to Computers

sa
mp
le

• The CPU (Central Processing Unit) or processor processes data
and controls the flow of data between the computer’s other units.
Within the CPU is the ALU (Arithmetic Logic Unit), which can
perform arithmetic and logic operations. It can also make com-
parisons, which is the basis of the computer’s decision-making
power. The ALU is so fast that the time needed to carry out a single
addition is measured in nanoseconds (billionths of a second). The
speed at which a CPU can execute instructions is determined by
the computer’s clock rate. The clock rate is measured in megahertz
(MHz, million of cycles per second) or gigahertz (GHz, billion of
cycles per second).

• A bus is a set of circuits that connect the CPU to other components.
The data bus transfers data between the CPU, memory, and other
hardware devices on the motherboard. The address bus carries
memory addresses that indicate where the data is located and
where the data should go. A control bus carries control signals. All
data flows through the CPU:

����� ������ ������

���

• Memory in the form of integrated circuits (ICs) stores data
electronically. ROM (Read Only Memory) contains the most basic
operating instructions for the computer. The data in ROM is a
permanent part of the computer and cannot be changed. RAM
(Random Access Memory), also called primary or main memory,
is memory where data and instructions are stored temporarily.
Data stored in RAM can be written to secondary memory, which
includes any type of storage media, such as a floppy disk, hard
disk, memory key, or CD-RW. Secondary memory must be copied
into primary memory before it is processed by the CPU. SRAM
(Static Random Access Memory) is high-speed memory referred
to as cache (pronounced “cash”). This memory is used to store
frequently used data so that it can be quickly retrieved by an
application.

 Operating Systems and Environment
 A desktop computer also contains programs, or software. Operating
system (OS) software is run automatically when the computer is turned on
and is used to control processing and peripherals, run application soft-
ware, and control input and output, among other tasks. Desktop operating
system software includes Windows, Mac OS X Tiger, Unix, and Linux.
Each of these operating systems have different features and functions.
Applications software is written by programmers to perform a specific task,
such as a word processor.

 The type of OS a computer can run depends on the computer hardware,
and can be multiuser, multiprocessing, multitasking, multithreading, or

Integrated Circuits
Integrated circuits, also called
chips, are created from silicon
wafers which are etched with
intricate circuits and coated
with a metallic oxide to allow
the circuits to conduct elec-
tricity. The silicon wafers are
housed in special plastic cases
that have metal pins. The pins
allow the integrated circuits
to be plugged into circuit
boards.

BIOS
BIOS (basic input/output sys-
tem) is firmware that contains
the computer’s start-up instruc-
tions. Firmware is instructions
or data that is written onto
ROM.

CPU Manufacturers
Intel and AMD are two proces-
sor manufacturers. Processors
are identified by a model name
or number, such as Pentium®
4, Itanium® 2, and Opteron™.
The Intel Pentium 4 (P4) CPU
has a clock rate of 3.06 GHz.
The AMD Opteron CPU has a
clock rate of 2.4 GHz. These
CPUs contain more than 40
million transistors on a single
chip.

Real-time Clock
A battery chip called a real-
time clock keeps track of the
date and time in a computer
even when the computer is
off.

Chapter 1 An Introduction to Computers 3

sa
mp
le

real time. A multiuser OS is supported by mainframes and minicomputers
and allows for two or more users at the same time. The terms multiprocessing
and multitasking are often used interchangeably when referring to an
OS that allows for multiple applications (“processes” or “tasks”) to run
at the same time. This type of OS determines how to divide processor
time between running applications. A multiprocessing OS should not be
confused with a multiprocessing computer system, which has more than
one processor and performs parallel processing because the processors are
used simultaneously for multiprocessing. Multithreading refers to an OS
that can execute different parts of a single program, called threads, at the
same time. A real-time OS responds to input immediately. This type of
OS is used in situations where immediate feedback is required, such as
navigation systems or medical monitoring equipment.

 Environment refers to a computer’s hardware and software configura-
tion. For example, a Windows XP environment means that the computer is
running the Windows XP Professional OS software and hardware includes
a 300MHz processor or better, 128MB of RAM or more, and at least 1.5GB
of hard disk space. The hardware requirements are based on what will
be needed to allow the OS software to properly manage the computer’s
tasks. The term platform is sometimes synonymous with environment.

 Environment types vary widely and can refer to the computer type or
the way the user interacts with the computer as well as the software/hard-
ware configuration. A desktop environment refers to a desktop or notebook
computer running an OS designed for the typical hardware found in a
desktop or notebook computer. A multiuser environment is sometimes called
time sharing because each user gets a portion of the processor’s “time.”
A distributed environment shares the load of processing among several
computers. When discussing environments, a distinction is usually made
between multiprocessing and multitasking. A multiprocessing environment
means that more than one processor is being used for executing an appli-
cation, and a multitasking environment is one in which processing time for
multiple applications is divided among one processor. Most environments
run an OS with a graphical user interface (GUI):

Windows XP Operating System

Mainframes and
Supercomputers

A mainf rame is a la rge
computer system that supports
multi-user applications and
tasks that require the storage
and processing o f huge
amounts of information. Large
corporations, airlines, banks,
government agencies, and
universities use mainframes.

A supercomputer is the fastest
and most powerful type of
computer. Supercomputers
focus on executing a few
programs as fast as possible
and are used for weather
forecasting and nuclear energy
research.

TIP For information on a
specific operating system, refer
to the appropriate chapter at
Lvp.com.

4 Chapter 1 An Introduction to Computers

sa
mp
le

 The functions of an OS are based on the intended OS platform.
Functionality is implemented through utility programs that are written
as part of the OS. A utility program has one clearly defined task, unlike
an application which can usually perform many different tasks. Utility
programs are run by the OS to manage input and output, read and write
to memory, manage the processor, maintain system security, and manage
files and disks. One type of utility program, called a device driver, is needed
for printing, viewing graphics, using a CD/DVD drive, and using periph-
erals in general. Some utility programs load when the computer starts and
are called memory-resident because they are always in memory.

 Features are added to an OS by incorporating utility programs to per-
form tasks that are in addition to the tasks required to run the computer.
For example, an OS intended for a desktop or notebook environment will
often include utilities for disk defragmentation, text narration and other
accessibility tools, and system restore and backup tools. For example:

Windows XP Utilities

 Mobile Computing
 Improved technology has allowed the miniaturization of computer
components and special long-lasting batteries. Computers now come
in many shapes, sizes, and with many levels of features. Among these
computers are notebooks, tablets, handhelds, smart phones, and wearables.
Because of their portability, these types of computers are classified as
mobile computing devices:

• A notebook computer is a portable, lightweight computer with a
CPU, memory, and hard disk space comparable to that of a typical
desktop computer.

• A tablet PC is a computer designed similar to a pad of paper and
a pencil. Users simply “write” on a screen with a device called a
stylus that is shaped like a thin pencil. Handwriting recognition
software is used to interpret a user’s handwriting. A keyboard can
also be attached.

Bluetooth
Blue too th i s a wire le ss
technology used to allow
mobile computing devices to
communicate.

utility program

memory-resident

Chapter 1 An Introduction to Computers 5

sa
mp
le

• Handheld computers, also called PDAs, are palm-sized and contain
applications for storing contact information, schedules, lists, and
games. Handhelds come with a stylus for input and have a screen
that is several inches vertically. Many types of application software
have been written for handhelds, including spreadsheets and word
processors. Some handhelds recognize handwriting, have a built-in
keyboard, include a cellular phone, and provide Internet access.

• Smartphones are cellular phones that are able to send and receive
e-mail messages and access the Internet. Some smartphones have
digital camera, MP3 player, and color display capabilities.

• Wearable computers vary greatly in size and application. MP3 play-
ers have been incorporated into clothing, and one type of wearable
computer includes voice recognition. Wearable computers are also
in the form of goggles, which incorporate a monitor, digital camera,
ear bud, and microphone. Wrist-top computers are worn like a tra-
ditional wrist watch and work as a pager, provide Internet access,
and contain other features usually found in a handheld PC.

 One issue involved with using so many types of PCs is cross-platform
connectivity, which is the ability for one type of PC to link to and share
data with a different type of PC. Notebook and desktop PCs typically have
good cross-platform connectivity because their file formats can be used on
either computer. Tablets and handhelds use a different OS and generate
different file formats, requiring special hardware and software to use their
files on a desktop or notebook PC. Wearable computers typically have a
cable that allow a connection to other types of PCs, but special software
must be used to communicate between the devices.

 Programming Languages
 A programming language is a set of words, codes, and symbols that allow
a programmer to give instructions to the computer. Many programming
languages exist, each with their own rules, or syntax, for writing these
instructions.

 Programming languages can be classified as low-level and high-level
languages. Low-level programming languages include machine language
and assembly language. Machine language, which is referred to as a first
generation programming language, can be used to communicate directly
with the computer. However, it is difficult to program in machine language
because the language consists of 0s and 1s to represent the status of a
switch (0 for off and 1 for on). Assembly language uses the same instruc-
tions and structure as machine language but the programmer is able to
use meaningful names or abbreviations instead of numbers. Assembly
language is referred to as a second generation programming language.

 High-level programming languages, which are often referred to as third
generation programming languages (3GL), were first developed in the late
1950s. High-level programming languages have English-like instructions
and are easier to use than machine language. High-level programming
languages include Fortran, C, Basic, COBOL, and Pascal. In order for the
computer to understand a program written in a high-level language, pro-
grammers convert the source code into machine language using a compiler
or an interpreter. A compiler is a program that converts an entire program

Fourth and Fifth
Generation Languages

Fourth generation languages
(4GL), such as SQL, have
higher English-like instructions
than most high-level languages
and are typically used to access
databases. Fifth generation
languages are used for artificial
intelligence.

Handheld Computers
Handheld computers are
widely used in occupations
that require constant travel,
such as parcel delivery, meter
reading, and sales.

cross-platform connectivity

6 Chapter 1 An Introduction to Computers

sa
mp
le

into machine code before the program is executed. An interpreter translates
and executes an instruction before moving on to the next instruction in
the program.

 In the 1980s, object-oriented programming (OOP) evolved out of the need to
better develop complex programs in a systematic, organized approach. The
OOP approach allows programmers to create modules that can be used
over and over again in a variety of programs. These modules contain code
called classes, which group related data and actions. Properly designed
classes encapsulate data to hide the implementation details, are versatile
enough to be extended through inheritance, and give the programmer
options through polymorphism. Object-oriented languages include Java,
C++ and Visual Basic .NET.

 Networks
 A network is a combination of hardware and software that allows
computers to exchange data and share software and devices, such as
printers. Networks are widely used by businesses, universities, and other
organizations because a network:

• allows users to reliably share and exchange data

• can reduce costs by sharing devices such as printers

• offers security options including password protection to restrict
access to certain files

• simplifies file management through centralized software updates
and file backups

• provides e-mail for network users

 Networks are classified by their size, architecture, and topology. A
common size classifications is LAN (Local-Area Network), which is a
network used to connect devices within a small area such as a building or
a campus. A WAN (Wide-Area Network) is used to connect devices over
large geographical distances. A WAN can be one widespread network or
it can be a number of LANs linked together.

 The computers and other devices in a LAN each contain an expansion
card called a network interface card:

Network interface card

MAN and HAN
A MAN (Metropolitan Area
Network) and a HAN (Home
Area Network) are network
technologies classified by the
size of a network. A MAN is a
high-speed network that typi-
cally connects LANs within a
city or town. A HAN is used
to connect personal devices
within the home.

interpreter

object-oriented programming

Chapter 1 An Introduction to Computers 7

sa
mp
le

A cable plugs into the adapter card to connect one device to another to
form a LAN. Cables are not required for network cards that have wireless
capabilities. Network interface cards are available for desktop and mobile
computers and take various other forms including an adapter card, a PC
card, or a Flash memory card

 Along with the physical, or hardware, aspects of setting up a network,
there is also the software aspect. A network operating system is software that
allow users and devices to communicate over the network. A networked
environment refers to a set of networked computers running an OS that can
handle the communication between the computers. The operating system
installed must be capable of supporting networking functions, such as
security access features and support for multiple users. Operating systems
capable of network functions are available for Linux, Windows, Unix, and
Mac. The network architecture, discussed next, must also be considered
when choosing a network OS.

 Network architecture includes the type of computers on the network and
determines how network resources are handled. Two common models are
peer-to-peer and client/server. In a peer-to-peer network, each computer on
the network is considered equal in terms of responsibilities and resource
sharing. A client/server network consists of a group of computers, called
clients, connected to a server. A server is a computer with more RAM, a
larger hard disk, and sometimes multiple CPUs that is used to manage
network functions.

 Physical topology refers to the arrangement of the nodes on a network.
A node is a location on the network with a device capable of processing
information, such as a computer or a printer. There are three common
physical topologies:

• The bus topology is a physical LAN topology that uses a single cen-
tral cable, called the bus or backbone to attach each node directly:

LAN using a bus topology

Ethernet
The Ethernet LAN protocol was
developed by Bob Metcalfe in
1976. Ethernet uses a bus or
star topology with twisted-
pair wiring, coaxial cable,
or fiber optic cable transmis-
sion media. Newer protocols
include Fast Ethernet, which
operates at 100 Mbps, Gigabit
Ethernet which operates at
1 Gbps, and 10G Ethernet,
which operates at 10 Gbps.

Transmission Media
Computers must be con-
nected in order to transmit
data between the nodes. Cable
transmission media includes
twisted-pair wiring, coaxial
cable, and fiber optic cable.

Wireless transmission media
includes infrared signals,
broadcast radio, cellular radio,
microwaves, and communica-
tions satellites.

The amount of data and the
speed at which data can travel
over a media is called band-
width, which is measured in
bits per second (bps). Each
transmission media has a spe-
cific length or range restric-
tion, data transmission rate,
and cost.

8 Chapter 1 An Introduction to Computers

sa
mp
le

• In a star topology, each node is attached to a hub, which is a device that
joins communication lines at a central location on the network:

LAN using a star topology

• In a ring topology, each node is connected to form a closed loop.
A LAN with a ring topology can usually cover a greater distance
than a bus or star topology:

LAN using a ring topology

• Wireless networks use high frequency radio waves or infrared sig-
nals instead of cables to transmit data. A router/wireless access
point device is used to allow nodes to transfer data wirelessly.

 Another type of topology is logical topology, which refers to the way data
is passed between the nodes on a network. A LAN’s logical topology is
not always the same as its physical topology.

Baseband and
Broadband Technology
Most LANs use baseband
technology which means the
transmission media carries one
signal at a time. Broadband
technology allows for data
transmission of more than one
signal at a time and is found in
cable television transmission.

Wi-Fi
Wi-Fi (Wireless Fidelity) is
a term used to describe an
802.11 network, which is a
specification or protocol for
wireless networks.

logical topology

Chapter 1 An Introduction to Computers 9

sa
mp
le

 Network users are given a user name and password to log on to a
network through a computer connected to the network. Users are also
assigned a level of access to maintain security. Network users should
follow a certain etiquette referred to as netiquette:

• Do not attempt to access the account of another user without
authorization.

• Do not share your password, and change it periodically.

• Use appropriate subject matter and language, and be considerate
of other people’s beliefs and opinions.

 Number Systems
 The electrical circuits on an IC have one of two states, off or on. Therefore,
the binary number system (base 2), which uses only two digits (0 and 1), was
adopted for use in computers. To represent numbers and letters, a code
was developed with eight binary digits grouped together to represent a
single number or letter. Each 0 or 1 in the binary code is called a bit (BInary
digiT) and an 8-bit unit is called a byte.

 Our most familiar number system is the decimal, or base 10, system. It
uses ten digits: 0 through 9. Each place represents a power of ten, with
the first place to the left of the decimal point representing 100, the next
place representing 101, the next 102, and so on (remember that any number
raised to the zero power is 1). In the decimal number 485, the 4 represents
4×102, the 8 represents 8×101, and the 5 represents 5×100. The number 485
represents the sum 4×100 + 8×10 + 5×1 (400 + 80 + 5):

Decimal Base 10 Equivalent

485 4×102 + 8×101 + 5×100 = 400 + 80 + 5

 The binary, or base 2, system works identically except that each place
represents a power of two instead of a power of ten. For example, the
binary number 101 represents the sum 1×22 + 0×21 + 1×20 or 5 in base ten.
Some decimal numbers and their binary equivalents are:

Decimal Binary Base 2 Equivalent
 0 0 = 0×21 + 0×20 = 0×2 + 0×1 = 0 + 0
 1 1 = 0×21 + 1×20 = 0×2 + 1×1 = 0 + 1
 2 10 = 1×21 + 0×20 = 1×2 + 0×1 = 2 + 0
 3 11 = 1×21 + 1×20 = 1×2 + 1×1 = 2 + 1
 4 100 = 1×22 + 0×21 + 0×20 = 1×4 + 0×2 + 0×1 = 4 + 0 + 0

 The hexadecimal system is used to represent groups of four binary
digits. The hexadecimal, or base 16, system is based on 16 digits: 0 through
9, and the letters A through F representing 10 through 15 respectively.
Each place represents a power of sixteen. For example, the hexadecimal
number 1F represents the sum 1×161 + 15×160. Some decimal numbers and
their hexadecimal equivalents are:

Decimal Binary Hexadecimal Base 16 Equivalent
 0 0000 0000 0 = 0×160 = 0×1 = 0
 10 0000 1010 A = 10×160 = 10×1 = 10
 25 0001 1001 19 = 1×161 + 9×160 = 1×16 + 9×1 = 16 + 9
 30 0001 1110 1E = 1×161 + 14×160 = 1×16 + 14×1 = 16 + 14

binary number system

bit
byte

base 10

base 2

base 16

netiquette

10 Chapter 1 An Introduction to Computers

sa
mp
le

 For clarity, a non-base 10 number should have the base subscripted after
the number. For example, to show the difference between 100 in base 10
and 100 in base 2 (which represents 4), the base 2 number should be writ-
ten as 1002.

 Every letter of an alphabet (Latin, Japanese, Cherokee, and so on) and
symbols of every culture (=, @, ½, and so on) have been given a representa-
tion in a digital code called Unicode. Unicode uses a set of sixteen 1s and 0s
to form a 16-bit binary code for each symbol. For example, the uppercase
letter V is Unicode 00000000 01010110, which can be thought of as the base
10 number 86 (8610). Lowercase v has a separate code of 00000000 01110110,
or 11810.

 Storing Data in Memory
 Computer memory is measured in bytes. For example, a computer might
have 512MB of RAM. In computers and electronics MB stands for megabytes
where mega represents 220 or 1,048,576 bytes and GB stands for gigabytes,
which is 230 or 1,073,741,820 bytes.

 Data stored in memory is referred to by an address. An address is a
unique binary representation of a location in memory. Therefore, data
can be stored, accessed, and retrieved from memory by its address. For
data to be addressable in memory, it must usually be at least one byte in
length. For example, to store JIM in memory each character is converted
to Unicode and stored in two bytes of memory with each memory location
designated by its address:

Because JIM is a character string, it will probably be stored in adjacent
memory addresses.

 Bits grouped in units of 16 to 64 (2 to 8 bytes) are called words. Data
stored in a word is also located by an address. The size of a word depends
on the computer system.

 The binary representation of an integer number is usually stored in four
bytes of memory. Because an integer is stored in four bytes, the range of
integers that can be stored is –2,147,483,648 to 2,147,483,647. An overflow error
occurs when the number of bits that are needed to represent the integer is
greater than the size of four bytes.

 Real numbers, also called floating point numbers, are numbers that contain
decimal points. The binary representation of a real number is usually 4 to
8 bytes of memory. The binary number 111.10 is equivalent to the real deci-
mal number 7.5 and is stored in memory as the binary number 0.11110×23.
In this form, the bits that represent the mantissa (fractional part) are stored
in one section of a word and the exponent, in this example 3 (112), is stored
in another section of the word:

ASCII and EBCDIC
ASCII (American Standard
C o d e f o r I n f o r m a t i o n
Interchange) and EBCDIC
(Ex tended Binary Coded
Decimal Interchange Code)
are two other digital coding
schemes. Unlike Unicode,
ASCII and EBCDIC are not
large enough to support Asian
and other languages that use a
different alphabet.

words

overflow error

real numbers

mantissa
exponent

Chapter 1 An Introduction to Computers 11

sa
mp
le

 The overflow problem discussed for integers can also occur in real
numbers if the part of the word storing the exponent is not large enough.
A roundoff error occurs when there are not enough bits to store the
mantissa.

 What is a File?
 A file is related data stored on a persistent media. A file can be an appli-
cation (program) or the product of an application. For example, a word
processor application is used to create document files. As another example,
a digital camera is used to create photo files. A file is stored on a persistent
media so that it is retained even after the computer or computerized device
is turned off. A file can be used over and over again whenever the data it
stores is needed.

 A file is really just 1s and 0s because it is stored in binary code. Computers
are programmed to translate bytes and words into symbols. Depending
on the file type, these symbols are either human-readable or computer-
readable after translation. Human-readable files are called text files, and
computer-readable files are called binary files. Simple files, such as a text
document, can be measured kilobytes, for example 64K. The K comes from
the word kilo and represents 210 or 1,024. Therefore, a 64K file uses 65,536
bytes (64×210) of storage.

 File types are distinguished by the extension that comes after the file
name. An application adds a unique extension to the files it creates. For
example, MyResume.doc is a document file type. A DOC file is a binary file
created by Microsoft Word. Executables are EXE files and are also binary
files. A file named TestData.txt is a plain text file. A TXT file contains
only letters, numbers, and common symbols readable by humans. Folders
are used to organize commonly related files.

 Binary files are more complex than text files and often contain data for
photos, formatted text, spreadsheets, sound, and so on. The disadvantage
of binary files is that they require another application to interpret the
contents. A binary file may have content similar to:

ÿÿñU_ÿÿþ}9UTýÿ–÷}]Ï_ñÿÑßÿÿý�ÿ×_ÿ÷Äõÿ
ÿ ÿ ð – U _ ÿ ÿ w u s U U ü w] U / U _ ñ ÿ U W w w t w w U W w w D õ ÿ
þ»ÿÿúªî¿þÿþûïûüÿ¾þïìÿ
þÿÿï¿¿ÿïìôÿ UÿÿüET_ÿÿ÷wìÿ–þ»ÿÞþïýÿþøÿ¯ÿëÿúþÿ«ºòÿþýÿûÿûèôÿ
ÿÝþ_ÿÿ�ÿwþuUuWýw÷÷ÿ{þÿß¿ß÷ÿuWwwu÷uuUUwwDõÿþ»ÿÌ®è�lïÿþ
>«~ï®¿þÿ
ýUÝUUÕ]UU]UÕ]Õ]æÝDôÿ¿Îÿàôÿøÿ
ßýÕW_ý_õW_ÕÕ]uåÿDõÿþ¿óÿïþÿÿþáÿèôÿøwÿuþWuWUUwWþUåwDõ
ÿþ

A binary file is computer-readable

roundoff error

TIP The original form the file
is saved in is referred to as the
native format.

File Size Limitations
File size can be decreased
o r compre s s e d us ing a
compression program, such
as WinZip. This technique is
often used to accommodate
storage device and e-mail
account limitations.

Extensions
Common extensions include:

.xls - Excel file

.class - Compiled Java file

.java - Java file

.zip - compressed file

.gif - GIF image file

.bmp - Bitmap graphic

12 Chapter 1 An Introduction to Computers

sa
mp
le

 Storage Devices
 Storage devices use a persistent media to maintain files. These devices,
which are also referred to as drives, mass storage, and auxiliary storage, can
be categorized in three ways:

• internal or external

• removable or permanent media

• magnetic, optical, or solid state technology

 Internal devices are drives mounted inside the PC case. These devices
can include hard disk, CD/DVD, disk, tape, Zip, and Jaz drives. Except for
the Iomega® RRD (Removable Rigid Disk) system, which uses a removable
media, hard drives typically have permanently installed disks that are not
accessible from outside the PC case. Other devices have an external slot
for removable storage media.

 External devices have a stand-alone drive housing and connect to a
computer’s USB port with a cable. USB (Universal Serial Bus) is a standard-
ized technology with data transfer rates up to 480 Mbs. As many as 127
devices can be connected to a single port with USB hubs.

 External drives offer the advantage of portability because they can be
easily moved to other computers that support the technology. External
devices include hard disk, RRD, CD/DVD, diskette, tape, Zip, and Jaz
drives. Except for the hard disk drive, these drives have removable
media.

 Ultra-portable devices include keychain, watch, mini drive, and mouse
storage to name just a few. These external devices are small and easy-to-
use, but currently more expensive than comparable storage devices that
are larger in size. Most ultra-portable devices, including the keychain and
mini drive, have storage media attached directly to a USB plug that is con-
nected to a USB port. The watch and mouse storage devices use a cable
with a USB plug to connect to a USB port. The watch has a short cable and
USB plug hidden in the band. The mouse storage device requires a longer
cable so that it can also function as a pointing device.

 Storage device technologies determine the media, size, and portabil-
ity of a device. Magnetic technology uses a mechanical drive with tiny
electromagnetic heads for reading and writing data to media. The media
required with magnetic technology is a disk, usually made of aluminum or
Mylar®, coated with iron oxide. The disk is either encased in hard plastic
(floppy diskette and Zip) or several disks, called platters, are sealed in a
case (Jaz, RRD, and hard disk). A data signal sent through the heads in
the drive magnetize a bit of the media in one direction to store a 1 and in
the other direction to store a 0.

 Optical technology uses a drive with a laser and an optoelectronic sen-
sor. The media required with optical technology is a compact disc made
of polycarbonate plastic. A CD-R (CD-Recordable) disc is used for stor-
ing files. CD-Rs are coated with a reflective organic compound and then
sealed with a plastic layer to protect the reflective layer from scratches.
The laser in the drive is focused on a bit of the CD-R to darken, or “burn,”
the organic compound to store a 1. The areas of the CD-R left unburned
are read as bits storing a 0.

Firewire
Using the IEEE 1394 standard,
a FireWire port allows devices
to quickly t ransfer large
amounts of data (greater than
400Mbs). FireWire is often
used for digital video cameras
and sometimes external hard
drives because of the amount
of data associated with these
devices. FireWire devices can
be daisy-chained together,
which means one device
is connected to another’s
FireWire port and that device
is connected to another and so
on. FireWire also supports iso-
chronous mode for real-time
data transfer.

Chapter 1 An Introduction to Computers 13

sa
mp
le

 Another application of optical technology is the DVD drive, which
uses a DVD-R disc, similar to a CD-R. The DVD-R (Digital Video Disc-
Recordable) can store much more data than a CD-R because of the preci-
sion used in manufacturing the drive and the DVD-R itself. Bits are much
smaller and stored much more closely together on the DVD-R.

 Solid state technology allows for the smallest, most portable storage
devices because the technology requires no moving parts. The media is
Flash memory, which consists of a grid with two tiny transistors at each
cell. Each cell corresponds to a bit. Applying a charge to a cell stores a
0, while applying a stronger charge stores a 1. The grid of transistors is
encased in hard plastic and is very small. Some devices can store 2MB or
more within a package thinner and smaller than a quarter. Slightly larger
media can store gigabytes of data. Encased media is often directly attached
to a USB plug for use with a computer, or simply has conductive material
imprinted so the media can slide into a digital camera slot.

 Magnetic technology allows for storage devices that range in capacity from
1.44MB (a floppy diskette) to many gigabytes (hard disk drives with many
platters). Optical technology includes CDs that can store about 700MB of
data, while DVDs can store at least 4GB of data. Solid-state devices store
from 64KB of data to many gigabytes.

 Storage media can be very sensitive. Care should be taken to avoid
damaging files:

• Never attempt to open a case containing a disk.

• Keep magnetic media away from magnets.

• Handle CD/DVDs by the center hole or by the edges.

• Never bend CD/DVDs or other flexible media.

• Store CD/DVDs in a jewel case or sleeve to prevent scratches.

• Keep media away from moisture and extreme temperatures.

 Intranet, Extranet, Internet
 An intranet is a network that is used by a single organization, such as
a corporation or school, and is only accessible by authorized users. The
purpose of an intranet is to share information. However, a firewall is also
used to lock out unauthorized users. A firewall is a network security system
that prevents unauthorized network access.

 An extranet extends an intranet by providing various levels of acces-
sibility to authorized members of the public. For example, a corporation
may extend their intranet to provide access to specific information, such
as their ordering system, to registered customers.

 The largest and most widely accessed network is the Internet, a world-
wide network of computers that is not controlled by any one organization.
The Internet has had an undeniable impact on modern society because it
allows users worldwide to communicate in a matter of seconds.

Tera, Peta, Exa
As more and more data is
stored electronically, file sizes
become very large and require
storage devices with very large
capacities. TB (terabyte) is 240
bytes or 1 trillion bytes, pet-
abyte (PB) is 250 bytes or 1,024
terabytes, and EB (exabyte) is
260 bytes or 1,024 petabytes.
Devices with TB storage
capacities are gradually com-
ing into use, especially for
database files.

firewall

storage media care

History of the Internet
The Internet evolved from
ARPANET, a network cre-
ated in the late 1960s by the
Depar tment of Defense’s
ARPA (Advanced Research
Projects Agency), and the
theory of open architecture
networking.

Storage Media
The capacity of storage media
varies. For example, a disk has
a storage capacity of 1.44 MB,
a CD has a storage capacity
of 650 MB, and a DVD has a
storage capacity of over 4GB.

14 Chapter 1 An Introduction to Computers

sa
mp
le

 The Internet is actually numerous networks all linked together through
routers. A router is a device that connects different network technolo-
gies. Networks connected to routers use TCP/IP (Transmission Control
Protocol/Internet Protocol) software to communicate.

 Computers on the Internet are either servers or clients. The client is sent
information from a server. The client/server structure of the Internet is
called interactive because the information accessed is a result of selections
made by the user. For example, a computer with just minimal software
for accessing the Internet is a client. The client user selecting options from
the Internet is receiving the information from a server, a computer with
additional software and files that is also connected to the Internet.

 Telecommunications
 Telecommunications is the transmitting and receiving of data. Data can be
in various forms including voice and video. Telecommunications requires
a modem or adapter and a line or cable. The speed of data transmission
(sending) and receipt (receiving) is measured in Kbps (thousands of bits
per second) or Mbps (millions of bits per second). Numerous telecommu-
nications options are available, which vary in speed and cost:

• A conventional modem uses standard telephone lines to convert
analog signals to digital data. A conventional modem is a 56 Kbps
modem, which transmits data at 28.8 Kbps and 36.6 Kbps, and
receives data at 56 Kbps. Home computers sometimes use a con-
ventional modem.

• A DSL (Digital Subscriber Line) modem uses standard telephone
lines with data transmission up to 640 Kbps. Data receipt is from
1.5 Mbps to 9 Mbps. A DSL (Asymmetric DSL) is the most common
form used.

• A cable modem transmits data through a coaxial cable television
network. Data transmission is from 2 Mbps to 10 Mbps and data
receipt is from 10 Mbps to 36 Mbps.

• Leased/Dedicated lines are used by many businesses and schools
for Internet access. They allow for a permanent connection to the
Internet that is always active. The cost of a leased line is usually a
fixed monthly fee. A T-1 carrier is a type of leased line that trans-
mits data at 1.544 Mbps.

• ISDN (Integrated Services Digital Network) is a digital telephone
network provided by a local phone company. ISDN is capable of
transmitting and receiving data at up to 64 Kbps. ISDN requires
the use of an ISDN terminal adapter instead of a modem.

TIP In a wireless network, a
router/wireless access point is
typically connected by a cable
to a cable or DSL modem.

TIP Access to the Internet
requires telecommunications
and the use of an Internet
Service Provider (ISP).

Chapter 1 An Introduction to Computers 15

sa
mp
le

 Internet Services: Web, E-mail, and
 Mailing Lists
 Internet services include the World Wide Web, e-mail, and mailing lists.
The World Wide Web (WWW), also called the Web is the most widely used
Internet service. The Web can be used to search and access information
available on the Internet. A web browser application, such as Microsoft
Internet Explorer, provides a graphical interface to present information
in the form of a website:

A web page that is part of the New York Times website

 Another widely used Internet service is e-mail or electronic mail, which
is the sending and receiving of messages and computer files over a com-
munications network, such as a LAN (Local Area Network) or the Internet.
E-mail can be received in a matter of seconds, even if the recipient is
located half way around the world.

 An e-mail address is required in order to send and receive e-mail mes-
sages. E-mail addresses are provided when you sign up with an ISP or an
online service. A typical e-mail address is similar to:

E-mail software is also required for sending and receiving e-mail mes-
sages. Examples of e-mail software include Outlook, Outlook Express,
and Eudora. Browser-based e-mail only requires a web browser and is
available through sites such as Yahoo! and Hotmail.

World Wide Web

web browser

Blog
Blog is short for weblog and is
a type of website where users
can post entries in a journal
format.

Instant Messaging
Instant messaging is a com-
munication tool that allows
for real time or immediate text-
based communication.

Digital Signature
A digi t al s ignature is a
code that is attached to an
electronic message to verify
the authenticity of a website
or e-mail message.

16 Chapter 1 An Introduction to Computers

sa
mp
le

 Certain rules should be followed when composing e-mail messages

• Use manners. Include “please” and “thank you” and also properly
address people you do not know as Mr., Ms., Mrs., Dr., and so on.

• Be concise.

• Be professional, which includes using the proper spelling and
grammar.

• Re-read a message before it is sent. Always fill in the To box last to
avoid sending a message before it is complete.

 E-mail messages are not private. An e-mail message goes through sev-
eral mail servers before it reaches the recipient, making it easily accessible
for others to read. Therefore, sending e-mail messages requires following
a certain etiquette:

• Send messages through your account only.

• Use appropriate subject matter and language.

• Be considerate of other people’s beliefs and opinions.

 When sending e-mail at work or school, it is important to remember
that employers and school administrators have the right to read any e-mail
messages sent over the corporate or school network, as well as the right to
track online activity.

 A mailing list server is a server that manages mailing lists for groups of
users. Two mailing list servers are Listserv and Majordomo. Often users
subscribe to mailing lists for discussion purposes. When a subscriber posts
a message to a mailing list server, every subscriber receives a copy of the
message. Subscribers are identified by a single name or e-mail address.

 Finding Information on the Web and
 Downloading Files
 A search engine is a program that searches a database of web pages for
keywords and then lists hyperlinks to pages that contain those keywords.
Commonly used search engines include:

 Yahoo! (www.yahoo.com)
 Google (www.google.com)
 MSN (www.msn.com)
 AOL (www.aol.com)
 Excite (www.excite.com)
 Ask Jeeves (www.ask.com)
 Overture (www.overture.com)
 Lycos (www.lycos.com)
 WebCrawler (www.webcrawler.com)
 FAST Search (www.alltheweb.com)
 About.com (www.about.com)
 AltaVista (www.altavista.com)
 Looksmart (www.looksmart.com)

Search Engines
A search engine usually works
by sending out an agent,
such as spider. A spider is an
application that gathers a list
of available web page docu-
ments and stores this list in a
database that users can search
by keywords.

When displaying information,
search engines often show
“Sponsored Sites Results” first.
These are sites that contain the
information being searched
for but have paid the search
engine to list their sites at the
top of the list.

E-mail Protocols
POP3 is an e-mail protocol
that connects to an e-mail
server to download messages
to a local computer.

IMAP is an e-mail protocol that
connects to an e-mail server
to read message headers and
then the user selects which
e-mail messages to download
to a local computer.

HTTP is used as an e-mail pro-
tocol when a web page is used
to access an e-mail account.

Spam
Along with personal and
business messages, most
people also receive a lot of
“junk e-mail” or spam. Most
e-mail sof tware includes
features to filter and block
message s f rom speci f ic
senders.

Chapter 1 An Introduction to Computers 17

sa
mp
le

A search engine can be queried to display specific web pages. Search criteria
can include single words or phrases that are then used by the engine to
determine a match. A match is a web page that contains the search criteria.
Surrounding phrases with quotation marks finds web pages that contain
the entire phrase. The more specific the search criteria, the better the
chance the information will be found.

 Most searches yield far too many matches to be useful. Limiting the
number of matches to a reasonable number can usually be accomplished
by using Boolean logic in the search criteria:

• The + (plus sign) is used in search criteria to limit a search to only
Web pages that contain all of the specified words. For example, a
search for florida +hotel or florida hotel returns only links to pages
containing both words. AND can be used in place of + in most
search engines.

• OR can be used in most search engines to find Web pages that
contain any one of the words in the criteria. For example, the cri-
teria f lorida OR hotel returns links to pages containing either of
the words.

• The – (minus sign) is used to exclude unwanted Web pages. For
example, the search for shakespeare –play returns hyperlinks to
pages containing the word shakespeare, but eliminates pages that
also contain the word play. NOT can be used in place of – in most
search engines.

 Some search engines provide a subject tree, or web directory, which is a
list of sites separated into categories. The term subject tree is used because
many of the categories “branch” off into subcategories. These subcategories
allow the user to narrow down the subject and display a list of appropriate
hyperlinks, which are at the lowest level of the tree.

 Information on a website is sometimes in the form of a downloadable
file. Downloading is the process of copying a file from a website to the
user’s computer. For example, virus definitions can be downloaded from a
antivirus software company’s website and software updates can be down-
loaded from the software company’s website. When a file is downloaded,
the user specifies where the file should be saved on the local computer.
Files should only be downloaded from known, authentic websites since
downloadable files are often associated with viruses.

 If information from a website is to be referenced or quoted in a report,
essay, or other document, a citation must be used to give credit to the
original author and allow the reader to locate the cited information. A
widely accepted form for citation is published by the Modern Language
Association (MLA) in its publication MLA Handbook for Writers of Research
Papers, Fourth Edition.

 In general, a citation for material located at a website should look similar
to:

Author's Last Name, First Name MI. Site Title. Access date.
Organization name. <URL>.

A citation of a personal website could look similar to:

Rawlings, Julie. Home page. 23 Dec. 2006. <http://www.
lpdatafiles.com/jrawlings/index.htm>.

Boolean Logic
Boolean logic uses three
logical operators:

AND locates pages that
include both words

OR locates pages that include
one word or the other or both

NOT locates pages that
include the first word, but not
the second word

A boolean expression always
evaluates to TRUE or FALSE
with pages that match the
search condition evaluating to
TRUE.

MLA

TIP Just because a file is
available on a website for
download does not mean that
it is legal to download the file.
Downloading copyrighted
files that have not been made
freely available is a violation of
copyright law.

18 Chapter 1 An Introduction to Computers

sa
mp
le

A citation of an article in an online magazine could look similar to:

Schiffman, Paula. "Making Vinegar at Home." Vinegar
Monthly. 4 May 2006. <http://www.lpdatafiles.com/
vinegarassoc/journal.asp>.

A citation of a posting to a discussion list could look similar to:

Cruz, Anthony. "Are Orchestras Going Downhill?" online
posting. 10 Oct. 2006. Tuscon Annual Ballet Conf.
<http://www.lpdatafiles.com/tuscontoes/downhill.txt>.

 Internet Privacy Issues
 The growth of the Internet has caused additional concerns about
personal privacy. Searching for information on the Internet is not as
anonymous as it might seem.

 The collection of data about consumers visiting a website is a marketing
technique known as online profiling. When a commercial website is visited,
information about the user may be collected using various methods such
as cookies or web beacons.

 A cookie is a text file created by the server computer when a user enters
information into a website. The cookie file is then stored on the user’s
computer and accessed each time the user visits that website. Cookies
are often created when online purchases are made. Although cookies can
only store information that the user has selected or entered, their use has
raised concerns over privacy issues.

 Web beacons, also called web bugs or pixel tags, are tiny, transparent
graphics located on web pages or in e-mail messages that are used in
combination with cookies to collect data about web page users or e-mail
senders. Usually the monitoring is done by an outside advertising company.
The information a web beacon collects includes the IP address of the
computer, the URL being visited, the time the web page was viewed, the
type of browser being used, and the cookie file.

 Before providing a company with personal information through a
website, check the site’s privacy policy. A privacy policy is a legally binding
document that explains how any personal information will be used.

 The Internet has opened up access to many files that were previously
inaccessible. To protect both the privacy of an individual and the accuracy
of data stored about individuals, several laws have been passed:

• The Electronic Communications Privacy Act of 1986 (ECPA)
makes it a crime to access electronic data without authorization.
It also prohibits unauthorized release of such data.

• The Electronic Freedom of Information Act of 1996 (E-FOIA)
requires federal government agencies to make certain agency
information available for public inspection and is designed to
improve public access to agency records by making more informa-
tion available online.

• The Children’s Online Privacy Protection Act of 1998 (COPPA)
requires commercial websites that collect personal information
from children under the age of 13 to obtain parental consent.

Spyware
Spyware is sof tware that
uses the Internet to gather
personal information from an
unsuspecting user. Spyware
is unknowingly downloaded
and installed with another file,
such as freeware or shareware
programs.

TIP A website’s privacy policy
is typically found as a link at
the bottom of the home page
of a website.

NET Act
The NET (No Electronic Theft)
Act of 1997 closed a loophole
in the law which allowed copy-
righted material to be given
away on the Internet without
any legal penalty.

IP Address
An IP address is an identifier
for a computer or device on a
TCP/IP network.

Chapter 1 An Introduction to Computers 19

sa
mp
le

• The Safety and Freedom through Encryption Act of 1999 (SAFE)
gives Americans the freedom to use any type of encryption to
protect their confidential information.

 Other laws have been passed that may invade the privacy of some to
protect the safety of others. For example, the Provide Appropriate Tools
Required to Intercept and Obstruct Terrorism (PATRIOT) Act of 2001
gives law enforcement the ability to monitor individual’s e-mail and web
activity.

 Internet Acceptable Use Policy
 Internet content, unproductive use, and copyright have prompted many
schools and businesses to develop an Acceptable Use Policy or Internet
Use Agreement. Acceptable Use Policies typically contain rules similar
to:

• Use appropriate language.

• Do not reveal personal address or phone numbers.

• Do not access, upload, download, or distribute inappropriate
materials.

• Do not access another user’s account.

• Use of the network for private business is prohibited.

• Only administrator installed software may be used on the com-
puters. Adding, deleting, or modifying installed software is not
permitted.

 The Social and Ethical Implications of
 Computer Use
 The society in which we live has been so profoundly affected by
computers that historians refer to the present time as the information age.
This is due to the our ability to store and manipulate large amounts of
information (data) using computers. As an information society, we must
consider both the social and ethical implications of our use of computers.
By ethical questions we mean asking what are the morally right and wrong
ways to use computers.

 Ergonomics is the science that studies safe work environments. Many
health-related issues, such as carpal tunnel syndrome and computer vision
syndrome (CVS) are related to prolonged computer use.

 Power and paper waste are environmental concerns associated with
computer use. Suggestions for eliminating these concerns include recycling
paper and printer toner cartridges and turning off monitors and printers
when not in use.

 Employee monitoring is an issue associated with computers in the work-
place. It is legal for employers to install software programs that monitor
employee computer use. As well, e-mail messages can be read without
employee notification.

Encryption
Encryption is the process of
translating data into a code that
is not readable without the key
to the code. Encryption pre-
vents unauthorized access to
the data. Data that is encrypted
is referred to as cipher text.

Internet Filtering
Software

Many schools and organiza-
tions install Internet filtering
software to block offensive
material.

ergonomics

information age

20 Chapter 1 An Introduction to Computers

sa
mp
le

 As discussed in a previous section in the chapter, the invasion of privacy
is a serious problem associated with computers. Because computers can
store vast amounts of data we must decide what information is proper to
store, what is improper, and who should have access to the information.
Every time you use a credit card, make a phone call, withdraw money,
reserve a flight, or register at school, a computer records the transaction.
These records can be used to learn a great deal about you—where you have
been, when you were there, and how much money was spent. Should this
information be available to everyone?

 Computers are also used to store information about your credit rating,
which determines your ability to borrow money. If you want to buy a car
and finance it at a bank, the bank first checks your credit records on a
computer to determine if you have a good credit rating. If you purchase
the car and then apply for automobile insurance, another computer will
check to determine if you have traffic violations. How do you know if
the information being used is accurate? The laws listed below have been
passed to help ensure that the right to privacy is not infringed by the
improper use of data stored in computer files:

• The Fair Credit Reporting Act of 1970 gives individuals the right
to see information collected about them for use by credit, insur-
ance, and employment agencies. If a person is denied credit they
are allowed to see the files used to make the credit determination.
If any of the information is incorrect, the person has the right to
have it changed. The act also restricts who may access credit files
to only those with a court order or the written permission of the
individual whose credit is being checked.

• The Privacy Act of 1974 restricts the way in which personal data
can be used by federal agencies. Individuals must be permitted
access to information stored about them and may correct any infor-
mation that is incorrect. Agencies must insure both the security
and confidentiality of any sensitive information. Although this law
applies only to federal agencies, many states have adopted similar
laws.

• The Financial Privacy Act of 1978 requires that a government
authority have a subpoena, summons, or search warrant to access
an individual’s financial records. When such records are released,
the financial institution must notify the individual of who has had
access to them.

 Protecting Computer Software and
 Data
 As society becomes more and more reliant on digital information,
copyright and exposure to malicious code have become two important
issues among computer users. Copyright is protection of digital informa-
tion. Copyright infringement is the illegal use or reproduction of data
(text, pictures, music, video, and so on). Laws, such as the NET Act (No
Electronic Theft Act) of 1997, protect against copyright infringement. There
have been several well-known cases of high penalties for individuals guilty
of copyright infringement.

Identity Theft
Identity theft is a growing crime
where personal information is
stolen electronically in order
to make fraudulent purchases
or loans.

copyright

Chapter 1 An Introduction to Computers 21

sa
mp
le

 Copyright infringement includes duplication of computer software
when copies are being used by individuals who have not paid for the
software. This practice is called piracy when illegal copies are distributed.
Developing, testing, marketing, and supporting software is an expensive
process. If the software developer is then denied rightful compensation,
the future development of all software is jeopardized. Therefore, it is
important to use only legally acquired copies of software, and to not make
illegal copies for others.

 Malicious code comes in many forms and is delivered in many ways. A
virus, a Trojan horse, and an Internet worm are three forms of malicious
code. They can appear on a system through executable programs, scripts,
macros, e-mails, and some Internet connections. One devastating effect
of malicious code is the destruction of data.

 A virus is a program or series of instructions that can replicate without
the user’s knowledge. Often a virus is triggered to run when given a cer-
tain signal. For example, a virus might check the computer’s clock and then
destroy data when a certain time is reached. A virus is easily duplicated
when the file is copied, which spreads it to other computers.

 A Trojan horse program appears as something else, usually a program
that looks trustworthy. Running the program runs the malicious code
and damages files on the computer. A worm is a program that is able to
reproduce itself over a network. Worms are a threat because of the way
they replicate and use system resources, sometimes causing the system
to shut down.

 Malicious code has become so widespread that software called antivirus
programs must be installed on computers and networks to detect and
remove the code before it can replicate or damage data. Precautions can
also be taken to prevent damage from malicious code:

• Update antivirus software. An antivirus program can only detect
the viruses, Trojan horses, and worms it is aware of. Antivirus
programs have a web link for updating the virus definitions on
the computer containing the antivirus program.

• Do not open e-mail attachments without scanning for malicious
code. One estimate states that 80% of virus infection is through
e-mail.

 Newspapers have carried numerous reports of crackers, or hackers, gain-
ing access to large computer systems to perform acts of vandalism. This
malicious act is illegal and can cause expensive damage. The Electronic
Communications Privacy Act of 1986 specifically makes it a federal offense
to access electronic data without authorization. Networks usually include a
firewall, which is a combination of hardware and software, to help prevent
unauthorized access.

 The willful destruction of computer data is no different than any other
vandalizing of property. Since the damage is done electronically the
result is often not as obvious as destroying physical property, but the
consequences are much the same. It is estimated that computer crimes
cost billions of dollars each year.

virus

Trojan horse

crackers, hackers

antivirus programs

TIP It is usually legal to make
one backup copy of a pur-
chased software program.

22 Chapter 1 An Introduction to Computers

sa
mp
le

 Phishing is the act of sending an e-mail to a user falsely claiming to
be a legitimate business in an attempt to trick the user into revealing
personal information that could be used for crimes such as identity theft.
The Communications Privacy Act of 1986 specifically makes it a federal
offense to access electronic data without authorization. Networks usually
include a firewall, which is a combination of hardware and software, to
help prevent unauthorized access.

 The Ethical Responsibilities of an IT
 Professional
 An IT (information technology) professional has responsibilities that
relate to system reliability. System reliability involves installing and updat-
ing appropriate software, keeping hardware working and up-to-date, and
maintaining databases and other forms of data. Governments, schools, and
employers rely on IT professionals to maintain their computer systems.

 In addition to ensuring system reliability, an IT professional must take
responsibility for the ethical aspects of the career choice. For example,
IT professionals involved in creating software must ensure, as best he or
she can, the reliability of the computer software. This means the ethical
responsibility of the IT professional includes using the appropriate tools
and methods to test and evaluate programs before distribution. A special
cause for concern is the increased use of computers to control potentially
dangerous devices such as aircraft, nuclear reactors, or sensitive medical
equipment.

 IT professionals must also consider the impact they have on computer
users. Web users for example often rely on data from websites providing
real-time information. The information displayed is determined with a
program written using a 4GL or other language that accesses a database.
The IT professionals involved in such a project have the ethical respon-
sibility to possibly millions of individuals for ensuring, as best they can,
accurate data retrieval.

 As capable as computers have proven to be, we must be cautious when
allowing them to replace human beings in areas where judgement is cru-
cial. As intelligent beings, we can often detect that something out of the
ordinary has occurred which has not been previously anticipated and then
take appropriate actions. Computers will only do what they have been
programmed to do, even if it is to perform a dangerous act.

 Chapter Summary
 A desktop computer and its components are designed to fit on or under
a desk. Mobile computers include notebooks, tablets, handhelds, smart
phones, and wearables. A computer must run operating system (OS)
software in order to control processing and peripherals, run application
software, and control input and output, among other tasks.

phishing

IT Careers
The growth of computers,
the Internet, and the Web
have created many new job
opportunities in the IT field.
IT careers include data-entry
operator, systems analyst,
p r o g r amm e r, co m p u t e r
engineer, and technical
support technician.

Chapter 1 An Introduction to Computers 23

sa
mp
le

 A network is a combination of hardware and software that allows com-
puters to exchange data and share software and devices, such as printers.
Networks are classified by their size, architecture, topology, and protocol.
Network users should use netiquette.

 A programming language is a set of words, codes, and symbols that
allows a programmer to communicate with the computer. Programming
languages can be classified as low-level and high-level languages. Low-
level programming languages include machine language and assembly
language. High-level programming languages have English-like
instructions and are easier to use than machine language. High-level
programming languages include Fortran, C, Basic, COBOL, and Pascal.

 The electrical circuits on an IC have one of two states, off or on. Therefore,
the binary number system (base 2), which uses only two digits (0 and 1),
was adopted for use in computers. Our most familiar number system is the
decimal or base 10 system. The binary number system is a base 2 system
and the hexadecimal system is base 16. Every letter of an alphabet (Latin,
Japanese, Cherokee, and so on) and symbols of every culture (=, @, ½, and
so on) have been given a representation in a digital code called Unicode.

 Computer memory, file sizes, and storage device capacities are measured
in bytes. In computers and electronics MB stands for megabytes, GB stands
for gigabytes, and K stands for kilobytes.

 The binary representation of an integer number is usually stored in four
bytes of memory. Real numbers are numbers that contain decimal points
and the binary representation of a real number is usually 4 to 8 bytes of
memory.

 A file is related data stored on a persistent media. A file is really just 1s
and 0s because it is stored in binary code. Computers are programmed to
translate bytes and words into symbols. File types are distinguished by
the extension that comes after the file name. Folders are used to organize
commonly related files.

 Storage devices use a persistent media to maintain files. These devices,
which are also referred to as drives, mass storage, and auxiliary storage,
can be categorized as internal or external, as removable or permanent
media, and as magnetic, optical, or solid state technology.

 An intranet is a network that is used by a single organization and is only
accessible by authorized users. A firewall is a network security system that
prevents unauthorized network access. An extranet extends an intranet
by providing various levels of accessibility to authorized members of the
public. The largest and most widely accessed network is the Internet. The
most widely used Internet service is the World Wide Web, also called the
Web. Other Internet service include e-mail and mailing lists.

 Telecommunications is the transmitting and receiving of data.
Telecommunication options include a conventional modem, a DSL modem,
a cable modem, leased/dedicated lines, and ISDN.

 A search engine is a program that searches a database of web pages for
keywords and then lists hyperlinks to pages that contain those keywords.

24 Chapter 1 An Introduction to Computers

sa
mp
le

Search criteria is used by the search engine to determine a match. Limiting
the number of matches to a reasonable number can be accomplished using
Boolean logic in the search criteria. Some search engines also provide a
subject tree, or web directory.

 Information found at a website should be evaluated for accuracy. There
are guidelines for citing electronic material on the Internet. The primary
purpose of a citation is to give credit to the original author and allow the
reader to locate the cited information.

 The growth of the Internet has caused concerns about personal privacy.
Online profiling, cookies, and web bugs are all areas of concern. Before
providing personal information through a website, check the site’s pri-
vacy policy. To protect an individual’s privacy, several laws have been
passed. Concerns about Internet content, unproductive use, and copyright
have prompted many schools and businesses to develop an Internet Use
Agreement.

 Historians refer to our present time as the information age. The poten-
tial for the use of computers to invade our right to privacy has prompted
legislation to protect individuals. Piracy is the illegal act of duplicating
software without permission. A virus is a computer file that erases data
and can cause considerable damage.

 Working as an IT (information technology) professional includes taking
responsibility for the ethical aspects of a career choice. IT professionals
must also consider the impact they have on computer users.

Chapter 1 An Introduction to Computers 25

sa
mp
le

 Vocabulary

Address A unique binary representation of a location
in memory.

Address bus Carries memory addresses that indi-
cate data storage locations.

ALU (Arithmetic Logic Unit) The part of the CPU
that handles arithmetic and logic operations.

Antivirus program Software installed on computers
and networks to detect and remove viruses.

Applications software Program written to perform
a specific task.

Base unit Housing that contains the mother-
board, CD-RW/DVD drive, disk drive, and hard
disk drive.

Binary number system Number system used by
computers that uses only digits 0 and 1. Also called
base 2.

Bit (BInary digiT) A single 0 or 1 in binary code.

Bus A central network cable. Also a set of circuits
that connect the CPU to other components.

Bus topology A physical LAN topology that uses a
single central cable to attach each node directly.

Byte A group of 8 bits.

Cable modem A modem that transmits data through
a coaxial cable television network.

Cache High-speed memory used to store frequently
used data so that it can be quickly retrieved by an
application.

Client A computer that is sent information from a
server computer.

Client/server network A type of network that
consists of a group of computers, called clients con-
nected to a server computer.

Clock rate The speed at which a CPU can execute
instructions, measured in megahertz or gigahertz.

Compiler A program that converts an entire pro-
gram into machine code before the program is
executed.

Control bus Carries control signals.

Conventional modem A modem that uses stan-
dard telephone lines to convert analog signals to
digital data.

Cookie Text file created by the server computer
when a user enters information into a website.

Copyright Protects a piece of work from reproduc-
tion without permission from the work’s author.

CPU (Central Processing Unit) Processes data and
controls the flow of data between the computer’s
other units. Also contains the ALU. Located on the
motherboard.

Cracker Person who accesses a computer system
without authorization.

Cross-platform connectivity The ability of one
type of PC to link to and share data with a different
type of PC.

Dedicated line See Leased line.

Device driver One type of utility program.

Downloading The process of copying a file from
a website to the user’s computer.

DSL (Digital Subscriber Line) modem A modem
that uses standard telephone phone lines. ADSL is
the most common form used.

E-mail (electronic mail) The sending and receiving
of messages and electronic files over a communica-
tions network such as a LAN or the Internet.

Environment A computer’s hardware and soft-
ware configuration. Also referred to as platform.
Environment types include desktop, multiuser, net-
work, handheld, distributed, multiprocessing, and
multitasking.

Ergonomics The science that studies safe work
environments.

Extension Added after a file name to distinguish
file types.

Extranet An extended intranet that provides vari-
ous levels of access to authorized members of the
public.

Expansion boards Circuit boards that connect to the
motherboard to add functionality to the computer.

File A collection of related data stored on a lasting
medium.

Firewall A network security system that prevents
unauthorized network access.

26 Chapter 1 An Introduction to Computers

sa
mp
le

Folder Used to organize commonly related files.

Gigabytes (GB) Approximately one billion bytes.

Gigahertz (GHz) Billion of cycles per second.

Hacker see Cracker.

Handheld computer A mobile computing device.

Hardware The physical components of the computer,
such as the monitor and system unit.

Hexadecimal system Number system based on 16
digits. Also called base 16.

High-level programming languages Third
generation programming languages that have
English-like instructions.

Hub A communication device that joins communica-
tion lines at a central location on the network.

Information age Present time characterized
by increasing dependence on the computer’s
ability to store and manipulate large amounts of
information.

Input device Device used to enter data and instruc-
tions into the computer.

Integrated circuits (ICs) A silicon wafer with intri-
cate circuits etched into its surface and then coated
with a metallic oxide that fills in the etched circuit
patterns. Also called a chip.

Interactive Information accessed as a result of
selections made by the user.

Internet The largest and most widely accessed
network.

Interpreter A program that translates and
executes an instruction before moving on to the
next instruction in the program.

Intranet A network that is used by a single organi-
zation and only accessible by authorized users.

ISDN (Integrated Services Digital Network) A
digital telephone network provided by a local tele-
phone company.

IT (Information Technology) A term that
encompasses all aspects of computer-related
technology.

Kbps Thousands of bits per second.

Kilobytes (K) Approximately a thousand bytes.

LAN (Local Area Network) A network used to
connect devices within a small area.

Leased line A telecommunication option used
for a permanent connection to the Internet that is
always active.

Logical topology Refers to the way in which data
is passed between the nodes on a network.

Low-level programming languages First and
second generation programming languages including
machine language and assembly language.

Mailing list server A server that manages mailing
lists for groups of users.

Magnetic technology Storage device technology that
uses a mechanical drive with tiny electro-magnetic
heads for reading and writing data to media.

Match A web page that contains the search
criteria.

Mbps Millions of bits per second.

Megabytes (MB) Approximately one million
bytes.

Megahertz (MHz) Million of cycles per second.

Memory-resident A program that is always in
memory.

Minus sign (–) Used in search criteria to exclude
unwanted web pages.

Modern Language Association (MLA) Organization
that publishes standards used for citations.

Motherboard The main circuit board inside the
base unit.

Netiquette The etiquette that should be followed
when using a network.

Network A combination of software and hardware
that allows computers to exchange data and to share
software and devices, such as printers.

Network architecture The structure of a
network.

Network interface card A circuit board that goes
into a computer or other device in a LAN.

Network operating system Software that allows
users and devices to communicate over a network.

Node A location on the network capable of processing
information, such as a computer or a printer.

Notebook A portable, lightweight computer.

Chapter 1 An Introduction to Computers 27

sa
mp
le

Object-oriented programming (OOP) An approach
to programming where modules are created that can
be used over and over again.

Online profiling A marketing technique that
collects online data about consumers.

Operating system Software that allows the user
to communicate with the computer. Types include
multiuser, multiprocessing, multitasking, multi-
threading, or real time.

Optical technology Storage device technology
that uses a drive with a laser and optoelectronic
sensor.

Output device A device used to convey processed
data.

Overflow error An error that occurs when the num-
ber of bits that are needed to represent the integer
is greater than four bytes.

Overwrites Updates an original file with
changes.

Peer-to-peer network A type of network that does
not have a server.

Peripheral device A device attached to a PC.

Phishing The act of sending an e-mail to a user
falsely claiming to be a legitimate business in an
attempt to trick the user into revealing personal
information that could be used for crimes such as
identity theft

Piracy Illegally copying or distributing software.

Plus sign (+) Used in search criteria to limit a search
to only those web pages containing two or more
specified words.

Port Used to attach a peripheral device to a
computer.

Privacy policy A legally binding document that
explains how any personal information will be
used.

Programming languages A set of words, codes, and
symbols that allows a programmer to communicate
with the computer.

RAM (Random Access Memory) Memory that
temporarily stores data and instructions. Also called
primary or main memory.

Real numbers Numbers that contain decimal
points.

Real time Occurs immediately.

Ring topology A physical LAN topology where each
node is connected to form a closed loop.

ROM (Read Only Memory) Memory that stores
data and is a permanent part of the computer.

Roundoff error An error that occurs when there
are not enough bits to hold the mantissa.

Router A device that connects different network
technologies.

Search criteria A single word or phrase that is used
by the search engine to match web pages.

Search engine A program that searches a database
of web pages for keywords and then lists hyperlinks
to pages that contain those keywords.

Secondary memory Any type of storage media.

Server A computer used to manage network func-
tions such as communication and data sharing.

Smartphone Cellular phone that is able to send and
receive e-mail messages and access the Internet.

Solid state technology Storage device technology
that requires no moving parts.

SRAM (Static Random Access Memory) High-
speed memory referred to as cache.

Star topology A physical LAN topology where
each node is attached to a hub.

Storage devices Devices that use persistent media
to maintain files. Also referred to as drives, mass
storage, and auxiliary storage.

Subject tree A list of sites separated into
categories.

Tablet PC A computer designed similar to a pad
of paper.

TCP/IP (Transmission Control Protocol/Internet
Protocol) Software used by networks connected
to routers to communicate.

Telecommunications The transmitting and receiv-
ing of data.

Topology The physical or logical arrangement of
the nodes on a network.

Transmission media The media that joins the nodes
on a network to enable communication.

Trojan horse Malicious code in the form of a program
that appears as something else, usually a program
that looks trustworthy.

28 Chapter 1 An Introduction to Computers

sa
mp
le

Ultra-portable devices Storage devices, such as
keychains, that are small and easy-to-use.

Unicode A digital code that uses a set of sixteen
1s and 0s to form a 16-bit binary code for each
symbol.

Utility program Program run by the operating
system to manage input and output, read and write
to memory, manage the processor, maintain system
security, and manage files and disks.

Virus A program that is designed to reproduce
itself by copying itself into other programs stored
on a computer without the user’s knowledge.

WAN (Wide Area Network) A network used to con-
nect computers over large geographical distances.

Wearable computer A mobile computing device
that is incorporated into clothing, eyewear, wrist-
wear, and other wearables.

Web See World Wide Web.

Web beacon A tiny, transparent graphic located on
a web page used to collect data about the web page
user. Also called a web bug or pixel tag.

Web browser Interprets an HTML document to
display a web page.

Web directory See Subject tree.

Wireless network A type of network that does not
require the use of cables.

Word Bits grouped in units of 16 to 64.

World Wide Web The most widely used Internet
service. Used to search and access information
available on the Internet.

Worm Program that is able to reproduce itself over
a network.

Chapter 1 An Introduction to Computers 29

sa
mp
le

 Review Questions

1. a) What is hardware?
 b) What are input and output devices used

for?
 c) What is a peripheral device?

2. List and describe five components found on the
motherboard.

3. Describe the flow of data between the compo-
nents of a computer, starting with input.

4. a) Describe one difference between operating
system software and applications software.

 b) Describe three different types of operating
systems.

 c) What does environment refer to?

5. What is a utility program? Give an example.

6. List four types of mobile computing devices.

7. What is a stylus used for?

8. Describe one type of wearable computer.

9. Why is cross-platform connectivity important
to many computer users?

10. a) What is the difference between low and high
level programming languages?

 b) List t h ree h igh-level prog ram m i ng
languages.

 c) What is the difference between a compiler
and an interpreter?

 d) List an advantage of using an object-oriented
programming language.

11. List four benefits of using a network.

12. a) What are the two common size classifica-
tions for networks?

 b) What size classification is used to connect
devices over large geographical distances?

13. a) What is a network operating system?
 b) What does a network environment refer

to?

14. Describe two common network architecture
models.

15. a) What does physical topology refer to?
 b) What is a node?
 c) Which topology uses a hub?
 d) Which topology connects each node to form

a closed loop?
 e) What is the difference between physical and

logical topology?

16. List three netiquette rules.

17. Explain why the binary number system was
adopted for use in computers.

18. a) What is the decimal equivalent of 1112?
 b) What is the decimal equivalent of 2C16?

19. What is Unicode?

20. a) How many bytes of data can 512 MB of RAM
store?

 b) How many bytes of data can a 40 GB hard
drive store?

21. What are bits grouped in units of 16 to 64
called?

22. When would an overflow error occur?

23. a) What are real numbers?
 b) When would a roundoff error occur?

24. a) What is the difference between a text file and
a binary file?

 b) Explain how an extension distinguishes file
types.

 c) Why would organizing files into folders be
considered a good practice?

25. List three ways storage devices can be classified
and give an example of a storage device in each
category.

26. Describe three storage device technologies.

27. List four rules that should be followed to avoid
damaging files stored on disks or CD/DVDs.

28. a) What is the difference between an intranet
and an extranet?

 b) Who controls the Internet?

30 Chapter 1 An Introduction to Computers

sa
mp
le

29. List three telecommunications options.

30. a) If a business needed constant access to the
Internet, what type of connection line would
be a good choice? Why?

 b) What does a cable modem use instead of
analog phone lines?

31. What is the most widely used Internet
service?

32. a) What is e-mail?
 b) List one benefit of e-mail over standard

mail.
 c). Write your e-mail address and label the parts

of the address.
 d) What are the two requirements for sending

and receiving e-mail messages?
 e) List one example of a browser-based e-mail

site.

33. a) Explain why sending an e-mail message
should be thought of the same as sending a
postcard.

 b) List three examples of e-mail etiquette.

34. a) What is a search engine?
 b) List three commonly used search engines.
 c) Which search engine do you prefer to use,

and why?
 d) What is search criteria?
 e) What is a match?

35. Write search criteria to locate web pages that
contain the following information:

 a) restaurants in Los Angeles
 b) art museums in Boston
 c) auto repair jobs in Montreal, Canada
 d) mosquitoes and bees, but not ants
 e) the English author Jane Austen
 f) the phrase to each his own
 g) George Washington and John Adams, but

not Thomas Jefferson
 h) travel to Ireland, but not Dublin

36. List a search engine that provides a subject
tree.

37. a) What is downloading?
 b) Why should files only be downloaded from

authentic sites?

38. a) List four questions to answer when evaluat-
ing a website source.

 b) Why is it necessary to cite sources?
 c) On August 2, 2006 you accessed a posting on

the Clewiston Kite Surfing discussion list at
http://www.lpdatafiles.com/kitesurf/color.txt.
The posting was made by Tara Perez on the
topic of kite colors. Write a citation for a
research paper that quotes Tara’s posting.

39. What is online profiling?

40. What is a cookie?

41. a) What is a web beacon?
 b) Who usually monitors the information

collected by web beacons?

42. Locate a website’s privacy policy and document
its contents.

43. Name and briefly describe one law that helps
protect the privacy of an individual.

44. a) List three reasons why many schools have
developed an Acceptable Use Policy.

 b) List an example of a rule that typically
appears on an Acceptable Use Policy.

45. What can you do if you are turned down for
credit at a bank and believe that the data used
to deny credit is inaccurate?

46. a) What is necessary for a federal government
authority to access an individual’s financial
records?

 b) What must a financial institution do after
releasing an individual’s records?

47. a) What is copyright infringement?
 b) Why is computer piracy such a concern to

software developers?
 c) What is a computer virus?
 d) Describe phishing.

48. What ethical responsibilities does an IT
professional have?

Chapter 1 An Introduction to Computers 31

sa
mp
le

True/False

49. Determine if each of the following are true or
false. If false, explain why.

 a) A computer must have an operating system
installed before application software can be
installed.

 b) FireWire and USB are types of ports.
 c) A peer-to-peer network has a server.
 d) A LAN’s logical topology is always the same

as its physical topology.
 e) The hexadecimal system is a base 2 system.
 f) Computer memory is measured in bytes.
 g) The most widely accessed network is the

Internet.
 h) A conventional modem transmits data faster

than a cable modem.
 i) E-mail messages are private.
 j) Information found at a website is always

accurate.
 k) The present time is referred to as the

industrial age.
 l) Ergonomics is the science that studies safe

work environments.
 m) A virus is a harmless computer game.

32 Chapter 1 An Introduction to Computers

sa
mp
le

 Exercises

Exercise 1 ——————————————————————————
In this exercise you will research your classroom computer network by answering a series of
questions:

a) Is your computer network a LAN or a WAN?

b) List one device that is shared on the network.

c) Locate the cable that plugs into the network interface card on your workstation.

d) What type of physical topology is used?

e) What type of transmission media is used?

f) What network protocol is used?

g) What operating system is used?

h) Describe your workstation’s environment.

i) What telecommunication option is used?

j) Does the school have an intranet?

k) List four rules on the school’s Internet Use Agreement.

Exercise 2 ——————————————————————————
In this exercise you will assess the input and output devices you have access to.

a) List the input devices accessible on the classroom network.

b) List the output devices accessible on the classroom network. List advantages and dis-
advantages associated with each accessible output device.

Exercise 3 ——————————————————————————
In this exercise you will organize your existing files. You may need to refer to the appropriate operating
system chapter on www.lpdatafiles.com to complete this exercise.

a) Examine the files you currently have saved on your computer. Use the appropriate
operating system command to rename any files that do not have descriptive names.

b) Use the appropriate operating system commands to organize your existing files into
appropriate folders.

Chapter 1 An Introduction to Computers 33

sa
mp
le

Exercise 4 ——————————————————————————
A good friend has been diagnosed with Carpal Tunnel Syndrome and would like you to find out as
much as you can about the injury and possible treatments.

a) Conduct a search on the Internet using at least two search engines to find three web
pages that have information about Carpal Tunnel Syndrome.

b) Write a brief description of the injury.

c) In a second paragraph, write about possible treatments for the injury.

d) Write a citation for each source.

Exercise 5 ——————————————————————————
Expand on the information presented in this chapter by researching one of the following topics:

• Network Protocols

• Operating Systems

• The History of the Internet

• Evolution of Programming Languages

• Identity Theft

a) Use the Internet, magazines, and books to find at least three sources of information.

b) Write a two page report that summarizes your research.

c) Write a citation for each source.

Exercise 6 ——————————————————————————
In this exercise you will research and compare the advantages and cost of obtaining Internet access
through three different telecommunication options.

a) Use the Internet and newspapers to find information about Internet service providers
(ISPs).

b) Compare the costs and the advantages of at least three different telecommunication
options.

c) Write a one paragraph conclusion that explains what telecommunication option would
be the best choice.

d) Write a citation for each source.

34 Chapter 1 An Introduction to Computers

sa
mp
le

Exercise 7 ——————————————————————————
In this exercise you will further research emerging technologies and find real-life examples of how
these technologies have impacted individuals and businesses.

a) Use the Internet, magazines, and books to learn more about at least three emerging
technologies. Look specifically for information on how these emerging technologies
impact individuals and businesses. For example, speech recognition technology greatly
impacts those individuals who must rely on voice input rather than keyboard input
for a PC.

b) Write a two-page report that summarizes the impact of and lists several functions of
the emerging technologies you have researched.

c) Write a citation for each source.

Exercise 8 ——————————————————————————
Many computer viruses have been associated with e-mail attachments.

a) Conduct a search on the Internet to find information about a virus associated with an
e-mail attachments.

b) Write a one-paragraph description of the virus. Include details, such as the damage
caused by the virus and steps necessary to remove the virus.

c) Write a citation for each source.

Exercise 9 ——————————————————————————
You have decided to investigate computer programming as a possible career path.

a) Conduct a search on the Internet using at least two search engines to find three appro-
priate bachelor degree programs.

b) List each program location (college name), the number of credits required to finish the
degree, and the tuition cost per credit or per course.

Exercise 10 ——————————————————————————
In this exercise you will investigate mailing lists.

a) Join an appropriate computer-related mailing list.

b) Participate on the mailing list as a learner.

c) Contribute to the mailing list content.

Chapter 2 Applets and Web Programming 35

sa
mp
le

This chapter discusses Web programming by introducing HTML and
JavaScript. Java applets are also introduced.

 The World Wide Web
 The most widely used Internet service is the World Wide Web (WWW),
also called the Web. The Web is used to search and access information avail-
able on the Internet. A web browser application, such as Internet Explorer
provides a graphic interface to present information from a website. A
website consists of a series of related web pages. For example, a CNN web
page looks similar to:

A web page displayed in a web browser

 Most web pages are created using HTML (HyperText Markup Language)
and other code. HTML is a markup language that is well suited for the
Web because it supports hypertext and multimedia. Hypertext is a database

Browsers
Commonly used web browser
applications include Internet
Explorer, Netscape, Opera,
Firefox, Amaya, and Safari.

Chapter 2
Applets and Web Programming

hypertext

web browser application

website

HTML

36 Chapter 2 Applets and Web Programming

sa
mp
le

system where objects, such as text and images, can be linked. Multimedia
includes images, video, audio, and Java applets, which can be embedded
in an HTML document.

 Millions of people all over the world are able to view and author web
content because the World Wide Web Consortium (W3C) continuously
develops standards for the Web. These standards include HTML standards
to ensure that HTML documents display similarly in different browsers
and across different platforms. They have also developed Web accessibility
standards for those with disabilities.

 HTML
 HTML uses a set of codes, called tags, to “mark up” plain text so that
a browser application, such as Internet Explorer, knows how to interpret
the text. A tag is comprised of an element inside angle brackets (<>). For
example, <title> is called the title tag, where title is the element. Tags
affect the text they surround, and are usually paired to indicate the start
and end of an instruction. A slash (/) before the element indicates the end
of an instruction, such as </title>.

 A web page with one line of text will be displayed when the HTML
document below is opened in a browser:

<html>

<head>
<title>An example HTML document</title>
</head>

<body>
<p>Hello world!</p>
</body>

</html>

Text marked up with <title> and </title> is displayed in the title bar of
the browser window. The text Hello world! is marked to be displayed as
a paragraph (<p> and </p>) in the body of the browser window (<body>
and </body>). When viewed in Internet Explorer, the HTML tags are inter-
preted sequentially and the document appears similar to:

 A web browser is used to access and view HTML documents that have
been published to a web server. The web browser first interprets the URL
to identify the location of the of the page on the Web and then interprets
the HTML document to display a web page in the browser window. HTML
documents saved on a local computer can also be viewed in a browser.

TIP HTML is not a case
sensitive language.

TIP A tag should not have any
spaces between the opening
bracket and the element or
slash.

Tim Berners-Lee
1955 –

Tim Berners-Lee is cred-
ited with creating the World
Wide Web. Berners-Lee now
heads a non-profit group,
the W3C (World Wide Web
Consortium), which sets tech-
nical standards for the Web.

Internet Explorer
To view an HTML document
saved on a local computer in
Internet Explorer, select File
j Open. Next, select Browse
to navigate to the location
where the HTML document
is saved.

TIP A web server is a com-
puter that communicates
with a web browser over the
Internet using HTTP.

multimedia

Chapter 2 Applets and Web Programming 37

sa
mp
le

Validating HTML
HTML documents can be
validated to ensure they are
meeting W3C standards at the
http://validator.w3.org
website.

In order to validate an HTML
document, a DTD (docu-
ment definition tag) must be
included as the first line of an
HTML document. For exam-
ple, to check to see if an HTML
document meets HTML 4.01
standards, include the tag:

<!DOCTYPE HTML PUBLIC "-
//W3C//DTD HTML 4.01// EN"
"http://www.w3.org/TR/
hmtl4/stict.dtd">

TIP To help make an HTML
document easier to under-
stand, place document tags
on separate lines, except the
title tags, and use blank lines to
separate sections of HTML.

 Creating an HTML Document
 HTML documents are plain text files and can be created using any text
editor, such as Notepad, or by using a word processor. In general, the
structure of an HTML document should be similar to:

������

������
�����������������������������
�������

������
�������
�������

�������

An HTML document contains pairs of tags

The html, head, title, and body tags are called document tags:

• The <html> tag tells the browser that the file contains HyperText
Markup Language.

• The <head> tag defines the section that contains information about
the document, including its title. This section will not be displayed
as part of the document content.

• The <title> tag marks the document title. The title section
must be within the head section. The document title should be
descriptive and meaningful because it is displayed in the title bar
of the browser’s window and is also used when the user adds the
document to the browser’s Favorites list.

• The <body> tag defines the body section, which contains the doc-
ument’s content. All content must be enclosed in the appropriate
tags. For example, on the previous page, the content is marked as
a paragraph.

 HTML documents are free-form, which means that spaces and blank lines
generally have no effect on how the document is interpreted. Therefore,
the document:

<html><head><title>An example HTML document</title>
</head>
<body> <p>Hello world!</p></body></html>

Poorly structured HTML document

displays exactly the same as the HTML document on the previous page.
However, editing a poorly structured document can be time-consuming
and error-prone.

 An HTML document is saved with a lowercase, descriptive file name.
The file name should not contain any spaces and the .htm extension needs
to be added. If using a word processor to save the file, be sure to save the
file in TXT format.

TIP In Internet Explorer,
the HTML associated with a
displayed web page can be
viewed by selecting View j
Source.

saving an HTML document

38 Chapter 2 Applets and Web Programming

sa
mp
le

 Review: hello_world.htm
Create a properly structured HTML document that displays “My name is Name. Hello world!”, replacing
Name with your name. Include the title “First HTML Document”. View the HTML document in a browser.

 Review: Computer Viruses Website – part 1 of 6
Create a properly structured HTML document that displays the text “Computer Viruses.” Include the title
“Computer Viruses”. Save the document as computer _ virus.htm and view the HTML document in a
browser.

 JavaScript
 Scripts are used to add dynamic content to an HTML document and
consist of a list of commands that execute without user interaction. Scripts
are written in a scripting language, such as JavaScript. JavaScript is a
scripting language that is interpreted by a browser’s built-in JavaScript
engine.

 In an HTML document, JavaScript code is written as a script block
between <script> and </script> tags. Scripts are typically found in
the head section, but can be placed anywhere in an HTML document.
Displaying a message in an alert dialog box is one form of dynamic content
that can be added to an HTML document using a script:

<head>
<title>JavaScript Greeting</title>
<script type="text/javascript">
// Display a greeting
alert("Hello World!");
</script>
</head>

• The type attribute in the script tag specifies which scripting
language is used to define the script.

• // is used to add a single line comment that explains the script.

• alert() displays an alert dialog box with the specified text
message.

• A semicolon is used to end each JavaScript statement.

The script above is interpreted when the HTLM document is loaded:

TIP J avaScr ip t i s ca se
sensitive.

Java vs JavaScript
JavaScript is similar to the Java
programming language, but it
is a separate language.

JavaScript Files
Scripts can also be written as a
separate JavaScript file, which
is saved with a .js extension,
and then referenced in the
script tag.

Chapter 2 Applets and Web Programming 39

sa
mp
le

 JavaScript can also be used to prompt the user for information:

<head>
<title>JavaScript User Name</title>
<script type="text/javascript">
//initialize a variable with a null value
var name = null;
// Ask user for their name
name = prompt("Please enter your first name", " ");
//Greet the user
alert("Welcome " + name);
</script>
</head>

• A variable called name is initialized to represent the user’s name.

• prompt() displays the specified message in a prompt dialog box.
The empty string, " ", after the message indicates the prompt box
is to be blank when the dialog box is first displayed. When the user
enters their name, it is assigned it to the variable name.

• The text message and variable are joined by a +.

The script above generates output similar to:

 Review: welcome.htm
Create an HTML document that contains a script block that prompts the user for their full name and then
displays the message “Welcome to our site Full Name”, replacing Full Name with the user’s name, in an alert
dialog box.

 Review: Computer Viruses Website – part 2 of 6
Modify computer _ virus.htm to include a script block that prompts the user for their first name when the
page loads and then displays “Ready to Learn About Computer Viruses Name?”, replacing Name with the
user’s name, in an alert dialog box.

TIP JavaScript terminology
is similar to Java terminology
which is explained throughout
the text.

40 Chapter 2 Applets and Web Programming

sa
mp
le

 Using Scripts to Enhance a Website
 Static websites can be enhanced by the dynamic nature of scripts. For
example, JavaScript can be used to define the default message that is dis-
played in the status bar of the browser window:

<script type="text/javascript">
// Display a status bar message
window.defaultStatus="Hello World";
</script>

The script above is interpreted when the HTML document is loaded, and
displays a message in the status bar of the browser window:

Note that priority is given to system messages, such as when a page is
loading.

 JavaScript can also be used to display the current date and time on a
web page:

<head>
<title>JavaScript Current Date</title>
<script type="text/javascript">
// Display the current date
var now = new Date();
document.write(now);
</script>
</head>

• A new date object called now is created. Objects are discussed in
chapter 4.

• document.write is used to display output on the web page:

 Web applications are often programmed to display differently depend-
ing on the user’s browser, platform, and whether Java is enabled. These
settings can be detected using JavaScript:

<head>
<title>JavaScript Setting Detector</title>
<script type="text/javascript">
// Detect the browser
var browser = navigator.appName;
// Detect the platform
var platform = navigator.platform;
//Detect Java enabled
var JavaCheck = navigator.javaEnabled();
alert(browser +" \n" + platform + " \n" + "Java is enabled: "
+ JavaCheck);
</script>
</head>

• navigator.appName detects the browser name.

• navigator.platform detects the operating system.

TIP The current date and time
is accessed from the operating
system clock on the user’s
computer.

Chapter 2 Applets and Web Programming 41

sa
mp
le

• navigator.javaEnabled() detects whether Java is enabled and
returns a value of true or false.

• \n creates a new line.

The script will generate output similar to:

 Review: Computer Viruses Website – part 3 of 6
Modify computer _ virus.htm to display “Computer Viruses” in the status bar of the browser window and
to display the current time and date on the first line of the web page.

 Review: System Check – part 1 of 2
Create an HTML document that detects the browser, platform, and whether the browser is Java enabled.
Display the output in an alert dialog box.

 Java Applets
 A Java applet is a small Java application that is embedded in an HTML
document and run in a browser window. When a browser interprets a
document that contains a Java applet, the program files are downloaded
onto the user’s machine and then the browser’s Java interpreter runs the
applet. Java applets are well suited for the Web because they are able to
run on different hardware and across different platforms. Applets are
secure because they do not have the ability to read or write to files on a
user’s computer.

 Numerous applets can be downloaded from the Web and embedded in
an HTML document to add dynamic content. Applets take various forms,
such as animated banners, stock ticker tapes, photo cubes, and animated
video clips. Original applets can also be created.

 Creating Java Applets
 An applet is created in a Java compiler, such as JCreator. The Java code for
the applet is saved with a .java extension and then compiled to convert the
Java code to bytecode. The bytecode is saved with a .class extension.

TIP This section provides
a brief overview on writing
Java applets. You may want to
revisit this section after becom-
ing more familiar with the Java
programming language.

Java Enabled
Users can enable and disable
Java in their web browser’s
Internet options settings.

TIP Visit lpdatafiles.com for
specific information about dif-
ferent Java compilers.

42 Chapter 2 Applets and Web Programming

sa
mp
le

 The code below is for a basic applet that paints the message “My first
Java applet” at a specific screen location:

/*
 * Example _ Applet.java
 */

import java.awt.*;
import java.applet.*;

public class Example _ Applet extends Applet {

 String message;

 public void init() {
 message="My first Java applet";
 }

 public void paint(Graphics g) {
 g.setColor(Color.blue);
 g.drawString(message, 50, 60);
 }
}

• The two import statements indicate which Java packages are
used.

• A class is used to define an applet and extend the Applet class.
Applets are always an extension of the Applet class.

• The init() method is used to initialize variables to starting values.
The variable message is assigned the text string, “My first Java
applet”.

• The paint() method is used to paint text, shapes, and graphics onto
the screen. In this example, the paint() method defines a Graphics
object named g.

• The setColor() method sets the text color.

• The drawString() method draws the message on the screen at the
specified coordinates.

 Sun’s Java Software Development Kit (SDK) includes a tool called an
appletviewer, which can be used to interpret, execute, and test an applet.
When executed, the example applet above will appear similar to:

TIP Packages, classes, and
methods are explained in
Chapter 3.

Coordinates
A picture painted on the
screen is made up of series
of pixels (picture elements.)
Each pixel maps to a screen
location. Screen locations are
represented using (x,y) values.
The top-left corner has the
coordinates (0,0) with the x-
axis running horizontal and the
y-axis running vertical.

TIP The example applet uses
the Applet class, which is part
of the java.applet package,
and the Graphics class,
which is part of the java.awt
package.

Chapter 2 Applets and Web Programming 43

sa
mp
le

 Drawing Shapes and Adding Color
 Original applets can be created to draw colorful images. The applet
below illustrates how shapes can be drawn and filled and how the back-
ground and foreground colors are set:

/*
 * Drawing Shapes and Changing Color Example
 */
import java.awt.*;
import java.applet.*;

public class Shapes _ Color extends Applet {

 public void paint(Graphics g) {
 setBackground (Color.darkGray);
 g.setColor(Color.pink);
 g.drawRect(50, 50, 40, 40);
 g.setColor(Color.blue);
 g.fillRect(100, 100, 150, 150);
 g.setColor(Color.green);
 g.drawLine(20, 20, 300, 20);
 g.setColor(Color.red);
 g.fillOval(250, 250, 50, 50);
 }
}

When executed, the applet looks similar to:

The different shapes require specified coordinates. For example:

• drawLine (x1, y1, x2, y2) Paints a line from coordinates (x1,
y1) to (x2, y2).

• drawOval (x, y, width, height) Paints an oval with the upper
left corner at position (x, y) with the specified width and height.

• drawRect (x, y, width, height) Paints a rectangle with the
upper left corner at position (x, y) with the specified width and
height.

Predefined Colors
Predefined colors include
black , blue, cyan, gray,
darkGray, lightGray, green,
magenta, orange, pink, red,
white, and yellow.

44 Chapter 2 Applets and Web Programming

sa
mp
le

• drawArc (x, y, width, height, startAngle, arcAngle) Paints
an arc with the upper left corner at position (x, y) with the specified
width, height, starting angle, and arc angle.

 Review: Hot Air Balloon
This review requires a Java compiler. Experiment with drawing shapes and adding color by
creating an applet that paints a picture of a hot air balloon on the screen. Compile the applet
and view it in the appletviewer.

 Placing an Applet in an HTML
 Document
 An applet is embedded in an HTML document within the <applet>
and </applet> tags. The tags can surround an alternative text message
that will be displayed if the applet cannot run in the browser:

<html>

<head>
<title>Embedding an Applet</title>
</head>

<body>
<applet code = "FirstApplet.class" width = "300" height = "60">
You are unable to view the applet.
</applet>
</body>

 The <applet> tag has three required attributes:

• code=“name” specifies the name of the applets to run

• width=“value” specifies the width for the applet display in pixels

• height=“value” specifies the height for the applet display in
pixels

 Applet Parameters
 Parameters allow users to specify custom values to use in a Java applet. In
an HTML document, parameter information is specified in a <param> tag,
which requires two attributes, name and value. For example, the HTML
document below specifies a specific image file, scenery.gif, to use in the
applet.

<body>
<applet code = "AppletParam.class" width = "300" height = "60">
<param name ="image" value = "scenery.gif">
You are unable to view the applet.
</applet>
</body>

TIP Parameters typically need
to be specified for applets
downloaded from the Web.

Accessibility
In response to the ADA
(Americans with Disabilities
Act), enacted in 1990, the
W3C has developed guidelines
called the Web Accessibility
Initiative (WAI). These guide-
lines call for alternative text to
be provided for any content on
a web page that is not text.

<object> Tag
The <object> tag allows for
multimedia resources, such as
video and audio, to be embed-
ded in an HTML document.
When interpreting an <object>
tag, the browser determines if
another application, such as
the Windows media player, is
needed to display the object.

The <object> tag can also be
used to embed a media player
console in an HTML docu-
ment using Microsoft ActiveX
controls.

Chapter 2 Applets and Web Programming 45

sa
mp
le

 Review: System Check – part 2 of 2
An applet available at the Sun Microsystems website, http://java.sun.com, is an analog clock.
Modify the body section of the System Check HTML document as follows, which embeds
the JavaClock.class applet data file:

<applet code="JavaClock.class" width="150" height="150">
<param name="bgcolor" value="ffffff">
<param name="border" value="5">
<param name="ccolor" value="dddddd">
<param name="cfont" value="TimesRoman|BOLD|18">
<param name="delay" value="100">
<param name="hhcolor" value="0000ff">
<param name="link" value="http://java.sun.com/">
<param name="mhcolor" value="00ff00">
<param name="ncolor" value="000000">
<param name="nradius" value="80">
<param name="shcolor" value="ff0000">
</applet>

Save the modified System Check HTML document in the classes folder in the CLOCK website included in
the data files for this text.

 HTML Tags
 In addition to applets and scripts, a web page can contain text. For
example, consider the following web page:

The HTML for the web page is shown below. The body section of the
HTML document includes the content and tags that format the content:

<body>
<h1>Computer Viruses</h1>
<hr>
<p>A computer virus is a program that is loaded onto the computer
without the user's knowledge. Computer viruses have varying
effects, such as:</p>

HTML 4
The current version of HTML is
HTML 4. HTML 4 is supported
by newer browsers.

46 Chapter 2 Applets and Web Programming

sa
mp
le

<!--creates a bulleted list-->

displaying annoying messages
causing programs to run incorrectly
erasing the contents of the hard drive

<p>In order to protect against viruses:</p>
<!--creates a numbered list-->

install an antivirus program
update antivirus definitions on a regular basis

<h4>Report by Student Name</h4>
</body>

 There are six levels of headings, which are represented with tags <h1>
through <h6>. Heading tags are used to emphasize enclosed text. Each
heading level has specific formatting associated with it, which includes
font size, bold text, and space above and below the heading. Heading 1 has
the largest font size and is used to represent the most important informa-
tion. Heading 6 has the smallest font size.

 The <hr> tag places a horizontal rule (line) across the width of the
browser window. This feature is used to divide the text in the browser
window into sections for easier reading. The horizontal rule tag does not
need to be paired.

 HTML tags may also contain attributes. An attribute is placed in the start
tag and set to a value that modifies the element. For example, the hori-
zontal rule width attribute specifies the width of the line in the browser
window as a percentage, <hr width="50%">. Other attributes of the <hr>
tag include:

• size=“value” specifies the thickness of the rule in pixels.

• align=“value” specifies the rule alignment. The default alignment
is center.

 Text enclosed by <p> and </p> is a paragraph. Lines of paragraph text
are automatically wrapped by the browser, and a blank line is added after
each paragraph. To move a line of text within a paragraph to the next line,
a break tag
 is used. A break tag does not need to be paired.

 Comments are text used to explain and clarify HTML to the reader of an
HTML document. They do not appear in a browser window. Comments
start with an angle bracket, followed by an exclamation mark and two
hyphens. At the end of the comment are two more hyphens and an ending
bracket, <!--comment-->.

 Lists are used to organize information. Bulleted and numbered are
two types of lists that can be created in an HTML document. A bulleted
list, also called an unordered list, is used when each item is equally impor-
tant. A numbered list, also called an ordered list, is used to show priority of
importance.

Bulleted list tags include:

• defines the start and end of a bulleted list
• defines the start and end of an item

attribute

comments

lists

Browser Preferences
The formatting associated with
heading tags varies between
browsers and is dependent
on the preferences set by the
user.

paragraphs

Chapter 2 Applets and Web Programming 47

sa
mp
le

Numbered list tags include:

• defines the start and end of a numbered list
• defines the start and end of a list item

 Review: Computer Viruses Website – part 4 of 6
Modify the body section of computer _ virus.htm to include the content and tags shown on the two previous
pages. View the HTML document in a browser.

 Hyperlinks, Tables, and Images
 The display of an HTML document can be further enhanced with
hyperlinks, tables, and images. Tables are used to arrange data in an HTML
document. Note the virus table:

The HTML for the web page is shown below:

<html>
<head>
<title>Antivirus Program</title>
</head>

<body>
<h2>Checking for Viruses</h2>
<p>A computer can be checked for <a href="computer _ virus.
htm">viruses using an antivirus program. An antivirus pro-
gram is a utility that scans a hard disk for viruses. If a virus
is located, it will be removed by the antivirus program.</p>

<h2>Example Virus Threats </h2>
<table border="2" width="300" cellpadding="5">

48 Chapter 2 Applets and Web Programming

sa
mp
le

<th>Virus</th>
<th>Threat </th>
<tr><td>Worm MyDoom.p</td>
<td>Low</td></tr>
<tr><td>Worm Blueworm.D</td>
<td>Low</td> </tr>
<tr><td>Worm Bagle.AI</td>
<td>Medium</td> </tr>
</table>

<h5>Report by: Student Name</h5>
</body>

</html>

 The anchor tag (<a>) is used in an HTML document to mark text that is
a link. The href attribute is set in the tag to the name of the linked docu-
ment. For example, digital cameras.

 A hyperlink, also called a link, is text displayed in a browser window
that can be clicked to display a different HTML document in the browser
window. Hyperlinks are what make a hypertext system, such as the Web
work. Hyperlinks are typically displayed as blue, underlined text in the
browser window. Countless documents can all be linked, allowing the
user to go from topic to topic, or browse HTML documents.

 A table requires several tags for formatting:

• <table> </table> creates a table.

• <th> </th> creates a table header, which is a cell with bold, centered
text.

• <tr> </tr> defines the start and end of a table row.

• <td> </td> defines the start and end of a table data cell.

The <table> tag attributes include:

• border=“value” specifies the thickness of the cell border where
value is in pixels.

• cellpadding=“value” sets the amount of space between table cells
where value is a number.

• width=“value” specifies the width of a table where value is a num-
ber in pixels or a percentage of the document’s width.

 The display of an HTML document can also be enhanced with images.
The tag inserts an image where file name is the
file name of the graphic. Image files added to an HTML document should
be GIF, JPG, or PNG format. The image tag does not need to be paired.
Attributes of the tag include:

• border=“value” specifies the size of the border around the image
where value is a number in pixels.

• alt=“value” specifies alternate text for the graphic where value is
the alternative text.

• height=“value” specifies the height of the image in pixels.

• width=“value” specifies the width of the image in pixels.

TIP Visited hyperlinks are
typically displayed as purple,
underlined text in the browser
window.

GIF, JPG, PNG
GIF (Graphics Interchange
Format) format is limited to
256 colors and best used for
clip art or logos, JPG (Joint
Photographic Expert Group)
format supports millions of
colors and is best used for
photographs. PNG (Portable
Network Graphic) format is a
newer format only support by
recent brower versions.

TIP Tables can also be used to
control the layout of an HTML
document by placing content
in table cells and setting the
border attribute to 0.

Chapter 2 Applets and Web Programming 49

sa
mp
le

 Review: Computer Viruses Website – part 5 of 6
Modify computer _ virus.htm to make the text “antivirus program” a hyperlink to a document named
antivirus.htm. Create the antivirus.htm document using the content and formatting shown in the HTML
document in the “Hyperlinks, Tables, and Images” section. Note that the first paragraph links “viruses” to
computer _ virus.htm. The VIRUS.gif image file is a data file for this text. Test the hyperlinks in a browser
window.

 Style Sheets
 A style sheet is used to define the type, paragraph, and page formats
for an HTML document. Style sheets give HTML documents a consistent
appearance because they override the browser settings that interpret how
tags are displayed:

 A style sheet can be embedded or linked. An embedded style sheet is
defined within <style type="text/css"> and </style> tags in the head
section of the HTML document. The embedded style sheet for the web
page above appears as:

<!--apply style sheet rules to the document-->
<style type="text/css">
h1 {color: #FF0000; text-align: center}
p {font-family: Georgia, "Times New Roman", Times, serif; font-
size: 16 px; line-height: 18 px}
ul {font-family: Georgia, "Times New Roman", Times, serif;font-
size: 14 px; line-height: 18 px}
ol {font-family: Georgia, "Times New Roman", Times, serif;font-
size: 14 px; line-height: 18 px}
h4 {text-align : right}
</style>

embedded style sheet

50 Chapter 2 Applets and Web Programming

sa
mp
le

A linked style sheet is a separate file that is saved with a .css extension and
applied using <link rel="stylesheet" href "style.css" type="text/
css">, where style.css is the name of the style sheet.

 Style sheets can include rules and classes, a linked style sheet can con-
tain only rules. A rule modifies an HTML element and is comprised of a
selector and declarations. The selector is the HTML element being redefined
and the declarations are the formats to be applied. For example:

p { font-family: Georgia, "Times New Roman", Times, serif;
 font-size: 16px;}

Style Sheet Rule

The rule above will automatically display paragraphs in 16 px Georgia.
The font-family property can also be specified as generic font, such as
serif, sans serif, or monospace and the font-size may be defined in points,
pixels, inches, or centimeters (pt, px, in, cm).

 A class is a set of declarations that can be applied to different tags. Class
names begin with a dot (.). For example:

.para _ with _ space {
 font-family: Georgia, "Times New Roman", Times, serif;
 font-size: 14px;
 line-height: 28px;
}

Style Sheet Class

The class above can be applied to individual paragraphs to format the
paragraph in 14px Georgia with a line-height of 28 px. For example:

<p class="para _ with _ space">Spyware is software that collects
information without the user’s knowledge. The information is
usually for advertising purposes.</p>

 Text and background colors in an HTML document are specified using
hexadecimal numbers. Hexadecimal is a base-16 numbering system that
consists of the numbers 0 through 9 and the letters A through F. Color
constants and corresponding hexadecimal values include:

Black (#000000) Silver (#C0C0C0)

Gray (#808080) White (#FFFFFF)

Maroon (#800000) Red (#FF0000)

Purple (#800080) Fuchsia (#FF00FF)

Green (#008000) Lime (#00FF00)

Olive (#808000) Yellow (#FFFF00)

Navy (#000080) Blue (#0000FF)

 Teal (#008080) Aqua (#00FFFF)

 To change the background and text color of an HTML document, the
HTML body element is modified in a style sheet rule:

body { background-color : #000000; color : #FFFFFF }

hexadecimal

class

linked style sheet

text and background color

Font Family
Declarations

Font- family declarat ions
indicate the first font that a
browser should display, and
then alternate fonts if the first
is not installed on the user’s
computer.

Chapter 2 Applets and Web Programming 51

sa
mp
le

 To change the text color of a selected tag, the appropriate HTML element
is modified in a style sheet rule. For example:

h1 {color : #0000FF }

 HTML content is left aligned by default. To change the alignment of an
entire HTML document, the HTML body element is modified in a style
sheet rule:

body { text-align : center }

 To change the alignment of certain parts of a document, modify the
appropriate HTML element. For example, the Heading 1 tag is modified
in a style sheet rule to be right aligned:

h1 {text-align : right }

 Review: Computer Viruses Website – part 6 of 6
Modify computer _ virus.htm to include an embedded style sheet with rules to format Heading 1 style in
a red color, center aligned and Heading 4 style as right aligned. Also include rules to format paragraphs in
Georgia, Times New Roman, Times, serif font-family in a font size of 16 pixels and a line height of 18 pixels
and unordered, and ordered list tags in Georgia, Times New Roman, Times, serif font-family in a font size
of 14 pixels and a line height of 18 pixels. Add an appropriate comment to the document.

Create a linked style sheet with the rules to format Heading 1 style in a navy color and Heading 4 style as
right aligned. Link the style sheet to antivirus.htm. View the documents in a browser.

 Chapter Summary
 Most web pages are created using HTML (HyperText Markup Language)
and other code. HTML is a markup language that is well suited for the Web
because it supports hypertext and multimedia. HTML uses a set of codes,
called tags, to “mark up” plain text so that a browser application, such as
Internet Explorer, knows how to display the text in a browser window.

 Scripts are used to add dynamic content to an HTML document.
JavaScript is a scripting language that is interpreted by a browser’s built-
in JavaScript engine. In an HTML document, JavaScript code is written as
a script block between <script> and </script> tags.

 A Java applet is a small Java application that is embedded in an HTML
document within the <applet> and </applet> tags and run in a browser
window. Applets can be downloaded from the Web and embedded in an
HTML document to add dynamic content. Original applets can also be
created. Parameters allow users to specify custom values to use in a Java
applet. In an HTML document, parameter information is specified in a
<param> tag.

text alignment

52 Chapter 2 Applets and Web Programming

sa
mp
le

 The <html>, <head>, <title>, and <body> tags are called document tags.
Other HTML tags introduced in this chapter include:

• the paragraph tag, <p>

• the break tag,

• the heading tags, <h1> through <h6>

• the horizontal rule tag, <hr>

• the unordered list tag,

• the ordered list tag,

• the table tag, <table>

• the image tag,

• the anchor tag, <a>

• the comment tag, <!--comment-->

• the style sheet tag, <style>

Tags may also contain attributes. An attribute is placed in the start tag and
set to a value that modifies the element.

Chapter 2 Applets and Web Programming 53

sa
mp
le

 Vocabulary

Attribute Used to modify the features of an element
in an HTML tag.

Bulleted list A list that is used when each item is
equally important:

Class A set of declarations that can be applied to
different tags.

Comment Text used to explain and clarify HTML
for a reader.

Declarations The formats to be applied in a style
sheet rule.

Document tags The html, head, title, and body
tags.

Element The part of an HTML tag placed inside
angle brackets (<>). For example, <title> is called
the title tag, where title is the element.

Embedded style sheet A style sheet defined with
<style> and </style> tags in the head section of an
HTML document.

Free-form Spaces and blank lines generally have
no effect on how the document is interpreted. The
format of an HTML document.

Hexadecimal A base-16 numbering system that
consists of the numbers 0 through 9 and the letters
A through F.

HTML (HyperText Markup Language) A set of tags
that are used to “mark up” plain text so that a browser
application knows how to display the text.

Hyperlink Text that can be clicked to display another
HTML document. Also called a link.

Hypertext A database system where objects, such
as text and images, can be linked.

Java applet A small Java application that is
embedded in an HTML document and run in a
browser window.

JavaScript A scripting language that is interpreted
by a browser’s built-in JavaScript engine.

Link see hyperlink.

Linked style sheet A style sheet saved as a sepa-
rate file with a .css extension and applied using a
<link> tag.

Multimedia Images, video, audio, and Java applets
embedded in an HTML document.

Numbered list A list that is used to show a priority
of importance.

Ordered list see Numbered list.

Parameters Used to specify custom values to use
in a Java applet.

Rule A line in a browser window for dividing
content.

Scripts Used to add dynamic content to an HTML
document. Scripts are written in a scripting language,
such as JavaScript.

Selector The HTML element being redefined in a
style sheet rule.

Style sheet Used to define the type, paragraph, and
page formats for an HTML document.

Tables Used to arrange data in an HTML
document.

Tag Comprised of an element inside angle brackets
that is used to “mark up” plain text so that a browser
application knows how to display the text.

Unordered list see Bulleted list.

Web Tool used to search and access information
available on the Internet.

Web browser application Provides a graphic
interface to present information in the form of a
website.

Website Series of related web pages.

54 Chapter 2 Applets and Web Programming

sa
mp
le

 HTML Tags

<a> The anchor tag. Links text to another HTML
document. Attributes include href.

<applet> The applet tag. Embeds an applet in an
HTML document.

 The break tag. Moves a line of text within a
paragraph to the next line.

<!--comment--> A comment tag. Explains and
clarifies HTML to the reader.

<h1> through <h6> The heading tags. Emphasizes
text.

<head> The head tag. Indicates information about
the document, including its title.

<hr> The horizontal rule tag. Displays a line in the
browser window. Attributes include width, align,
and size.

<html> The HTML tag. Indicates that the file contains
HTML.

 The image tag. Inserts an image.

 The list item tag. Defines the start and end
of an item.

<link> The link tag. Links a style sheet.

 The ordered list tag. Defines the start and end
of a numbered list.

<p> The paragraph tag. Formats the content.
Attributes include align.

<script> The script tag. Defines a script.

<style> The style sheet tag. Embeds a style sheet.

<table> The table tag. Creates a table.

<title> The title tag. Displays the document title
in the title bar of the browser window. Must be in
the head section of an HTML document.

 The unordered list tag. Defines the start and
end of a bulleted list.

Chapter 2 Applets and Web Programming 55

sa
mp
le

 Critical Thinking

1. a) What is the most widely used Internet
service?

 b) List two examples of web browsers.

2. a) What is used to create most web pages?
 b) Why is HTML well suited for the Web?
 c) Why is it important for the W3C to develop

Web standards?

3. Why is the order of HTML tags and content
important in an HTML document?

4. a) List the four document tags.
 b) Why is it important to properly structure an

HTML document when HTML is a free-form
language?

 c) What rules are followed when saving an
HTML document?

5. a) Where are scripts placed in an HTML docu-
ment?

 b) How can scripts enhance a website?
 c) Write a script to display “Good-bye” in an

alert dialog box.
 d) Write a script to display “Today’s News” in

the status bar of the browser window.

6. a) What is a Java applet?
 b) How is a Java applet interpreted by a web

browser?
 c) List two reasons why Java applets are well

suited for the Web?

7. The following HTML document has seven
errors. What are they?

<html>
<body>
<title>Operating Systems</title>
</body>

<head>
<!--adds a horizontal rule>>
<hr width is 50%>
<p>Every computer must have an operat-
ing system. Types of operating systems
include:</p>

Windows
UNIX
Linux
OS/2

</head>
</html>

8. a) What does a style sheet define?
 b) Why are style sheets used?
 c) What is the difference between an embedded

and a linked style sheet?

9. What element is modified to change the back-
ground color or alignment of a web page?

True/False

10. Determine if each of the following are true or
false. If false, explain why.

 a) A website consists of a series of web pages.
 b) Hypertext is a database system.
 c) An HTML document must be published to

a web server in order to be viewed in a web
browser.

 d) Spaces and blank lines generally have no
effect on how an HTML document is inter-
preted.

 e) HTML documents are saved with a TXT
extension.

 f) Scripts must be placed in the head section of
an HTML document.

 g) JavaScript is used to add dynamic content to
an HTML document.

 h) Java applets are interpreted on web servers.
 i) Java applets can only run on a Windows

platform.
 j) Java applets have the ability to write files on

a user’s computer.
 k) Java applets have to be compiled.
 l) The anchor tag i s used to create a

hyperlink.
 m) A rule modifies an HTML element.

56 Chapter 2 Applets and Web Programming

sa
mp
le

 Exercises

Exercise 1 ——————————————— tourist_attractions.htm
Research tourist attractions in a particular city by using the Internet, magazines, and books and then
create an HTML document that lists tourist attractions for a particular city. The HTML document
should include:

• a comment with your name

• an appropriate title

• the city name in Heading 1 format

• “Tourist Attractions” in Heading 2 format

• a horizontal rule

• at least five tourist attractions, each displayed in a bulleted list

• a style sheet with at least three rules

• a script

Exercise 2 ————————————————— sports_report.htm
Create an HTML document that documents recent school sports related news. The HTML document
should include:

• a comment with your name

• appropriate titles formatted with heading tags

• a horizontal rule

• at least three news stories

• an image

• a style sheet with at least three rules

• a script

Exercise 3 ————————————————————— applet.htm
Create an “Applet Help” HTML document that documents the steps to create an original applet or
download an applet and embed the applet in an HTML document. Display an example of an original
applet or a downloaded applet from http://java.sun.com/openstudio/index.html on the HTML
document.

Chapter 2 Applets and Web Programming 57

sa
mp
le

Exercise 4 —————————————— electronic_portfolio.htm
A portfolio is a collection of work that clearly illustrates effort, progress, and achievement of knowledge
and skills. An electronic portfolio stores and presents portfolio content in a digital format such as a
website. Create linked HTML documents that presents your contact information, academic history,
work and volunteer experience, and accomplishments.

Exercise 5 ——————————————— computer_history.htm
Research the history of computers by using the Internet, magazines, and books and then collaborate in
small groups to create linked HTML documents that outline key events in computer history by decade.
Describe at least five key events for the 1970s, 1980s, 1990s, and 2000s. Use a style sheet to format the
HTML documents.

Exercise 6 ———————————————— html_reference.htm
Create an “HTML Reference” document that lists HTML tags, describes the tag, and provides corre-
sponding examples. Research and include at least three HTML tags not covered in this chapter. The
www.w3c.org website documents HTML tags.

Exercise 7 ——————————————————— copyright.htm
Research copyright laws and issues as they pertain to digital information. Present your research in the
form of at least two linked HTML documents. Include an additional linked HTML document to cite
the sources used using an established method, such as MLA or APA style.

Exercise 8 ——————————————— technology_report.htm
Create an HTML document that reviews a recently released software application or hardware device.
List the product specifications and target market for the product. Include your opinion on whether you
think the product will be successful or useful.

Exercise 9 ——————————————————— interview.htm
Interview a local web programmer about software, tools, and knowledge they feel are important when
creating websites. Document your interview. In small groups, share your interview documentation.

58 Chapter 2 Applets and Web Programming

sa
mp
le

Chapter 3 Introducing Java 59

sa
mp
le

Java, developed by Sun Microsystems, is a widely used high-level
programming language. One reason for its wide-spread use is the ability
to create platform-independent applications. This chapter introduces Java,
OOP terminology, code conventions, and program design.

 Why Program in Java?
 Object-oriented programming (OOP) evolved out of the need to develop
complex programs in a systematic, modular approach. The OOP approach
allows programmers to create modules that can be used over and over
again in a variety of programs. These modules group related data and
instructions for performing actions on that data. Properly designed, these
modules encapsulate data to hide implementation details, are versatile
enough to be extended through inheritance, and give the programmer
options through polymorphism. Encapsulation, inheritance, and polymorphism
are features of every object-oriented language, including Java.

 In addition to being object-oriented, the Java language can be used to
create platform-independent applications. Platform-independent applications
can be run on any computer regardless of operating system or hardware
configuration. These features of Java have allowed programmers to cre-
ate programs for the masses—similar to the way the Gutenburg press
revolutionized the printing process, making printed materials available
to the masses.

 Objects, Classes, and Packages
 Object-oriented program development involves selecting objects to
perform the tasks outlined in a program specification. An object consists
of related data and the instructions for performing actions on that data.
The design for an object is called a class. A class defines the type of data
and actions that will be associated with an object of that class, but not the
actual data for an individual object. Classes are required to create objects.
Many objects of the same class may be needed in an application.

Chapter 3
Introducing Java

The Gutenburg Press
About 1450, Johann Gutenburg
designed a system that used
cast metal letters and a printing
press where each of the
letters could be easily loaded
and then inked to make an
impression on paper. The key
to the Gutenburg press was
the reusable metal type that
could be reorganized over and
over again to inexpensively
create books and other printed
materials. The impact on
society was immeasureable as
people of every social standing
became literate.

Program Specification
A program specification is a
definition or outline of what
a program is expected to
do. In industry, a program
specification can serve as
a cont rac t be t ween the
programmer and the client.

60 Chapter 3 Introducing Java

sa
mp
le

���������
�����
�����
����
������
��������������

�����
�����
������
����
����������������

�������
�����
����

������������
������
����

�������������
������
����

�������

A class can be used to create many objects—each object
will have the same type of data and possible actions, but

each object maintains its own set of data.

 A package, sometimes called a library, is a group of related classes. For
example, classes related to a particular task, such as input and output, can
be grouped together in a package. A media package containing a DVD
class and a CD class can be illustrated as:

���������
�����
�����
����
������
��������������

�������������

��������
�����
�����
����
������
��������������

A package contains related classes.

 An application is also contained in a package. It contains a controlling
class and can contain other classes as well:

����������������
����������

������������������

������������
������
������

An application is contained in a package.

 Packages are importable, which means an application can use existing
classes from another package.

TIP Reusability is a term asso-
ciated with object-oriented
programming.

TIP Applications use, or
import, packages to define
objects.

package, library

Chapter 3 Introducing Java 61

sa
mp
le

 A Java Application
 A Java application is a package with at least one class that contains a
main() method. The following Greeting application is a simple, yet com-
plete Java program:

/*
 * Greeting.java
 * A first Java application.
 * A Student
 * Course
 * Date
 */

package firstApplication;

/**
 * The Greeting class displays a greeting.
 */
public class Greeting { //start class definition

 public static void main(String[] args) {
 System.out.println("Hello, world!");
 }

} //end class definition

 Greeting generates output similar to:

 A program consists of a set of instructions called statements. A semi-
colon is required to indicate the end of a statement. Related statements
are enclosed by curly braces ({ }) to begin and end the instructions. The
statements in the Greeting application are:

• package firstApplication declares a package name. If a package
name is not declared, then the application is given the package
name Default by the compiler. Simple applications often do not
have package statements.

• public class Greeting is a class declaration. The class is available
to anyone (public) and is named Greeting. The Greeting class does
not define any data or actions for objects. However, it contains the
main() method making it the application’s controlling class. The
controlling class is a program’s starting point.

• public static void main(String[] args) defines the main() method.
A method is a named set of statements that perform a single, well-
defined task. The main() method is placed in the controlling class.
Its statements are automatically run when the program is executed.
The statement in this main() method uses the println() method to
display “Hello, world!” to the system output (the screen).

 In addition to statements, programs contain comments, which provide
information about the program to the reader of the code. Comments have
no affect on the program, but they allow a reader of the program to quickly
understand the purpose and logic behind segments of code. Because
complex applications are often developed and maintained by more than
one programer, properly commented code allows for easier modifications
and can decrease the number of mistakes.

method

comments

statements

File Organization
Application development
requires careful organization.
Typically, the folder for an
application is given the same
name as the package name,
and the application name is
the same as the controlling
class name.

controlling class

TIP The static void in the
main() method means that it is
a method of the class and does
not generate a value.

62 Chapter 3 Introducing Java

sa
mp
le

 Java programs can contain three types of comments:

• /* */ are used to enclose single or multiline comments. These
comments are appropriate at the beginning of a program to describe
the application and where necessary to clarify a segment of code.

• // are used for adding a comment to the end of a statement or to
create a single line comment. The // is also useful for debugging
a program, which will be discussed in a later chapter.

• /** */ are used for documentation. The javadoc tool copies
these comments into a separate HTML document to create an
instructional manual or external documentation. Documentation
comments are appropriate for describing a class or method.

Multiline comments that describe a program, class, or method are some-
times referred to as a comment block. Tips throughout the text will provide
additional pointers about commenting code.

 Executing a Java Application
 Java code typed by a programmer is called source code. For source code
to execute, or run, it must be translated to code the computer understands
in a process called compiling. Many Java compilers provide an environ-
ment for entering the source code as well as for compiling and running
an application. Source code files have the extension .java, while compiled
files have the extension .class.

 Compiled Java source code is called bytecode. Executing a Java applica-
tion means that its bytecode is interpreted with a Java Virtual Machine
(Java VM). The interpreter runs each bytecode instruction as it is read.
The Java VM can reside on any computer, regardless of operating system
environment, making Java applications extremely portable, reliable, and
platform-independent.

 Although bytecode is versatile for porting applications to several dif-
ferent environments, programs compiled to machine code run faster.
Machine code is comprised of just 1s and 0s and is different depending on
the computer platform. A just-in-time compiler (JIT) converts bytecode to
machine code before it is executed with the Java VM.

 A program containing syntax errors will not compile. A syntax error
occurs in a statement that violates the rules of Java. For example, all Java
statements must end with a semicolon. A statement without a semicolon
generates a syntax error when the program is compiled, preventing the
compiler from generating bytecode for the application.

 Review: Greeting
Create a Greeting application similar to the one shown in the “A Java Application” section. Refer to online
materials at www.lpdatafiles.com for guidance with your Java compiler. Your instructor may also have spe-
cific information regarding your compiler. The goal of this review is to write the source code for a simple
application and then compile and run the code.

Platform-Dependent
Programming languages such
as C++ and Visual Basic
.NET are compiled directly to
machine language. Although
faster, these programs must be
recompiled for every platform
that will run the application.

TIP The main() method does
not typically have a comment
block.

Virtual Machine
Virtual means not real. A
virtual machine is therefore
conceptual, not made of
hardware and other physical
components.

TIP Visit lpdatafiles.com for
specific information about dif-
ferent Java compilers.

Chapter 3 Introducing Java 63

sa
mp
le

 Displaying Output
 An output stream sends data to an output device. To process data for the
output stream, Java provides the System class with methods for display-
ing output. For displaying data to the standard output stream, which is
typically the computer screen, use System.out. out contains print() and
println() methods. The difference between these methods is how they
control output. The print() method displays data and leaves the insertion
point at the end of the output, while println() moves the insertion point to
the next line after displaying output. The following application uses both
methods:

/**
 * Displays a welcome message.
 */
public class MulticulturalGreeting {

 public static void main(String[] args) {
 System.out.print("Hello");
 System.out.print("Buenos Dias");
 System.out.println("Bonjour");
 System.out.println("How do you greet another?");
 }
}

The print() and println() methods require arguments. An argument is data
passed to a method for processing. In this case, the print() and println()
arguments are strings. A string is a set of characters, which are enclosed
by quotation marks.

 MulticulturalGreeting produces output similar to:

 An escape sequence is a backslash (\) followed by a symbol that together
represent a character. Escape sequences are used to display special char-
acters. Common escape sequences include:

 \n newline
 \t tab (8 spaces)
 \\ backslash
 \" double quotation mark

 The modified MulticulturalGreeting illustrates the use of escape
sequences:

/**
 * Displays a welcome message.
 */
public class MulticulturalGreeting {

 public static void main(String[] args) {
 System.out.print("Hello\t");
 System.out.print("Buenos Dias\t");
 System.out.println("Bonjour");
 System.out.println("How do you greet another?");
 }
}

escape sequence

output stream

print() println()

argument

string

TIP The System class is in the
java.lang package.

64 Chapter 3 Introducing Java

sa
mp
le

 Review: AboutMe – part 1 of 2
Create an AboutMe application that displays your first name and last initial, your instructor‘s name, and
your school name on three separate lines. Below the personal information, display a phrase that encourages
your school team. For example, “Go Bears!” Be sure the phrase is displayed with quotation marks.

 Formatting Output
 The format() method can be used in place of the print() or println()
methods to control the way output is displayed. The format() method
arguments include a format string and an argument list. The format
string contains specifiers that indicate how the corresponding strings in
the argument list should be displayed. The following code demonstrates
the format() method:

System.out.format("%-10s %8s %8s", "Team", "Wins", "Losses\n");
System.out.format("%-10s %8s %8s", "Jaguars", "10", "5\n");
System.out.format("%-10s %8s %8s", "Cheetahs", "14", "1\n");
System.out.format("%-10s %8s %8s", "Panthers", "8", "7\n");
System.out.format("%-10s %8s %8s", "Penguins", "4", "11\n");

When executed, the statements display:

 A format string specifier takes the form:

%[alignment][width]s

% indicates the start of a specifier
[alignment] skip for right alignment.
 Include a minus sign (–) for left alignment
[width] the number of characters to use for output
s indicates that the corresponding argument is a string

If [width] is greater than the number of characters in the corresponding
string argument, then spaces pad the output. A string longer than [width]
characters is displayed, but any strings to the right are moved over.

 Text may also be included within the format string. For example, the
statement:

System.out.format("The final game score: %-8s %8s", "10", "5");

displays:

Numeric Output
The NumberFormat class,
discussed in Chapter 4, can
also be used to format numeric
data.

TIP The format() method is
new to Java 5 and requires
JDK 5.

Chapter 3 Introducing Java 65

sa
mp
le

 Review: AboutMe – part 2 of 2
Modify the AboutMe application to include your class schedule, the days of the week that your class meets,
and the start and end time of each class. Include code to properly align the data into three columns with the
weekdays left aligned and the class start and end times right-aligned.

 Code Conventions
 Code conventions are a set of guidelines for writing an application. These
guidelines provide details about commenting, rules for naming methods,
classes, and packages, and statement formatting. Just as comments inform
a reader about a segment of code, a program that follows specific code
conventions is easier to read and understand.

 A company or organization that employs programmers will typically
adhere to specific code conventions. A programmer familiar with the
code conventions will more quickly become familiar with code written
by another programmer in the company. Code conventions can make
modifying and maintaining code faster, easier, and less expensive. Because
of these benefits, organizations often not only encourage the use of code
conventions, but require it.

 The code conventions introduced in this chapter are:

• An introductory comment should begin a program. This comment
should include information such as your name, class name, the
date, and a brief statement about the program.

• Package names should begin with a lowercase letter and then an
uppercase letter should begin each word within the name. Package
names may not contain spaces.

• Class names should be nouns and begin with an uppercase letter
and an uppercase letter should begin each word within the name.
Class names may not contain spaces.

• A comment block should be included before each class and
method. A comment block is not typically placed before the main()
method.

• Comments should not reiterate what is clear from the code.

• Statements in a method should be indented.

• An open curly brace ({) should be placed on the same line as
the class or method declaration, and the closing curly brace (})
should be on a separate line and aligned with the class or method
declaration.

TIP Code conventions are
important. About 80% of the
lifetime cost of a piece of soft-
ware goes to maintenance.
Rarely is software maintained
for its whole life by the original
author.

66 Chapter 3 Introducing Java

sa
mp
le

 Algorithm Design
 Programs are created to solve problems. However, problems of any
complexity require outlining, or designing, a solution before typing any
source code. One method of design is called an algorithm. An algorithm is
a set of steps that outline how to solve a problem.

 Algorithms can be created in several ways. Often more than one
approach is implemented. Steps written out in plain English is one
approach. Pseudocode is a mix of English and program code, and is useful
for refining a plain English algorithm. Flowcharts use symbols and text to
give a visual representation of a solution.

 A description of the problem to be solved is used in developing an
algorithm. For example, a program specification may state “The Triangle
application displays a right triangle made up of the asterisk (*) symbol. The
triangle should be 4 asterisks high by 4 asterisks wide.” Triangle appears
to be a very simple application. From the description, we conclude that
Triangle should display an image of a right triangle.

 The next step after analyzing the problem is to produce the algorithm. In
most cases, use more than one method to generate the algorithm to ensure
that the solution to the problem is accurate. The following illustrates the
Triangle program in both plain English steps and a flowchart:

The Triangle algorithm in plain English:

1. Print an asterisk to the screen.

2. Print two asterisks to the screen.

3. Print an asterisk followed by a space and an asterisk to the
screen.

4. Print four asterisks to the screen.

The Triangle flowchart:

�����

�������
��

�������
���

�������
����

���

�������
�

pseudocode
flowcharts

Chapter 3 Introducing Java 67

sa
mp
le

 Each flowchart symbol has a different meaning. The indicates start
or end. The shape indicates input/ouput. Other flowchart symbols
will be introduced throughout the text as new concepts are covered.

 Chapter Summary
 This chapter introduced Java, which is an object-oriented program-
ming language. OOP languages evolved out of the need to better develop
complex programs. In addition to being object-oriented, Java is platform
independent. Platform-independent applications can run on any computer,
regardless of the operating system or hardware configuration.

 Object-oriented languages use classes to define objects. A class defines
the type of data and actions associated with an object, but not the actual
data for an object. A package groups related classes.

 A Java application is a package with at least one class. Statements in an
application provide instructions. Methods are a named set of statements
that perform a single, well-defined task. Comments in an application
provide details about the code to the reader. Comments can be single or
multiline and can also be extracted for documentation.

 The code typed by a programmer is called source code. The source code
is translated to bytecode with a compiler. Program execution occurs when
the bytecode is interpreted with a Java Virtual Machine (Java VM). The
Java VM can reside on any computer. A just-in-time (JIT) compiler converts
bytecode to machine code before execution by the Java VM. Although
less portable, machine code is faster. If a program contains errors, it will
not compile. One type of error is the syntax error, which results when a
statement violates the rules of Java.

 Program output is through the output stream. The standard output
stream is typically the computer screen and requires the System.out meth-
ods print() and println(). These methods require a string argument.
Escape sequences are used to display special characters. Output can be
formatted with the format() method.

 Code conventions are a set of guidelines for writing an application. The
code conventions introduced in this chapter are:

• An introductory comment should begin a program. This comment
should include information such as your name, class name, the
date, and a brief statement about the program.

• Package names should begin with a lowercase letter and then an
uppercase letter should begin each word within the name. Package
names may not contain spaces.

• Class names should be nouns and begin with an uppercase letter
and then an uppercase letter should begin each word within the
name. Class names may not contain spaces.

• A comment block should be included before each class and
method. A comment block is not typically placed before the main()
method.

68 Chapter 3 Introducing Java

sa
mp
le

• Comments should not reiterate what is clear from the code.

• Statements in a method should be indented.

• An open curly brace ({) should be placed on the same line as
the class or method declaration, and the closing curly brace (})
should be on a separate line and aligned with the class or method
declaration.

 Programs are created to solve problems. However, problems of any
complexity require outlining, or designing, a solution before typing any
source code. One method of design is called an algorithm. An algorithm
can be implemented through steps written in plain English, steps written
in a mixture of code and English called pseudocode, or steps presented
visually with a flowchart.

Chapter 3 Introducing Java 69

sa
mp
le

 Vocabulary

Algorithm A set of steps that outline how to solve
a problem.

Argument Data passed to a method for
processing.

Bytecode Compiled Java source code.

Class The description of an object.

Code conventions A set of guidelines for writing
an application.

Comment Text that provides information to the
reader of program code.

Comment block Multiline comments that describe
a program, class, or method.

Compiling The process where source code is con-
verted to code the computer understands.

Controlling class The class in an application that
contains the main() method.

Encapsulation An object-oriented language
feature.

Escape Sequence A backslash followed by a symbol
that together represent a character.

Execute To run a program.

Flowchart A visual representat ion of an
algorithm.

Importable Package code that can be used by an
application.

Inheritance An object-oriented language feature.

Interpreter Software that runs each bytecode
instruction of a compiled Java program.

Java application A package with a controlling class
and possibly other classes.

Java Virtual Machine (Java VM) The Java bytecode
interpreter.

Just-in-time compiler (JIT) Software that converts
bytecode to specific machine code.

Library see Package.

Machine code The most basic computer language,
which is comprised of just 1s and 0s.

Method A named set of statements that perform
a single, well-defined task. A method is always a
member of a class.

Object A named entity that consists of related
data and instructions for performing actions on
that data.

Object-or iented programming (OOP) A
systematic, modular approach to developing complex
programs.

OOP see Object-oriented programming.

Output Stream Sends data to an output device,
typically the computer screen.

Package A group of related classes. Also called a
library.

Platform-independent application A program that
can be run on any computer regardless of operating
system or hardware configuration.

Polymorphism An object-oriented language
feature.

Pseudocode An algorithm written in a mix of
English and program code.

Run see Execute.

Source code The code typed by a programmer.

Statement An instruction in a program.

String A set of characters.

Syntax error A statement that violates the rules
of Java.

70 Chapter 3 Introducing Java

sa
mp
le

 Java

/* */ Used to enclose single or multiline
comments.

/** */ Used to enclose documentation
comments.

// Used to begin a single line comment.

{ } Used to begin and end a set of related
statements.

; Required at the end of each program statement.

\\ Escape sequence for displaying a backslash.

\" Escape sequence for displaying a double quota-
tion mark.

\n Escape sequence for displaying a newline.

\t Escape sequence for displaying a tab.

class Used to declare a class.

format() Method that displays more precisely for-
matted output to the screen.

java.lang.System The class that contains the out
member.

main() The method in the controlling class that
is automatically executed when a Java application
is run.

out The java.lang.System member that represents
the standard output stream.

package Statement used to declare a package.

print() Method that displays output to the
screen.

println() Method that displays output to the
screen and then moves the insertion point to the
next line.

public An access modifier that declares a class or
method as available to any code.

static A declaration used for class methods.

void Indicates a method will not return a value.

Chapter 3 Introducing Java 71

sa
mp
le

 Critical Thinking

1. a) List three features of every object-oriented
programming language.

 b) Explain, in your own words, what you think
the meaning is of each of the three features
listed in part (a).

2. Draw a sketch that shows the relationship, and/
or hierarchy, of object, class, and package for the
package File, class FileReader, and the object
fileInput.

3. Write an appropriate comment block for the
beginning of a program to describe an applica-
tion that is intended to calculate test averages.

4. Write an appropriate comment for describ-
ing a class that displays the average of a set of
scores.

5. Write a statement that declares a package with
the name gradeCalculator.

6. Write a statement that declares a class named
AverageScore that is available to any code.

7. Explain the difference between source code and
bytecode.

8. Describe machine code.

9. Explain the difference between a Java compiler
and the Java VM.

10. What is the advantage of compiling Java source
code using a JIT?

11. The following application has seven syntax
errors. What are they?

 //
 * Test.java
 * What's wrong application.
 * Student Name
 */

 package testMyKnowledge;

 /**
 * The Test class should display a string,
 */
 public class Test {

 private static int main(string[] args) {
 System.out.println("Testing...)
 }

12. Explain the difference between the print() and
println() methods.

13. Explain the advantages of using the format()
method in place of the print()and println()
methods.

14. There are five places in which the application
below does not follow the code conventions
outlined in this chapter. Where are they?

 /*
 * getGreeting.java
 * What's wrong application.
 * Student Name
 */

 package notSoGood;

 /**
 * Good Morning is displayed.
 */
 public class getGreeting {

 public static void main(String[] args) {
 //Output Good Morning to the screen
 System.out.println("Good Morning");
 } }

15. Explain the similarities and differences between
pseudocode and a flowchart.

True/False

16. Determine if each of the following are true or
false. If false, explain why.

 a) Java applications can run only on the
Windows platform.

 b) Statements must end with a semicolon.
 c) Comments have no effect on program

execution.
 d) The main() method is placed in the

controlling class.
 e) Related statements are enclosed with brackets

([]).
 f) A file containing only source code can be

executed on a computer.
 g) Compiled source code is called machine

code.
 h) A program containing syntax errors will

compile.
 i) An algorithm is a set of steps that outline

how to solve a problem.
 j) Pseudocode cannot be used to implement an

algorithm.

72 Chapter 3 Introducing Java

sa
mp
le

 Exercises

Exercise 1 ————————————————————— BingoCard
Create a BingoCard application that displays a traditional bingo card with five columns of five unique
numbers. The column labels are B, I, N, G, and O. Column B contains numbers ranging from 1 through
15, column I has numbers ranging from 16 through 30, column N has four numbers ranging from 31
through 45 and a Free Space in the middle of the column, column G has numbers ranging from 46
through 60, and column O has numbers ranging from 61 through 75. The application output should
look similar to:

Exercise 2 —————————————————————BingoRules
Create a BingoRules application that displays the rules for playing bingo. Place each rule on a separate
line and place a blank line between rules. The application output should look similar to:

Exercise 3 ————————————————————— Rectangle
Create a Rectangle application that displays a rectangle of asterisks (*). The rectangle should be 15
asterisks wide and 7 asterisks high. The application output should look similar to:

Chapter 3 Introducing Java 73

sa
mp
le

Exercise 4 —————————————— RockPaperScissorsRules
Create a RockPaperScissorsRules application that displays the rules for playing Rock Paper Scissors.
Place each rule on a separate line and place a blank line between rules. The application output should
look similar to:

Exercise 5 —————————————————— TicTacToeBoard
Create a TicTacToeBoard application that displays a tic-tac-toe board with an X in the center. The appli-
cation output should look similar to:

Exercise 6 —————————————————— TicTacToeRules
Create a TicTacToeRules application that displays the rules for playing tic-tac-toe. Place each rule on a
separate line and place a blank line between rules. The application output should look similar to:

74 Chapter 3 Introducing Java

sa
mp
le

Exercise 7 ——————————————————————— Smile
Create a Smile application that displays a smiling face made of keyboard characters. The application
output should look similar to:

Exercise 8 —————————————————— JavaTerminology
Create a JavaTerminology application that displays at least five words from the vocabulary list in this
chapter and the corresponding definition. Place each word on a separate line followed by the definition.
Place a blank line between entries. The application output should look similar to:

Exercise 9 ————————————————— FlowchartSymbols
Create a FlowchartSymbols application that illustrates the two flowchart symbols that were introduced
in this chapter. The application output should look similar to:

Chapter 3 Introducing Java 75

sa
mp
le

Exercise 10 —————————————— CompilerDocumentation
Create a CompilerDocumentation application that creates compiler-specific documentation for the
compiler you will be using in your class.

a) Add the compiler name to the right of “Compiler” and then explain how to create a new
project, enter source code, compile, and run a Java application using a format similar
to:

b) Explore the compiler’s help features. Add documentation that explains how to use
the compiler’s Help features.

Exercise 11 —————————————————— BinaryNumbers
As discussed in Chapter 1, computers are digital and they recognize two states: on and off. Therefore, the
binary number system (base 2), which uses only two digits (0 and 1), was adopted for use in computers.
Our most familiar number system is the decimal, or base 10, system. It uses ten digits: 0 through 9.

a) Create a BinaryNumbers application that illustrates the binary numbers 1 through
20 and their decimal equivalents. Refer to chapter 1 for the conversion formula or if
you have the Windows operating system, use the Microsoft Calculator in the Start j
All Programs j Accessories menu to convert the numbers. In the Microsoft Calculator,
select View j Scientific and then enter the number and select Bin to convert the decimal
(Dec) number:

76 Chapter 3 Introducing Java

sa
mp
le

 The application output should look similar to:

b) The hexadecimal, or base 16, system is based on 16 digits: 0 through 9, and the letters
A through F representing 10 through 15 respectively. Modify the BinaryNumbers
application to include a Hexadecimal column that contains the corresponding
hexadecimal numbers.

 Exercise 12 —————————————— ProgrammingLanguages
a) Create a ProgrammingLanguages application that displays information about object-

oriented programming languages. The application output should look similar to:

b) Use books and the Internet to research other object-oriented programming languages
and add three additional object-oriented programming languages to the list.

Chapter 4 Variables and Constants 77

sa
mp
le

Variables and constants are two important concepts explained in this
chapter. Using primitive and abstract data types to declare variables is
covered. User input, numeric expressions, and assignment operators are
also discussed.

 Declaring Variables
 A variable is a name for a value stored in memory. Variables are used in
programs so that values can be represented with meaningful names. For
example, when a variable named length is used in a program, it is clear
that its value is a distance. Variables should be used to represent values
because they make code easier to read, understand, and modify.

 A variable must be declared before it is used. A declaration takes the
form:

<type> <name>

The declaration includes two parts. The first is the data type, which
determines the type of data the variable will store. The second part of a
declaration is the variable name, called the identifier. For example, in the
declaration

int length;

int is the data type and length is the identifier. An int stores an integer
value, which is a positive or negative whole number. When an integer
variable is declared it stores the value 0.

 An identifier must begin with a letter and contain only letters, numbers,
and some special characters. Typically variable identifiers begin with a
lowercase letter. Any word after the first in a variable identifier should
begin with an uppercase letter. For example, rectangleLength. This code
convention allows variables to be easily recognized.

 Multiple variables with the same data type can be declared in a single
statement, similar to:

int length, width;

Grouping variables together in a single statement is good programming
style when the variables represent related items. Declarations should not
be grouped together in the same statement just because the variables are
all the same type.

Chapter 4
Variables and Constants

data type

declaration

identifier

78 Chapter 4 Variables and Constants

sa
mp
le

 Using Variables
 Applications typically contain many variables, as in RectangleArea:

/**
 * Calculates and displays the area of a rectangle
 */
public class RectangleArea {

 public static void main(String[] args) {
 int length = 10; //longer side of rectangle
 int width = 2; //shorter side of rectangle
 int area; //calculated area of rectangle

 area = length * width;
 System.out.println("Area of rectangle: " + area);
 }
}

 RectangleArea produces output similar to:

 Variable declarations should be grouped at the beginning of a method.
A blank line after the declarations makes it easy to determine where the
declarations end.

 The value of a variable is changed through assignment. An assignment
statement is formed with the variable name on the left side of an equal
sign and the value it is to receive on the right side of the equal sign. The
equal sign (=) is an operator that indicates that the variable on the left is to
receive the value on the right. The value on the right can be a literal, which
is any actual value. It could also be another variable or an expression. For
example, area was assigned the value of the length multiplied by the width
(length * width). Note that the * symbol indicates multiplication.

 An assignment statement can be part of a variable declaration. In addition
to being declared, the variable is initialized. For example, in RectangleArea,
variables length and width were assigned values when declared.

 A System.out.println() statement can be used to output the value of
a variable. Variable identifiers are not enclosed by quotation marks. To
append, or concatenate, the value of a variable to a string, the + operator
is used. The + operator converts the value of the variable to a string and
then concatenates the strings before output.

 It is important to realize that a variable can store only one value at any
one time. For example, after the following statements execute

int x;
x = 5;
x = 10;

the value of x is 10 because this was the last value assigned to x.

�
�

�

��
�

assignment

concatenation

equal sign

literal

initialize

Chapter 4 Variables and Constants 79

sa
mp
le

 Review: RectanglePerimeter
Create a RectanglePerimeter application that calculates and displays the perimeter of a rectangle with width
4 and length 13. The perimeter of a rectangle is calculated as 2w + 2l. Use variables as appropriate.

 Primitive Data Types
 The int data type is called a primitive data type. A variable that is
defined with a primitive data type stores a single piece of data. Java supports
several primitive data types, including:

Type Bytes Data Range
int 4 a positive or negative integer from –2,147,483,648

to 2,147,483,647
double 8 a positive or negative number that may contain

a decimal portion in the range –1.7E+308 to
1.7E+308

char 2 a single character
boolean true or false

 An int variable uses 4 bytes of memory to store its value and is used
for representing whole numbers.

 Values that are represented by the double data type are sometimes
referred to as floating point, meaning that the values contain numbers after
the decimal point. Because of the many digits that are possible in a double,
a variable of this type uses 8 bytes of memory.

 A char variable requires 2 bytes of memory because Java uses the 16-
bit Unicode character encoding. Assignment to a char variable requires
enclosing a single character in single quotation marks, as in 'a'.

 Variables that are type boolean can have only one of two values—true
or false. Boolean variables are particularly useful for representing yes/no
or on/off values.

 When choosing a data type, it is important to choose the most appropri-
ate type for the quantity being represented. If a value could possibly have
a decimal portion, then double is the best choice. If a variable will represent
only whole numbers, then int is the best choice even though double will
work. Using the most appropriate data types for variables has two benefits.
First, both the compiler and the reader will understand the possible values
for a variable. Second, the compiler allocates the appropriate memory for
the variable.

 Review: Distance – part 1 of 2
Create a Distance application that calculates and displays the total distance of a race with three segments.
The first segment is 12.2 km, the second is 10.6 km, and the third is 5.8 km. Use variables of the appropriate
type.

String Data
Strings are comprised of a set
of characters and therefore
cannot be represented by a
primitive data type. The String
class in the java.lang package
is used to create string vari-
ables. Strings are discussed in
more detail in Chapter 6.

TIP Java also supports the
byte, short, long, and float
primitive data types.

floating point

choosing data types

TIP Primitive data types are
also called built-in data types.

80 Chapter 4 Variables and Constants

sa
mp
le

 Abstract Data Types
 In addition to primitive data types, a variable can be declared using an
abstract data type. One kind of abstract data type is the class. Many classes
are provided in Java, and many more classes will be created throughout
this text. Each class defines not just a single piece of data like a primitive
data type, but a set of data along with methods for performing actions on
that data.

 A variable declared with a class is called an object. The variable itself
actually stores a reference to the area in memory where the object’s data
and methods are stored:

������
������� �����������������������

������

 Creating a new object is called instantiation. In addition to declaring a
variable to refer to the object, the object must be created and initialized
in a statement that takes the form:

<class> <variable name> = new <class>(<arguments>);

The new operator allocates memory for the object and returns a reference
to the object. <arguments> are used to initialize the data for the object.

 The code below creates a new object using a class named Circle:

Circle spot = new Circle(4); //spot with radius 4

In this statement, the variable spot refers to a Circle object that has been
initialized with a radius of 4.

 To access a member of a class, such as a method, use the object name
followed by a dot (.) and then the member name. For example, the code
below executes method members getRadius() and area():

Circle spot = new Circle(4);
System.out.println("Radius of spot is " + spot.getRadius());
System.out.println("Area of spot is " + spot.area());

These statements produce output similar to:

The Circle class will be developed later in this text.

 Java Packages
 Java includes numerous packages as part of the Java Runtime
Environment (JRE). These packages contain general use classes, utility
classes, or special purpose classes. The most fundamental package is
java.lang with classes that define the language itself. Other packages such
as java.util have classes for reading input and generating random numbers.
These packages will be explained and used throughout this text.

object

instantiation

Package
Documentation

Package documentat ion
typically summarizes the
package classes and the data
and methods available in those
classes. Code examples that
use the classes may also be
included in the documentation.
Documentat ion for Java
packages are available online
at www.sun.com.

Chapter 4 Variables and Constants 81

sa
mp
le

 Packages follow a certain naming convention. Java packages start with
java followed by a dot (.) and then the package name. Companies and
other organizations will often name a package with the organization name
followed by a dot and then the package name.

 The import statement is used to make the members of a package acces-
sible to an application. To make a single class from a package accessible,
a statement similar to the following is used:

import java.util.Scanner;

The class name starts with an uppercase letter, following the appropriate
naming convention for class names. If several classes in a package are to
be accessible, then a statement that imports the entire package may be
used:

import java.util.*;

The asterisk (*) indicates that all members of the util package are to be
accessible. import statements must appear after a package statement and
before any class definitions. Java applications automatically import the
entire java.lang package.

 Obtaining a Value from the User
 An application is more flexible when values can be read from an input
stream. An input stream is the sequence of characters received from an
input device, such as a keyboard. For example, as a user types data, the
data goes into the input stream. To process data in the input stream, Java
includes the Scanner class with methods for reading integers, floating
point numbers, and strings.

 A program that obtains a value from the user must instantiate a Scanner
object that is initialized with an input stream. For data typed from a
keyboard, initialize the object with System.in because it represents the
standard input stream.

 Scanner class methods include:

Class Scanner (java.util.Scanner)

Methods
next() returns a string from the input stream.
nextLine() returns the string up to the end of line character

from the input stream.
nextInt() returns the int read from the input stream.
nextDouble() returns the dou ble read from the input

stream.
nextBoolean() returns the boolea n read from the input

stream.
close() closes the input stream.

 The next() method is used for reading a string that does not contain
spaces. For example, “apple”. Attempting to read the string “apple pie”
generates a run-time exception called InputMismatchException. An
exception is an error affecting program execution. Exceptions are discussed
later in this chapter.

TIP The Scanner class is new
to Java 5.

input stream

Scanner

TIP Companies sometimes
use their reversed Internet
domain in package names. For
example, com.mycompany.util
names a package with utility
classes.

import

exception

java.lang

82 Chapter 4 Variables and Constants

sa
mp
le

 When reading in a combination of numeric and string data, the next()
method should be used for reading string data after reading numeric data.
Using the nextLine() method is ineffective. It reads the end-of-line charac-
ter left by the numeric data entry, essentially reading an empty string. If a
string with multiple words is expected from the user, the nextLine() can
be used to read in the end-of-line character and then another nextLine()
used to read the string.

 The RectangleArea2 class below instantiates a Scanner object and reads
values typed by the user:

import java.util.Scanner;

/**
 * Calculates and displays the area of a rectangle
 * based on the width and length entered by the user.
 */
public class RectangleArea2 {

 public static void main(String[] args) {
 int length; //longer side of rectangle
 int width; //shorter side of rectangle
 int area; //calculated area of rectangle
 Scanner input = new Scanner(System.in);

 System.out.print("Enter the length: ");
 length = input.nextInt();
 System.out.print("Enter the width: ");
 width = input.nextInt();
 input.close();

 area = length * width;
 System.out.println("Area of rectangle: " + area);
 }
}

Note that the import statement appears above the class. RectangleArea2
produces output similar to the following when values 6 and 2 are typed
by the user:

 In the RectangleArea2 code, a Scanner object is declared, instantiated,
and initialized in the statement Scanner input = new Scanner(System.in).
The calls to the nextInt() method are used to obtain the values typed by
the user. When a call to nextInt() occurs, the application waits until the
user types a value and presses enter before the next statement is executed.
The application also includes prompts that tell the user what kind of input
is expected. For example, System.out.print("Enter the length: ") prompts
the user for a length value. When a Scanner object is no longer needed, it
should be closed with the close() method.

 Review: Distance – part 2 of 2
Modify the Distance application to first prompt the user for the distance of each race segment and then
prompt the user for the runner’s name. The application should then display the runner’s name and total
distance to run.

prompt

reading numbers and strings

Chapter 4 Variables and Constants 83

sa
mp
le

 Numeric Expressions
 Java includes built-in arithmetic operators for addition (+), subtrac-
tion (-), multiplication (*), division (/), and modulus division (%). These
operators are for use with primitive data and can be used to form numeric
expressions. A numeric expression contains at least one operand, which is
a value or primitive variable, and may contain operators. For example,
the numeric expression 6 + 5 contains two operands and one operator.
Numeric expressions can be used in assignment statements, as in the
statement area = length * width.

 The / division operator performs differently depending on the data
type of the operands. When both operands are type int, the / operator
performs integer division. Integer division truncates the decimal portion
of the quotient to result in an integer:

Real division returns the entire quotient, including the decimal portion,
and is performed when one or both operators are type double.

 Modulus division returns the remainder resulting from division. The %
operator truncates the operands, if necessary, to return an integer:

 Modulus division is useful for retrieving digits of a number.

 The statements below demonstrate the division operators:

int num1 = 5;
int num2 = 3;
int result;
double doubleNum1 = 5;
double doubleNum2 = 3;
double doubleResult;

result = num1 / num2;
System.out.println("num1 / num2: " + result);

doubleResult = doubleNum1 / doubleNum2;
System.out.println("doubleNum1 / doubleNum2: "
 + doubleResult);

doubleResult = num1 / doubleNum2;
System.out.println("num1 / doubleNum2: " + doubleResult);

result = num1 % num2;
System.out.println("num1 % num2: " + result);

doubleResult = doubleNum1 % doubleNum2;
System.out.println("doubleNum1 % doubleNum2: "
 + double Result);

Object Operators
Objects typically cannot be
manipulated with the built-in
arithmetic operators. A class
usually defines methods that
are used to perform operations
on objects.

Integer division

modulus division

84 Chapter 4 Variables and Constants

sa
mp
le

 Executing the statements on the previous page produces the output:

 Java evaluates an expression using a specific order of operations based
on operator precedence. Operator precedence is the level assigned to an
operator. Multiplication and division (including modulus division) have
the highest precedence, followed by addition and subtraction. Two opera-
tors of the same precedence are evaluated in order from left to right.

 The order of operations can be changed by including parentheses in a
numeric expression. The operations within parentheses are evaluated first.
For example, the expression 6 + 4 * 2 – 1 evaluates to 13, and the expression
(6 + 4) * (2 – 1) evaluates to 10. It is also considered good programming
style to include parentheses when there is any possibility of ambiguity or
question about the expression.

 Review: Digits
Create a Digits application that prompts the user for a two-digit number and then displays the ones-place
and tens-place digits.

 Type Casting
 Type casting converts a number of one type to a number of a different,
but compatible type. For example, a double can be cast as an int, as in the
statements:

int i = 2;
double d = 3.7;
int x;
x = i * (int)d //d is explicitly cast; x is assigned 2x3

Type casting is necessary in this case because one of the operands in the
expression has less precision than the variable that will store the result.
Explicit casting also makes it clear that the programmer intended for the
calculation result to be an int.

 Casting a double to an int truncates, or removes, the decimal portion of
the number, as in the statements above. When decreasing the precision of a
number, it is better to round the number. A number with a decimal portion
greater than or equal to 0.5 should be rounded up to the next integer, and
a number with a decimal portion less than 0.5 should be rounded down.
For example, rounding 3.7 results in 4.

operator precedence

truncate

TIP Truncation is always
toward 0.

order of operations

Chapter 4 Variables and Constants 85

sa
mp
le

 Rounding can be simulated when casting a double to an int by adding
0.5 to the number before casting, as in the statement:

x = i * (int)(d + 0.5) //x is assigned 2x4

If casting a negative number, then 0.5 should be subtracted from the
number before casting.

 Casting is useful when real division with integers is preferred. The fol-
lowing statements demonstrate the difference between integer division
and real division with integers:

int i = 5;
int j = 2;
double result;

result = i / j; //integer division; result=2
result = (double)i / (double)j; //real division; result=2.5

 Java will implicitly type cast operands in a mixed expression to match
the precision of the variable storing the result, as in the statements:

int i = 2;
double d = 3.7;
double y;

y = i * d //i is implicitly cast; y is assigned 2.0x3.7

Although explicit type casting is not necessary in this case, it is better
programming style to include casts. Casting makes a programmer’s inten-
tions clear and may make bugs easier to find. Therefore, the statements
above should be written as:

int i = 2;
double d = 3.7;
double y;

y = (double)i * d //better code; y is assigned 2.0x3.7

 Review: GradeAvg – part 1 of 2
Create a GradeAvg application that prompts the user for five grades and then displays the average of the
grades. Assume the grades are integer values (for example, 89, 97, and so on). Real division should be per-
formed when calculating the average.

 Review: TempConverter
Create a TempConverter application that converts a Fahrenheit temperature to the corresponding Celsius
temperature. The formula for converting Fahrenheit to Celsius is C = 5/9(F – 32). The application should
prompt the user for the Fahrenheit temperature. Be sure to carefully form the expression. Parentheses will
be needed to specify the order of operations.

rounding

real division

86 Chapter 4 Variables and Constants

sa
mp
le

 Formatting Numeric Output
 The NumberFormat class, which is part of the java.text package, is used to
create objects that format numbers. NumberFormat objects return a string
that contains a formatted number. The formatting of the number depends
on which NumberFormat object is used. The NumberFormatExample
application creates four different NumberFormat objects:

import java.text.NumberFormat;

public class NumberFormatExample {

 public static void main(String[] args) {
 double dollars = 21.5;
 int num = 1234;
 double numWithDecimal = 2.0 / 3.0;
 double sale = .15;
 NumberFormat money = NumberFormat.getCurrencyInstance();
 NumberFormat number = NumberFormat.getIntegerInstance();
 NumberFormat decimal = NumberFormat.getNumberInstance();
 NumberFormat percent = NumberFormat.getPercentInstance();

 System.out.println(money.format(dollars));
 System.out.println(number.format(num));
 System.out.println(decimal.format(numWithDecimal));
 System.out.println(percent.format(sale));
 }
}

When executed, the application produces the following output:

 Assignment Operators
 In an assignment statement, the expression on the right side of the equal
sign (=) is evaluated first and then that value is given to the variable on
the left. Because the expression on the right is evaluated before an assign-
ment is made, it is possible to use the current value of the variable in the
expression itself. For example:

numPlayers = 12; //numPlayers is assigned 12
numPlayers = numPlayers + 2; //numPlayers is now 14

 Changing the value of a variable based on its current value is often done
in programming. Therefore, in addition to the = assignment operator, Java
recognizes the +=, -=, *=, /=, and %= assignment operators. These operators
perform an operation before making an assignment. For example, the
previous assignment statement can be rewritten as:

numPlayers += 2; //numPlayers is now 14

 The -=, *=, /=, and %= operators work similarly, as in the statements:

numPlayers -= 3; //same as: numPlayers = numPlayers - 3
numCopies *= 5; //same as: numCopies = numCopies * 5
total /= 2; //same as: total = total / 2
remainder %= 6; //same as: remainder = remainder % 6

java.text

The DecimalFormat
Class

The DecimalFormat class
offers additional options for
formatting numbers to a spec-
ified decimal place. Refer to
Java online documentation for
more information.

The format() Method
The format() method, discussed
in Chapter 3, can also be used
to format numeric values. A
specifier can take the form:

%[alignment][width][.decimal]f

where [.decimal] indicates
the number of decimal places
and f indicates a floating point
number. For an integer, the
specifier takes the form:

%[alignment][width]d

Chapter 4 Variables and Constants 87

sa
mp
le

 Review: GradeAvg – part 2 of 2
Modify the GradeAvg application to use the += operator to sum the grades as they are entered by the user.
Format the average grade to display as a percentage.

 Using Named Constants
 A constant is a name for a memory location that stores a value that cannot
be changed from its initial assignment. Constants, like variables, are used
in programs so that values can be represented with meaningful names. A
constant declaration is a variable declared final and takes the form:

final <type> <identifier>

The declaration begins with final, which indicates that the value will
not change, followed by the type of data the constant will store and the
constant identifier. For example, the following declaration represents „:

final double PI = 3.14;

double declares a numeric value possibly containing a decimal portion.
Constant identifiers are typically all uppercase, and may include under-
score (_) characters to separate words. For example, MAX _ PRICE.

 The following class uses a constant in the main() method:

/**
 * Calculates and displays the area of a circle
 */
public class CircleArea {

 public static void main(String[] args) {
 final double PI = 3.14;
 double radius = 5; //radius of circle
 double area;

 area = PI * radius * radius;
 System.out.println("Area of circle: " + area);
 }
}

 CircleArea produces output similar to:

 A constant can be assigned a value only once. Trying to change the
value of a constant after the initial assignment generates an error. Constant
declarations should be grouped at the beginning of a method before any
variable declarations.

When should a named
constant be used?

Named constants should be
used wherever they can add
clarity to code. However, there
are some values that should
not be replaced with named
constants. For example, in an
expression that calculates the
area of a triangle (½bh), the
value 0.5 is best used instead
of a named constant because
the value does not have an
obvious name.

88 Chapter 4 Variables and Constants

sa
mp
le

 Identifiers and Keywords
 Identifiers in Java must begin with a letter and may contain letters,
numbers, and some special symbols. Periods and spaces are not allowed.
Identifiers are also case sensitive, which means that an uppercase letter is
different from the same letter in lowercase. For example, identifiers Count
and count are viewed by Java as two different identifiers.

 The Java language contains keywords, which have special meaning to
the Java compiler and therefore cannot be used for a variable or constant
identifier. The Java keywords are:

abstract double int strictfp
boolean else interface super
break extends long switch
byte final native synchronized
case finally new this
catch float package throw
char for private throws
class goto protected transient
const if public try
continue implements return void
default import short volatile
do instanceof static while

Although not keywords, true, false, and null are reserved and not for
use as identifiers.

 Review: CircleCircumference – part 1 of 2
Create a CircleCircumference application that calculates and displays the circumference of a circle. The
application should prompt the user for the value of the radius. The circumference of a circle is calculated as
2„r. Use variables and constants as appropriate.

 Programming Errors
 There are many types of errors that can occur in a program. Some errors
are found by the compiler. Others occur at run time. A program that has
been carefully designed will have fewer errors. Code reuse can also lead to
fewer errors because packages that have been carefully tested and properly
documented produce cleaner and more robust code.

 Errors that violate the rules of Java are called syntax errors. For example,
forgetting a semicolon at the end of a statement generates a syntax error.
Syntax errors are found by the compiler. An application with syntax errors
will not run because it will not compile.

syntax error

case sensitivity

Chapter 4 Variables and Constants 89

sa
mp
le

 A logic error, also called a semantic error, is more difficult to detect. Logic
errors occur in statements that are syntactically correct, but produce unde-
sired or unexpected results, as in the following example:

int length;
int area;

length = 3.2; //3 is actually assigned
area = length * length; //expected value is 10.24

The statements assign the value 9 to area rather than the expected 10.24.
Although, it is possible that the programmer intended for the value to be
truncated, it is more likely that variables length and area were supposed
to be declared as double.

 Logic errors must be found by the programmer through testing and by
carefully examining the source code. Accurate and careful commenting,
proper indentation, and descriptive identifiers can help in finding and
preventing logic errors.

 Errors that are not detected by the compiler may generate a run-time
error. A run-time error, also called an exception, halts program execution
at the statement that cannot be executed. For example, although the state-
ments below are syntactically correct, they will generate a run-time error
because division by 0 is undefined:

int totalScores = 40;
int totalTests = 0;
double avgScore;
avgScores = totalScores / totalTests;

This code generates an ArithmeticException exception.

 Exceptions can also be generated when user input is not as expected. For
example, the application run below generates an InputMismatchException
exception because the user typed a string when a numeric was
expected:

The program only had code to handle numeric user input. When a letter,
rather than a number was typed, an exception was “thrown.” Writing code
to handle exceptions is discussed in Chapter 12.

run-time error, exception

logic error, semantic error

ArithmeticException

InputMismatchException

90 Chapter 4 Variables and Constants

sa
mp
le

 Chapter 4 Case Study
 This and all subsequent chapters end with a case study. Case studies are
used to learn problem-solving techniques. Each case study will include a
description, program specification, code design, program implementation,
and a discussion about testing and debugging.

 In this case study, a Birthday game will be created. The BirthdayGame
guesses a player’s birthday by having the player perform mathematics
with the month and day of their birthday. The number computed by the
player is then entered and the program displays the month and day of the
player’s birthday.

BirthdayGame Specification

BirthdayGame is played with one player. The player is given directions
for computing a number that uses the player’s birth month and birth day
in the calculations:

1. Determine your birth month (January=1, February=2, and so
on).

2. Multiply that number by 5.

3. Add 6 to that number.

4. Multiply the number by 4.

5. Add 9 to the number.

6. Multiply that number by 5.

7. Add your birth day to the number (10 if born on the 10th and so
on).

BirthdayGame prompts the player for the calculated number and then
displays the player’s birthday. To determine the player’s birthday, 165 is
subtracted from the number entered by the player. This number is then
divided by 100. The decimal portion of the quotient represents the birth
month. The remainder of the division is the birth day.

 The BirthdayGame interface should consist of steps that tell the user
how to calculate the number that needs to be entered. The player should
then be prompted for their number. Finally, the application displays the
player’s birthday.

 A sketch of a program run:

���

��
�����������������������������
������������������������
����������������������������
�����������������������
�����������������������������
���

����������������������
���������������������

Chapter 4 Variables and Constants 91

sa
mp
le

 An algorithm in plain English for BirthdayGame:

1. Display the directions for the player to calculate the number.

2. Prompt the player for the calculated number.

3. Subtract 165 from the number.

4. Use integer division to divide the number by 100. Store the
quotient as the birth month.

5. Use modulus division to divide the number by 100. Store the
remainder as the birth day.

6. Display a message containing the player’s birthday.

 The BirthdayGame flowchart:

�����

������������������
������������������

�����������
����������

�����������������
��������

������������
�����������

�������������
������������

�����������
������������

���

TIP The flowchart
object represents a process.

92 Chapter 4 Variables and Constants

sa
mp
le

BirthdayGame Code Design

 The code design describes how to accomplish the specification. Included
in the code design are a description of the input, output, data generated,
and additional flowcharts, algorithms, and pseudocode.

 The input for BirthdayGame is a number calculated by the user. An
integer variable to store the user’s input will be needed.

 The output for BirthdayGame is a message with the user’s birthday.

 Data generated by BirthdayGame is the birth month and the birth day.
Integer variables to store the birth month and birth day will be needed.

 Based on the algorithm and flowchart, the code design for the
BirthdayGame application will include statements for input and output.
Calculations will require both integer and modulus division. A pseudo-
code algorithm for BirthdayGame follows:

Display directions (7 steps)
Prompt the user for the calculated number
playerNum -= 165
birthMonth = playerNum / 100
birthDay = playerNum % 100
Display player's birthday

BirthdayGame Implementation

 Based on the code design, the BirthdayGame implementation follows:

/*
 * BirthdayGame.java
 */

 import java.util.Scanner;

 /**
 * Plays a birthday guessing game with one player.
 */
 public class BirthdayGame {

 public static void main(String[] args) {
 int playerNum;
 int birthMonth, birthDay;
 Scanner input = new Scanner(System.in);

 /* Give the player directions for calculating the number */
 System.out.println("Using paper and pencil, perform the following
 calculations:\n");
 System.out.println("1. Determine your birth month (January=1, February=2
 and so on).");
 System.out.println("2. Multiply that number by 5.");
 System.out.println("3. Add 6 to that number.");
 System.out.println("4. Multiply the number by 4.");
 System.out.println("5. Add 9 to the number.");
 System.out.println("6. Multiply that number by 5.");
 System.out.println("7. Add your birth day to the number (10 if the 10th
 and so on).\n");

Chapter 4 Variables and Constants 93

sa
mp
le

 System.out.print("Enter your number: ");
 playerNum = input.nextInt();
 input.close();

 /* Calculate birth day and month and display result. */
 playerNum -= 165;
 birthMonth = playerNum / 100;
 birthDay = playerNum % 100;

 System.out.println("Your birthday is " + birthMonth + "/" + birthDay);
 }
}

A run of BirthdayGame looks similar to:

BirthdayGame Testing and Debugging

This case study performs minimal calculations and the algorithm is simple
and straight forward. Simply testing it with your birthday is one method
of verifying results.

 Chapter Summary
 Variables and constants are used in programs so that values can be
represented with meaningful names. Variables and constants should be
used because they make code easier to read, understand, and modify.

 Both variables and constants are created with a declaration statement.
A variable declaration includes the data type and identifier. A constant
declaration also includes the keyword final. Identifiers are case sensitive
and cannot be the same as a Java keyword. The value of a variable can be
changed throughout program execution with assignment statements. The
value of a constant cannot be changed from its initial assignment.

 A primitive data type stores a single piece of data and can include int,
double, char, and boolean. Abstract data types include classes. Each class
defines not just a single piece of data like a primitive data type, but a set
of data along with methods for performing actions on that data. Variables
declared with an abstract data type are called objects. An object declara-
tion is called instantiation. An object is instantiated with the keyword
new.

 Data can be read from the user at run time by using the Scanner class.
This class processes data from the input stream. Objects that read data
from the keyboard are initialized with System.in. When obtaining data
from the user, a prompt should be included so that the user knows what
information is expected.

94 Chapter 4 Variables and Constants

sa
mp
le

 Java includes many packages. Package members are accessible with
an import statement. The Scanner class is in the java.util package. The
NumberFormat class is in the java.text class. The NumberFormat class is
used for formatting numbers.

 Java includes built-in operators that are used to form numeric expres-
sions. Arithmetic operators include +, -, *, /, and %. The / operator performs
integer division when both operands are type int, and real division when
at least one operand is a double. Modulus division is performed with the
% operator. An expression is evaluated according to operator precedence.
The order of operations can be changed with parentheses. Assignment
operators include +=, -=, *=, /=, and %=. Each of these operators perform
an operation before making an assignment.

 Type casting converts a number of one type to a number of a different
type. Casting is useful when real division with integers is preferred. A
double can be rounded by first adding 0.5 before casting to an int.

 Programming errors occur for many reasons. A syntax error violates
the rules of Java. A logic error is also called a semantic error and is more
difficult to detect because statements are syntactically correct, but produce
unexpected results. A run-time error is also called an exception. An excep-
tion halts program execution.

 Code conventions introduced in this chapter are:

• Variable identifiers begin with a lowercase letter and any word
after the first within the identifier should begin with an uppercase
letter.

• Constant identifiers are all uppercase. Multiple words in an identi-
fier can be separated with an underscore (_) character.

• Variable and constant declarations should be grouped at the begin-
ning of a method.

• Each line of a program should contain only one statement.

Chapter 4 Variables and Constants 95

sa
mp
le

 Vocabulary

Abstract data type A class. A data type that can
store data and methods.

ArithmeticException exception An exception
thrown when division by 0 occurs.

Assignment statement A statement that gives the
variable or constant on the left of an assignment
operator the value of the expression on the right
side of the assignment operator.

Case sensitive An uppercase letter is different
from the same letter in lowercase.

Class see Abstract data type.

Concatenate To join two or more strings to form
one larger string.

Constant A name for a memory location that stores
a value than cannot be changed from its initial
assignment.

Data type The kind of information a variable
stores.

Declaration A statement that creates a variable or
constant.

Equal sign (=) An assignment operator that indicates
the variable or constant on the left is to receive the
value of the expression on the right.

Exception see Run-time error.

Floating point Values that are represented by the
double data type. Values that contain numbers after
the decimal point.

Identifier A name for a variable or constant. An
identifier must begin with a letter and can include
any number of letters, numbers, and some special
characters.

Initialize To assign a variable a value in a declara-
tion statement.

InputMismatchException exception An exception
thrown when user input is not as expected.

Input stream The sequence of characters received
from an input device.

Instantiation To create a new object.

Integer division Division that truncates the decimal
portion.

Keyword A word that has special meaning to the
Java compiler and therefore cannot be used as a
variable or constant identifier.

Literal An actual value.

Logic error An error caused by a statement that is
syntactically correct, but produces unexpected or
undesired results. Also called a semantic error.

Modulus division Division that returns the
remainder.

Numeric expression At least one operand and
possibly one or more operators that evaluate to a
single value.

Object A variable declared with a class.

Operator precedence The level assigned to an
operator so that a specific order of operations is
maintained.

Primitive data type A data type that can store only
a single piece of data. Primitive data types are also
called built-in data types.

Prompt A string that informs the user of the kind
of data expected to be typed.

Run-time error An error affecting program execu-
tion. Also called an exception.

Semantic error see Logic error.

Syntax error An error caused by a statement that
violates the rules of Java.

Truncate Removing the decimal portion of a number
when casting a double to an int.

Type casting Converting a number from one type
to a different type.

Variable A name for a memory location that stores
a value.

96 Chapter 4 Variables and Constants

sa
mp
le

 Java

+ Operator used for concatenating strings.

+ The arithmetic addition operator.

- The arithmetic subtraction operator.

* The arithmetic multiplication operator.

/ The arithmetic division operator.

% The arithmetic modulus division operator.

() Used to change the order of operations in an
expression. Also used for type casting.

= An assignment operator that gives the variable
on the left the value on the right.

+= An assignment operator that adds the value on
the right to the variable on the left and then assigns
that value to the variable on the left.

-= An assignment operator that subtracts the value
on the right from the variable on the left and then
assigns that value to the variable on the left.

*= An assignment operator that multiplies the value
on the right by the value of the variable on the left and
then assigns that value to the variable on the left.

/= An assignment operator that divides the value of
the variable on the left by the value on the right and
then assigns that value to the variable on the left.

%= An assignment operator that divides the value
of the variable on the left by the value on the right
and then assigns the remainder of that division to
the variable on the left.

boolean A data type that represents true or false.

c h a r A data type that represents a single
character.

double A data type that represents positive or
negative floating point numbers.

final Keyword used to declare an identifier a
constant.

import Statement used to make a package or classes
from a package accessible to an application.

in The java.lang.System member that represents
the standard input stream.

int A data type that represents positive or negative
integers.

java.lang The most fundamental Java package. It
contains classes that define the Java language.

java.text A Java package with the NumberFormat
class for formatting numbers.

java.util A Java package with the Scanner class for
reading input.

new An operator that allocates memory for an
object.

NumberFormat A java.text class with methods for
formatting numbers.

Scanner A java.util class with methods for reading
input from the user.

System.in The input stream for reading from the
keyboard.

Chapter 4 Variables and Constants 97

sa
mp
le

 Critical Thinking

1. a) List four legal identifier names.
 b) List four illegal identifier names and explain

why each is illegal.

2. a) In two statements, declare a variable named
numBeads and assign it the value 5.

 b) In one statement, declare a variable named
numBeads and assign it the value 5.

3. a) What is the final value of yourNumber after
the last statement executes?

 int myNumber = 5;
 int yourNumber = 4;
 myNumber = yourNumber * 2;
 yourNumber = myNumber + 5;

 b) What is the final value of yourNumber after
the last statement executes?

 int myNumber;
 int yourNumber = 4;
 myNumber = yourNumber + 7;
 yourNumber = myNumber;

4. Determine the appropriate data type for each
of the following values:

 a) the number of basketballs in a department
store.

 b) the price of a basketball.
 c) the number of players on a basketball

team.
 d) the average age of the players on a basketball

team.
 e) whether a basketball player has received a

jersey or not.
 f) the first initial of a basketball player’s first

name.

5. a) What is the difference between a primitive
data type and an abstract data type?

 b) What is the difference between a class and
an object?

6. Assume a class named Team defines a sports
team.

 a) Methods define the actions in a class and
typically include action words in their name.
For example, getTeamName is a method
name that returns the name of the team. List
three more possible method names for the
Team class.

 b) List three possible object names of type
Team.

7. The java.util package contains a class named
Ra ndom . Write a statement that makes the
Random class accessible to an application.

8. What is the value of each of the following
expressions?

 a) 5 + 7 – 3
 b) 10 * 2 – 3
 c) 10 * (2 – 3)
 d) 8 – 3 * 2
 e) 10 / 5 * 4
 f) 10 / 2 + 3
 g) 6 % 3 + 4
 h) 12 % 5 * 3
 i) 12 % (5 * 3)

9. What is the result of the following expression
when x is 2005? When x is 1776? When x is 39?

 (x/10)%10

10. Write each equation as a valid Java expression:

 a) (geometry)

 b) (business)

 c) (geometry)

 d) (geometry)

 e) (algebra)

 f) (physics)

 g) (business)

11. Using the following declarations, rewrite the
statements to include the appropriate type cast-
ing, rounding where necessary. If type casting
is not necessary, explain why:

 int j = 5;
 double k = 1.6;
 int y;
 double z;

 a) y = j * k;
 b) z = j * k;

98 Chapter 4 Variables and Constants

sa
mp
le

 c) z = k * k;
 d) j = k;
 e) k = j;
 f) y = j + 3;

12. Compare the way the / and % operators perform
to the effects of type casting.

13. Rewrite the statements below using the appro-
priate assignment operator:

 a) total = total + 10;
 b) numStones = numStones - 1;
 c) days = days % 24;
 d) price = price * 1.2;

14. Determine if each of the following are better
represented by a variable or a constant and then
write declarations using appropriate data types
and descriptive identifiers:

 a) the number of votes received by an election
candidate

 b) the percentage of votes won by a candidate
 c) the first, middle, and last initials of an elec-

tion candidate
 d) the year of the election

15. Determine if each of the following segments of
code contain a syntax error, logic error, or run-
time error. Explain.

 a) duble salary;
 b) int numHats
 c) length == 12;
 d) int test1 = 90;
 int test2 = 85;
 double avg;
 avg = test1 + test2 / 2;
 e) double x = 12;
 double y = 0;
 double z;
 z = x / y;
 f) double payCheck = 120.00;
 NumberFormat money =
 NumberFormat.getPercentInstance();
 System.out.println(money.format(payCheck);

True/False

16. Determine if each of the following are true or
false. If false, explain why.

 a) An identifier can contain spaces.
 b) Data of type double is sometimes referred to

as floating point.
 c) An abstract data type is also called a primi-

tive data type.

 d) Values typed by the user cannot be used in
an application.

 e) The Scanner class is part of a Java package.
 f) The + operator has higher precedence than

the – operator.
 g) The – operator has lower precedence than

the % operator.
 h) byte is a keyword.
 i) The identifiers apple and Apple are consid-

ered the same in Java.
 j) Errors that violate the rules of Java are called

semantic errors.

Chapter 4 Variables and Constants 99

sa
mp
le

 Exercises

Exercise 1 ————————————————————ObjectHeight
The height of an object at any given time dropped from a starting height of 100 meters is given by the
equation h=100–4.9*t2 where t is the time in seconds. Create an ObjectHeight application that prompts
the user for a time less than 4.5 seconds and then displays the height of the object at that time. The
application output should look similar to:

Exercise 2 ————————————————————— PizzaCost
The cost of making a pizza at a local shop is as follows:

• Labor cost is $0.75 per pizza, regardless of size

• Rent cost is $1.00 per pizza, regardless of size

• Materials is $0.05*diameter*diameter (diameter is measured in inches)

Create a PizzaCost application that prompts the user for the size of a pizza and then displays the cost
of making the pizza. The application output should look similar to:

Exercise 3 ————————————————— CollegeCalculator
In small groups brainstorm all the expenses involved in attending a college or university (rent, tuti-
tion, books, etc) and possible offset costs (scholarships, etc). Create a CollegeCalculator application that
prompts the user for the amount of each expense and offset cost. If the cost is not applicable the user
should enter a value of 0. Add the expenses and subtract the offset costs to determine how much money
an individual will need for their school year. College websites can be used as a guide to determine
relevant and appropriate expenses.

Exercise 4 ö —————————————————— JavaTerminology
Modify the JavaTerminology application created in Chapter 3, Exercise 8 to include five words from
the vocabulary list in this chapter and the corresponding definition. Place each word on a separate line
followed by the definition. Place a blank line between entries.

100 Chapter 4 Variables and Constants

sa
mp
le

Exercise 5 —————————————————————— Energy
Einstein’s famous formula, e=mc2, gives the amount of energy released by the complete conversion of
matter of mass m into energy e. If m represents the mass in kilograms and c represents the speed of
light in meters per second (3.0 ∗ 108 m/s), then the result is in the energy units Joules. It takes 360000
Joules to light a 100-watt light bulb for an hour. Create an Energy application that prompts the user for
a mass in kilograms and then displays the energy and the number of light bulbs that could be powered.
The application output should look similar to:

Exercise 6 —————————————————————— Change
Create a Change application that prompts the user for an amount less than $1.00 and then displays
the minimum number of coins necessary to make the change. The change can be made up of quarters,
dimes, nickels, and pennies. The application output should look similar to:

Exercise 7 ö —————————————————————— Digits
Modify the Digits application created in a review earlier in this chapter to show the hundreds-place
digit of a three digit number. The application output should look similar to:

Exercise 8 ———————————————————— DivAndMod
Create a DivAndMod application that prompts the user for two integers and then displays the result of
integer and modulus division in either order. The application output should look similar to:

Chapter 4 Variables and Constants 101

sa
mp
le

Exercise 9 —————————————————— TimeConversion
Create a TimeConversion application that prompts the user for a time in minutes and then displays
the time in hours and minutes. Be sure to consider times whether the number of minutes left over is
less than 10. For example, 184 minutes in hour:minute format is 3:04 (Hint: use the modulus operator).
The application output should look similar to:

Exercise 10 ——————————————————————— Sleep
Create a Sleep application that calculates the number of hours of your life that you have spent sleeping.
Assume that you sleep 8 hours each night. To simplify the problem, assume that there are 30 days in
each month and 365 days in each year. The application output should look similar to:

Exercise 11 ——————————————————————— Order
A fast food restaurant charges $1.69 for burgers, $1.09 for fries, and $0.99 for sodas.

a) Create an Order application that prompts the employee for the number of burgers, fries,
and sodas and then displays the total, the tax (6.5%), and the final cost. The application
output should look similar to:

b) Modify Order to prompt the employee for the amount tendered and then display the
change due. Application output should look similar to:

102 Chapter 4 Variables and Constants

sa
mp
le

Exercise 12 —————————————————————— Project
Create a Project application to help analyze the time taken for a Java project. The application should
prompt you for the time spent designing, coding, debugging, and testing, and then displays a table
showing the percentage of time taken for each part. The application output should look similar to:

Exercise 13 ————————————————————— Spending
Create a Spending application to help examine the spending patterns of a user. The application should
prompt the user for the amount spent last month on food, clothing, entertainment, and rent, and then
displays a table showing the percentage of expenditures in each category. The application output should
look similar to:

Exercise 14 ————————————————— CollegeCalculator
In small groups brainstorm all the expenses involved in attending a college or university (rent, tuition,
books, etc) and possible offset costs (scholarships, etc). Create a CollegeCalculator application that
prompts the user for the amount of each expense and offset cost. If the cost is not applicable the user
should enter a value of 0. Add the expenses and subtract the offset costs to determine how much money
an individual will need for their school year. College websites can be used as a guide to determine
relevant and appropriate expenses.

Chapter 4 Variables and Constants 103

sa
mp
le

Exercise 15 ——————————————————— SimpleInterest
There are two kinds of interest: simple and compound. With simple interest, the amount of the deposit
remains the same, and the amount of interest is paid at the end of a time interval. For example, if $1,000
is deposited for 7 years at an interest rate of 6% per year, $60 will be deposited at the end of each year,
for a total of $1,420 after 7 years.

a) The value of the amount after the term is calculated using the formula:

 Amount = Principal * (1 + years * interest rate)

 Create a SimpleInterest application that prompts the user for the principal, number of
years, and the interest rate (as a fraction) and then calculates the amount of interest.
The application should display output similar to:

b) The formula in part (a) can be adjusted to calculate what principal will need to be
invested in order to have a certain amount of money after a specified term and interest
rate:

 Principal = Amount / (1 + years * interest rate).

 Modify SimpleInterest to prompt the user for the desired amount, number of years,
and interest rate and then calculate the principal that will need to be invested.

Exercise 16 —————————————————————— Election
The results of a primary election between two candidates in three states are:

 Awbrey Martinez

New York 314159 271860

New Jersey 89008 121032

Connecticut 213451 231034

Write a program that prompts the user for the election results, and then displays output similar to:

104 Chapter 4 Variables and Constants

sa
mp
le

Chapter 5 Conditional Control Structures 105

sa
mp
le

Statements that branch to perform one action or another depending on
a condition are used to give an application decision-making capabilities.
This chapter focuses on the if and switch conditional control structures.

 The if Statement
 The if statement is a conditional control structure, also called a decision
structure, which executes a set of statements when a condition is true.
Conditional control structures are used to change program flow. The if
statement takes the form:

if (<condition>) {
 <statements>
}

For example, in the following if statement, guess == 7 is the condition, and
there is one statement that will be executed when this condition is true:

if (guess == SECRET _ NUM) {
 System.out.println("You guessed it!");
}

 The == relational operator determines if the value of guess is equal to the
value of SECRET _ NUM. If equal, the println() statement executes. If not, then
program flow continues to the next statement after the closing brace of
the if statement.

 The condition of an if statement is a Boolean expression, which evaluates
to either true or false. Relational operators can be used to form Boolean
expressions. There are six relational operators:

 Operator Meaning
 == equal
 < less than
 <= less than or equal
 > greater than
 >= greater than or equal
 != not equal

Chapter 5
Conditional Control Structures

TIP Using = instead of == in
an if statement condition gen-
erates an error.

conditional control structure

Boolean expression

relational operators

Comparing Objects
Because objects point to a
location in memory, rather
than directly storing a value,
they cannot be compared using
built-in relational operators. A
class defines methods that are
used to compare objects.

106 Chapter 5 Conditional Control Structures

sa
mp
le

 A boolean variable may also be used as the condition of an if statement
because its value is true or false. For example, in the following statements,
the message is displayed:

boolean gameOver = true;
if (gameOver) {
 System.out.println("Thanks for playing!");
}

 Roundoff Error
 The condition of an if statement should never make an equality com-
parison between floating point numbers because of the possibility of
roundoff error. A roundoff error occurs when a floating point number
cannot be exactly represented in binary notation by the computer. For
example, the decimal number 0.8 is a repeating decimal in binary form
(0.1100110011…). Since there are only a finite number of bits in memory that
can be used to represent a number, a repeating decimal must be rounded
off, preventing an exact representation.

 For example, consider the following statements:

if ((4.80 * 100 - 480) == 0) {
 System.out.println("Zero.");
}

The condition seems to evaluate to true. However, the number 4.80 cannot
be exactly represented in binary. Therefore, when 4.80 is multiplied by 100
the result is slightly different from 480. This difference is due to roundoff
error. In this case, subtracting 480 from 4.80 * 100 results in a very small
number that is not equal to 0 (–1.77635683940025E-14). The following state-
ments are one way to take into consideration possible roundoff error:

final double VERY _ SMALL _ VALUE = 0.000001
if ((4.80 * 100 - 480) < sngVERY _ SMALL _ VALUE) {
 System.out.println("Zero.");
}

 Review: SurfsUp – part 1 of 3
Create a SurfsUp application that prompts the user for the wave height and then displays “Great day for
surfing!” when the waves are 6 feet and over.

 The if-else Statement
 The if statement can include an optional else clause that is executed
when the if condition evaluates to false. The if-else statement takes the
following form:

if (<condition>) {
 <statements>
} else {
 <statements>
}

Chapter 5 Conditional Control Structures 107

sa
mp
le

For example, in the following if-else statement, different messages are
displayed for correct and incorrect guesses:

if (guess == SECRET _ NUM) {
 System.out.println("You guessed it!");
} else {
 System.out.println("Try again.");
}

 The indentation and organization of the if-else is important for read-
ability. The structure shown is a code convention that clearly indicates the
actions for a true condition and the actions for a false condition.

 Review: SurfsUp – part 2 of 3
Modify the SurfsUp application to display “Great day for surfing!” when the waves are 6 feet or over and
“Go body boarding!” when the waves are less than 6 feet.

 Review: CircleCircumference – part 2 of 2
Modify the CircleCircumference application from Chapter 4 so that the message “Negative radii are illegal.”
is displayed if a negative number is entered by the user for the radius value. Otherwise the application should
calculate and display the circumference of the circle.

 Nested Statements
An if-else statement can contain another if-else or if statement.
Statements placed within the same type of statements are called nested.
For example, the nested if-else gives a hint when the user does not guess
the correct number:

if (guess == SECRET _ NUM) { //correct
 System.out.println("You guessed it!");
} else {
 if (guess < SECRET _ NUM) { //too low
 System.out.println("Too low.");
 } else { //too high
 System.out.println("Too high.");
 }
}

Carefully indenting the statements makes it clear which are nested.

 Review: Stages
Create a Stages application that prompts the user for an age. For an age over 18, adult is displayed. For an age
less than or equal to 18, toddler is displayed when the age is less than or equal to 5, child when the age is less
than or equal to 10, preteen when the age is less than or equal to 12, and teen when the age is over 12.

108 Chapter 5 Conditional Control Structures

sa
mp
le

 The if-else if Statement
 The if-else if statement is used to decide among three or more actions
and takes the form:

if (<condition>) {
 <statements>
} else if (<condition>) {
 <statements>
} else {
 <statements>
}

There can be multiple else if clauses, and the last else clause is optional.
For example, there are three possible decisions in the if-else if statement
below:

if (guess == SECRET _ NUM) { //correct
 System.out.println("You guessed it!");
} else if (guess < SECRET _ NUM) { //too low
 System.out.println("Too low.");
} else { //too high
 System.out.println("Too high.");
}

 The logic used in developing an if-else if statement is important. For
example, when testing a range of numbers, if conditions must be properly
ordered because statements are executed for the first true condition only
and then program flow continues to the next statement after the if-else
if.

 When choosing between nested if-else statements and a single if-else
if statement, the if-else if allows only one branch to execute and the
conditions show a clear sequence. In general, the if-else if statement is
easier to read and understand.

 Review: SurfsUp – part 3 of 3
Modify the SurfsUp application to display “Great day for surfing!” when the waves are 6 feet or over, “Go
body boarding!” when the waves are between 3 and 6 feet, ”Go for a swim.” when the waves are from 0 to
3 feet, and “Whoa! What kind of surf is that?” otherwise.

 Review: Discriminant
In mathematics, the quantity b2 – 4ac is called the “discriminant.” Create a Discriminant application that
prompts the user for the values of a, b, and c an then displays “No roots” if the discriminant is negative,
“One root” is the discriminant is zero, and “Two roots” if the discriminant is positive. Application output
should look similar to:

Commenting Complex
Decision Structures

Decision structures with many
branches can quickly become
difficult to understand. Brief
inline comments can make
code much more readable.
This is especially important
for the last branch of a deci-
sion structure, which usually
does not include an explicit
condition.

Chapter 5 Conditional Control Structures 109

sa
mp
le

 The switch Statement
 The switch statement is a conditional control structure that uses the
result of an expression to determine which statements to execute. The
switch statement is sometimes preferable to the if-else if statement
because code may be easier to read. The switch statement takes the form:

switch (<integer expression>) {
 case x:
 <statement>;
 break;
 ...
 default:
 <statements>;
 break;
}

The expression must evaluate to an integer. There can be multiple case
clauses. The break statement is necessary to move program control to the
next statement after the switch statement. The default code is optional and
is executed when none of the previous cases are met. For example, when
score is 5, the case 5 statement executes and then program control moves
to the next statement after the switch (skipping the case 10 statement):

switch (score) {
 case 0: System.out.println("Better luck next time."); break;
 case 5: System.out.println("Pretty good."); break;
 case 10: System.out.println("Great!"); break;
}

If the break statement is not included in a case clause, execution continues
on to the next statement within the switch statement. This can be useful
when the same set of statements applies to more than one situation:

switch (score) {
 case 0: System.out.println("Better luck next time."); break;
 case 1:
 case 2:
 case 3:
 case 4:
 case 5: System.out.println("Pretty good."); break;
 case 6:
 case 7:
 case 8:
 case 9:
 case 10: System.out.println("Great!"); break;
}

In this statement, “Pretty good.” is displayed when the score is 1, 2, 3, 4,
or 5. Scores 6 though 10 display “Great”.

case
break

110 Chapter 5 Conditional Control Structures

sa
mp
le

 Review: Hurricane
The Saffir-Simpson Hurricane Scale provides a rating (a category) depending on the current intensity of a
hurricane. Create a Hurricane application that displays the wind speed for the hurricane category entered
by the user. Display the speed in miles per hour (mph), knots (kts), and kilometers per hour (km/hr). Refer
to the Saffir-Simpson Hurricane Scale below for wind speeds:

Category 1: 74-95 mph or 64-82 kt or 119-153 km/hr

Category 2: 96-110 mph or 83-95 kt or 154-177 km/hr

Category 3: 111-130 mph or 96-113 kt or 178-209 km/hr

Category 4: 131-155 mph or 114-135 kt or 210-249 km/hr

Category 5: greater than 155 mph or 135 kt or 249 km/hr

 Generating Random Numbers
 Games, simulators, screen savers, and many other types of applications
make use of random numbers. A widely used method for generating ran-
dom numbers is called the Linear Congruential Method. This method uses
a formula to generate a sequence of numbers. Although the numbers in
the sequence vary and for most applications can be considered random,
the sequence will at some point repeat. Therefore, random numbers in a
computer application are referred to as pseudorandom (like random).

 Java includes the Random class in the java.util package for generating
random numbers. This class uses the Linear Congruential Method. Some
of the Random class methods include:

Class Random (java.util.Random)

Methods
nextInt() returns the next random integer in the random

number generator’s sequence.
nextInt(int n) returns the next random integer between 0

(inclusive) and n in the random number gener-
ator’s sequence.

nextDouble() returns the next random double between 0.0
and 1.0 in the random number generator’s
sequence.

The RandomNumberDemo class below instantiates a Random object and
displays the first five numbers between 0 and 100 in its sequence:

public class RandomNumberDemo {

 public static void main(String[] args) {
 Random r = new Random();

 System.out.println("First number: " + r.nextInt(100));
 System.out.println("Second number: " + r.nextInt(100));
 System.out.println("Third number: " + r.nextInt(100));
 System.out.println("Fourth number: " + r.nextInt(100));
 System.out.println("Fifth number: " + r.nextInt(100));
 }
}

Linear Congruential Method

pseudorandom

Random class

Chapter 5 Conditional Control Structures 111

sa
mp
le

RandomNumberDemo produces output similar to the following:

 To generate a random number in a range with a minimum value greater
than 0, the following formula is used:

r.nextInt(highNum - lowNum + 1) + lowNum

 A similar formula can be used to generate random doubles in a range:

(highNum - lowNum + 1) * r.nextDouble() + lowNum

 The Linear Congruential Method requires a seed, which is a starting
value, for calculating a sequence of numbers. Java automatically gener-
ates this seed when a new Random object is instantiated. However, if a
seed value is specified, the same sequence of “random” numbers will be
generated each time the program is run. This can be useful for debugging.
After the program has been tested, remove the seed so that the sequence of
generated numbers vary each time the application runs. For example, the
code below specifies a seed. Two runs of the application are displayed:

public class RandomNumberDemo {

 public static void main(String[] args) {
 Random r = new Random(10);

 System.out.println("First number: " + r.nextInt(100));
 System.out.println("Second number: " + r.nextInt(100));
 System.out.println("Third number: " + r.nextInt(100));
 System.out.println("Fourth number: " + r.nextInt(100));
 System.out.println("Fifth number: " + r.nextInt(100));

 }
}

first run: second run:

Two runs of RandomNumberDemo using the same seed.

Note that both runs generate the same sequence of
numbers.

 Review: RandomNum
Create a RandomNum application that prompts the user for two numbers. The first number is a minimum
value and the second is a maximum value. RandomNum then displays an integer between the min and max
values entered by the user.

random numbers in a range

seed

112 Chapter 5 Conditional Control Structures

sa
mp
le

 Compound Boolean Expressions
 Conditions with complex criteria are formed using the && and ||
operators. The && operator is called the logical And. It is used to form an
expression that evaluates to true only when both operands are also true.
The || operator is called the logical Or. An expression formed with this
operator evaluates to true when either operand is true. For example, the
following statement tests for invalid guesses:

if (guess < 1 || guess > 50) { //invalid guess
 System.out.println("Invalid guess.");
} else if (guess == SECRET _ NUM) { //correct guess
 System.out.println("You guessed it!");
}

When a guess is either less than 1 or greater than 50, “Invalid guess.”
is displayed. Note that the expression also evaluates to true when both
operands are true. The condition in the if statement is called a compound
Boolean expression because more than one Boolean expression determines
whether the condition is true or false.

 How a compound Boolean expression evaluates with && and || operators
can be shown with truth tables. A truth table shows the possible outcomes
of compound Boolean expressions:

 And Or
Exp1 Exp2 Result Exp1 Exp2 Result
True True True True True True
True False False True False True
False True False False True True
False False False False False False

 As another example, consider an application that computes a discount
depending on the item and quantity purchased:

if (itemNum == 873 && quantity > 50) { //more than 50 of 873
 discount = 1; //$1 discount
}

This if statement executes the discount = 1 statement if item number is
873 and quantity is greater than 50.

 A third operator is !. The ! operator is called the logical Not. An expres-
sion including ! is evaluated according to the following truth table:

 Not
Exp Result
True False
False True

 For example, the following statements display a message when the item
number is not 873:

if (!itemNum == 873) { //any item EXCEPT 873
 System.out.println("No discount given.");
}

TIP The | key is located above
the Enter key on most standard
keyboards.

&& and ||

truth table

!

logical And

logical Or

Chapter 5 Conditional Control Structures 113

sa
mp
le

 Java uses short-circuit evaluation for determining the result of a com-
pound Boolean expression that includes && or ||. In short-circuit evaluation,
the left operand is evaluated first. If the result of the entire expression can
be determined by the value of the left operand, then no other operands will
be evaluated. For example, the expression x < 0 || x > 5 evaluates to true
if x is less than 0 regardless of the value of x > 5. Therefore, when x is less
then 0, the second operand will not be evaluated. As another example, the
expression x > 5 && x < 20 evaluates to false if x is less than or equal to
5 regardless of the value of x < 20. Therefore, when x is less than or equal
to 5, the second operand will not be evaluated.

 In the order of operations, ! is evaluated before &&. || is evaluated last.
For example, the expression !5 < 6 || 2 > 4 && 3 < 6 evaluates to false
because !5 < 6 is performed first, then 2 > 4 && 3 < 6, and then False ||
False. Use parentheses to change operator precedence and to make code
more readable.

 Review: Delivery
Create a Delivery application that prompts the user for the length, width, and height of a package, and then
displays “Reject” if any dimension is greater than 10, and “Accept” if all the dimensions are less than or
equal to 10.

 The Math Class
 Java includes the Math class in the java.lang package for performing
math functions such as exponentiation and square root. The Math class
contains numerous methods, which include:

Class Math (java.lang.Math)

Methods
abs(num) returns the absolute value of num, which can be

an int or a double value.
pow(double num1, double num2)

 returns the num1 raised to the num2 power.
sqrt(double num)

 returns the square root of num, where num is a
positive number.

 Calling a Math method requires using the class name. For example,
Math.abs(-3) returns 3. The application on the next page demonstrates the
Math methods:

order of operations

java.lang

TIP The Math class also con-
tains the double constant PI
that approximates π.

short circuit evaluation

114 Chapter 5 Conditional Control Structures

sa
mp
le

import java.lang.Math;

 public class TestMathMethods {

 public static void main(String[] args) {
 int posNum = 12, negNum = -12;
 int num1 = 2, num2 = 6;
 int square = 49;

 System.out.println("The absolute value of " + posNum
 + " is " + Math.abs(posNum));
 System.out.println("The absolute value of " + negNum
 + " is " + Math.abs(negNum));
 System.out.println(num1 + " raised to the " + num2
 + " power is " + Math.pow(num1, num2));
 System.out.println("The square root of " + square
 + " is " + Math.sqrt(square));
 }
}

The TestMathMethods produces the following output:

 Review: PerfectSquare
Create a PerfectSquare application that prompts the user for an integer and then displays a message indicat-
ing whether or not the number is a perfect square. This can be determined by finding the square root of a
number, truncating it (by casting the double result), and then squaring that result.

 Chapter 5 Case Study
 In this case study, a computerized version of the Rock Paper Scissors
game will be created. Rock Paper Scissors is a popular game played
between two individuals for decision making or just for competitive fun.
The rules of the game are Rock dulls Scissors (Rock wins), Scissors cuts
Paper (Scissors wins), and Paper covers Rock (Paper wins). The two players
make a “throw” at the same time. The hand signals thrown by the players
are then compared to the rules of the game to determine the winner. In
the computerized version, the user plays against the computer.

RPS Specification

 RPS is played between the computer and a single player. The player is
prompted for a throw where 1 corresponds to Rock, 2 to Paper, and 3 to
Scissors. A random number between 1 and 3 is generated for the com-
puter throw. The winner is determined based on the rules of Rock Paper
Scissors.

Chapter 5 Conditional Control Structures 115

sa
mp
le

 The RPS interface should be simple. The user will be prompted to enter
an integer between 1 and 3, where 1 represents Rock, 2 represents Paper,
and 3 represents Scissors. The program then generates a random number
between 1 and 3, displays the generated number and the player’s number
and determines a winner.

 The RPS output sketch:

���
�����������������������
����������������������
������������

 The RPS algorithm:

1. Prompt the user for a number between 1 and 3.

2. Generate a random number between 1 and 3.

3. Compare the generated number to the number typed by the
user.

4. Determine a winner and display an appropriate message.

 The RPS flowchart:

�����

�����������
�����������

�����������
����

����������������
�������������������

��������������
�������

����������������
�������

���

��

���

TIP The flowchart object
represents a decision.

116 Chapter 5 Conditional Control Structures

sa
mp
le

RPS Code Design

 The input for RPS is a number typed by the user. An integer variable
to store the user’s input will be needed.

 The output for RPS is a message with the user’s input, the generated
number, and the winner.

 Data generated by RPS is a random integer between 1 and 3, which
represents the computer’s “throw.” An int variable to store the computer-
generated number will be needed. Other data used in this application can
be represented by int constants that represent Rock (1), Paper (2), and
Scissors(3).

 Based on the algorithm and flowchart, the code design for the RPS
application will include decision structures to compare the user’s input to
the number generated by the computer. This comparison can be done with
either a switch statement or if-else if statements. For this implementation,
an if-else if will be used. A pseudocode algorithm for RPS follows:

Prompt user for a number (1=Rock, 2=Paper, 3=Scissors)
Generate a random number between 1 and 3, inclusive
Display a message with player's number and computer's number
if (playerThrow == 1 and computerThrow == 1)
 Draw message
else if (playerThrow == 1 and computerThrow == 2)
 Computer wins message
else if (playerThrow == 1 and computerThrow == 3)
 Player wins message
if (playerThrow == 2 and computerThrow == 1)
 Player wins message
else if (playerThrow == 2 and computerThrow == 2)
 Draw message
else if (playerThrow == 2 and computerThrow == 3)
 Computer wins message
if (playerThrow == 3 and computerThrow == 1)
 Computer wins message
else if (playerThrow == 3 and computerThrow == 2)
 Player wins message
else if (playerThrow == 3 and computerThrow == 3)
 Draw message

RPS Implementation

 Based on the code design, the RPS implementation follows:

/*
 * RPS.java
 */

 import java.util.Scanner;
 import java.util.Random;

 /**
 * Plays Rock Paper Scissors against one player.
 */
 public class RPS {

 public static void main(String[] args) {
 final int ROCK = 1, PAPER = 2, SCISSORS = 3;
 int playerThrow, computerThrow;
 Scanner input = new Scanner(System.in);
 Random rand = new Random();

Chapter 5 Conditional Control Structures 117

sa
mp
le

 /* prompt player for throw and read number typed */
 System.out.print("Enter your throw (1=Rock, 2=Paper, 3=Scissors): ");
 playerThrow = input.nextInt();
 input.close();

 /* Generate computer throw */
 computerThrow = rand.nextInt(3) + 1; /* random integer between 1 and 3 */

 /* Inform player of throws */
 System.out.print("Player throws ");
 switch (playerThrow) {
 case ROCK: System.out.println("ROCK."); break;
 case PAPER: System.out.println("PAPER."); break;
 case SCISSORS: System.out.println("SCISSORS."); break;
 }
 System.out.print("Computer throws ");
 switch (computerThrow) {
 case ROCK: System.out.println("ROCK."); break;
 case PAPER: System.out.println("PAPER."); break;
 case SCISSORS: System.out.println("SCISSORS."); break;
 }

 /* Determine winner */
 if (playerThrow == ROCK && computerThrow == ROCK) {
 System.out.println("It's a draw!");
 } else if (playerThrow == ROCK && computerThrow == PAPER) {
 System.out.println("Computer wins!");
 } else if (playerThrow == ROCK && computerThrow == SCISSORS) {
 System.out.println("Player wins!");
 }

 if (playerThrow == PAPER && computerThrow == ROCK) {
 System.out.println("Player wins!");
 } else if (playerThrow == PAPER && computerThrow == PAPER) {
 System.out.println("It's a draw!");
 } else if (playerThrow == PAPER && computerThrow == SCISSORS) {
 System.out.println("Computer wins!");
 }

 if (playerThrow == SCISSORS && computerThrow == ROCK) {
 System.out.println("Computer wins!");
 } else if (playerThrow == SCISSORS && computerThrow == PAPER) {
 System.out.println("Player wins!");
 } else if (playerThrow == SCISSORS && computerThrow == SCISSORS) {
 System.out.println("It's a draw!");
 }
 }
}

The RPS application output looks similar to:

118 Chapter 5 Conditional Control Structures

sa
mp
le

RPS Testing and Debugging

 This case study should test all possible throw combinations. To do this,
a seed can be used so that the same random number is generated from
run to run. By varying only the player input from run to run, each of the
combinations can be tested. To specify the seed, the Random object is
instantiated with an integer argument:

 Random rand = new Random(3);

Note that any number will work for the seed. The point is to use a seed so
that the same random number is generated from run to run. Running the
application with a seed reduces the number of factors to consider when
testing. Three runs using the same seed look similar to:

Different seeds can be used until all combinations are tested. Note that
this application has a small and limited number of combinations to test.
Other methods of testing will be discussed as applications become more
complex.

 Testing also involves considering user input and exception handling.
What happens when the player enters 4? How should illegal input be
handled? Preventing input errors and exception handling are discussed
later in the text.

 Review: RPS – part 1 of 2
Modify the RPS Chapter 5 Case Study to use nested if-else statements rather than if-else if statements
to determine the winner.

 Review: RPS – part 2 of 2
Modify the RPS Chapter 5 Case Study to use a switch statement to determine the winner. (Hint: You may
need an if-else if statement within the case statements.)

Chapter 5 Conditional Control Structures 119

sa
mp
le

 Chapter Summary
 This chapter introduced conditional control structures, random num-
bers, and logical operators. Conditional control structures, also called
decision structures, include the if and switch statements. The if uses the
result of a Boolean expression to determine program flow, and the switch
uses the result of an integer expression to determine program flow.

 In the if statement, program flow branches to a set of statements when
the condition evaluates to true. In the if-else statement, program flow
branches to one set of statements for a true condition and a different set
when the condition is false. Nested if-else statements can be used for
even more control over program flow. The if-else if is used to decide
among three or more actions.

 Relational operators can be used to form a Boolean expression. They
include the ==, <, <=, >, >=, and != operators. Two or more Boolean expres-
sions can be joined with logical operators to form a compound Boolean
expression. Logical operators include && (logical And), || (logical Or), and
! (logical Not). A truth table shows how a compound Boolean expression
evaluates.

 Roundoff error occurs when a floating point number cannot be exactly
represented in binary notation by the computer. Therefore equality com-
parisons between floating point numbers should not be made.

 The switch statement contains multiple case clauses. A break statement
is required to move program control out of the switch statement.

 Java uses the Linear Congruential Method to generate a sequence of
random numbers. Because the sequence eventually repeats, random num-
ber in a computer application are really pseudorandom. Java includes the
Random class in the java.util package for generating random numbers. If
a seed value is specified, a Random object will generate the same sequence
of random numbers each time the application is run.

 The Math class, part of the java.lang package, contains many useful
methods for performing math functions. Calling a Math method requires
including the class name.

 Code conventions introduced in this chapter are :

• The clauses of an if statement should be indented.

• nested if statements should be indented.

• The case clause of a switch statement should be indented.

120 Chapter 5 Conditional Control Structures

sa
mp
le

 Vocabulary

Boolean expression An expression that evaluates
to true or false.

Compound Boolean expression An expression that
includes more than one Boolean expression.

Conditional control structure A statement that
branches program flow depending on a condition.
Also called a decision structure.

Decision structure see Conditional control
structure.

Linear Congruential Method A method that uses
a formula to generate a sequence of pseudorandom
numbers.

Logical And The && operator used to form a com-
pound Boolean expression.

Logical Not The ! operator used to reverse the
value of a Boolean expression.

Logical Or The || operator used to form a compound
Boolean expression.

Nested A statement placed within the same type
of statement.

Pseudorandom Not truly random, but like
random.

Relational operator Operators (==, <, <=, >, >=, !=)
that can be used to form a Boolean expression.

Roundoff error An error that occurs when a float-
ing point number cannot be exactly represented in
binary notation by the computer.

Seed A starting value for calculating a sequence
of random numbers.

Short circuit evaluation A process for determin-
ing the result of a Boolean expression where the left
operand is evaluated first. If the result of the entire
expression can be determined by the left operand,
no other operands are evaluated.

Truth table A table that shows the possible outcomes
of two expressions joined by a logical operator.

Chapter 5 Conditional Control Structures 121

sa
mp
le

 Java

== The equality relational operator.

< The less than relational operator.

<= The less than or equal relational operator.

> The greater than relational operator.

>= The greater than or equal relational operator.

!= The not equal relational operator.

&& The logical And operator.

|| The logical Or operator.

! The logical Not operator.

break A statement that moves program control to
the next statement after the current structure.

case A clause in the switch statement that contains
statements to be executed when the case condition
matches the result of the switch expression.

if A decision structure that executes a set of state-
ments when a condition is true.

if-else A decision structure that executes one set
of statements when a condition is true and another
set of statements when the condition is false.

if-else if A decision structure used to decide
among three or more actions.

Math A java.lang class with methods for performing
math functions.

switch A decision structure that uses the result of
an expression to determine which set of statements
to execute.

Random A java.util class with methods for
generating random integers and doubles.

122 Chapter 5 Conditional Control Structures

sa
mp
le

 Critical Thinking

1. Use a decision structure to write an appropriate
statement for each of the following:

 a) Display Great job! when grade is 90 or
higher.

 b) Display Error when number is less than 20 or
greater than 50.

 c) Add 2 to the value of y when y is less than
100.

2. Assume num1 and num2 contain integer values.
Write an if-else if statement that displays one
of the following messages as appropriate:

 First number is larger.
 Second number is larger.
 Numbers are equal.

3. a) Which is the appropriate word, odd or even
for the blanks below?

 if (num % 2 == 0) {
 System.out.println("___ number");
 } else {
 System.out.println("___ number");
 }

 b) Rewrite the if-else as a switch statement.

4. The nextInt() method in the Random class
generates a random integer between 0 and a
specified maximum value. Write a formula that
includes the nextInt() method for each of the
following situations:

 a) Generate a random integer between 1 and
50.

 b) Generate a random integer between 20 and
100.

 c) Generate a random double between 10 and
20, inclusive.

5. Identify the logic errors in the statements below,
which should display a single appropriate mes-
sage for any value of age:

 if (age < 18) {
 System.out.println("child");
 } else if (age > 18 && age < 65) {
 System.out.println("adult");
 } else if (age > 65) {
 System.out.println("senior");
 }

6. Given the following assignments, determine if
each of the following expressions evaluates to
true or false:

 size = 100 weight = 50 value = 75
 a) size > 50 && weight == 50
 b) value < 100 && !(weight == 50)
 c) size >= 100 || value >= 100
 d) weight < 50 || size > 50
 e) !(value < 75)
 f) !(size > 100 && weight >50 && value > 75)
 g) (value < 125 || weight < 76) && size ==100

7. a) Write a statement that will calculate yx.
 b) Write a statement that will calculate the abso-

lute value of y.
 c) Write a statement that will calculate the

square root of y.

True/False

8. Determine if each of the following are true or
false. If false, explain why.

 a) The condition of an if statement must be a
Boolean expression.

 b) A roundoff error can occur when comparing
two integers.

 c) A nested if statement and an if-else if
statement are the same.

 d) The expression in a switch statement must
evaluate to a double.

 e) Numbers generated by a computer program
are actually pseudorandom.

 f) Specifying a seed value results in a different
sequence of “random” numbers each time
the program is run.

 g) A compound Boolean expression can contain
more than two Boolean expressions.

 h) In a logical And expression, both operands
must be true for the expression to evaluate
to true.

 i) In logical expressions, && is evaluated before
!.

 j) The pow() method in the Math class is used
for exponentiation.

 k) The statement x = abs(-3); will return the
value 3.

 l) A diamond shaped object represents a deci-
sion in a flowchart.

Chapter 5 Conditional Control Structures 123

sa
mp
le

 Exercises

Exercise 1 —————————————————————— Printing
Printing prices are typically based on the number of copies to be printed. For example:

0 – 99 $0.30 per copy

100 – 499 $0.28 per copy

500 – 749 $0.27 per copy

750 – 1000 $0.26 per copy

over 1000 $0.25 per copy

Create a Printing application that prompts the user for the number of copies to print and then displays
the price per copy and the total price for the job. Application output should look similar to:

Exercise 2 ——————————————————— PackageCheck
A delivery service does not accept packages heavier than 27 kilograms or larger than 0.1 cubic meters
(100,000 cubic centimeters). Create a PackageCheck application that prompts the user for the weight of
a package and its dimensions (length, width, and height), and then displays an appropriate message
if the package does not meet the requirements. Messages should include:

Too heavy.
Too large.
Too heavy and too large.

The application output should look similar to:

Exercise 3 ——————————————————————— Eggs
A wholesale egg company bases their prices on the number of eggs purchased:

0 up to but not including 4 dozen $0.50 per dozen

4 up to but not including 6 dozen $0.45 per dozen

6 up to but not including 11 dozen $0.40 per dozen

11 or more dozen $0.35 per dozen

Extra eggs are priced at 1/12 the per dozen price.

124 Chapter 5 Conditional Control Structures

sa
mp
le

Create an Eggs application that prompts the user for the number of eggs, and then calculates the bill.
The application output should look similar to:

Exercise 4 ————————————————————— CarRecall
An auto company produced some models of cars that may be difficult to drive because the car wheels
are not exactly round. Cars with model numbers 119, 179, 189 through 195, 221, and 780 have been found
to have this defect. Create a CarRecall application that prompts a customer for the model number of
their car to find out if it is defective and then displays “Your car is not defective.” when the user typed
a model number without a defect. Otherwise, the message “Your car is defective. It must be repaired.”
should be displayed. Application output should look similar to:

Exercise 5 ——————————————————————— Grade
Create a Grade application that prompts the user for the percentage earned on a test or other graded
work and then displays the corresponding letter grade. The application should use the grading scale
at your school or the following grading scale:

90 – 100 A
80 – 89 B
70 – 79 C
60 – 69 D
below 60 F

 The application output should look similar to:

Exercise 6 ————————————————————— MathTutor
Create a MathTutor application that displays math problems by randomly generating two numbers, 1
through 10 and an operator (*, +, –, /), and then prompts the user for an answer. The application should
check the answer, display a message, and the correct answer, if necessary. The application output
should look similar to:

Chapter 5 Conditional Control Structures 125

sa
mp
le

Exercise 7 ———————————————— EquivalentFractions
Create an EquivalentFractions application that quizzes the user on equivalent fractions.

a) Display eight fractions and prompt the user to match pairs of equivalent fractions.
Application output should look similar to:

b) Modify the EquivalentFractions application to display the user’s score.

c) Modify the EquivalentFractions application to have the user select a beginner or
advanced mathematical level and based on their choice display a different set of frac-
tions.

Exercise 8 ————————————————— RandomGenerator
Create a RandomGenerator application that implements the Linear Congruential Method. The formula
used by this method is:

Xn-1 = (aXn + c) % m

Use constant integers for a, c, and m. Choose a seed integer value for X0. Show 10 numbers from the
sequence. Application output should look similar to:

Note the sequence shown in the output repeats after five numbers. Experiment by changing the values
for a, c, m, and X0 (the seed) to see which values create the most “random” sequence of numbers (the
largest set of nonrepeating numbers).

126 Chapter 5 Conditional Control Structures

sa
mp
le

Exercise 9 —————————————————— GuessingGame
The GuessingGame is a number guessing game played between the computer and one player. The
GuessingGame algorithm follows:

1. Determine a secret number between 1 and 20.

2. Prompt the player for a number between 1 and 20.

3. Compare the player’s number to the secret number.

4. Display the secret number and the player’s number.

5. If the player’s number matches the secret number, then display a “You won!” message.
Otherwise display a “Better luck next time.” message.

a) Draw a GuessingGame flowchart based on the algorithm.

b) Create the GuessingGame application. The application output should look similar
to:

c) Write down how the application was tested and list any debugging techniques used.

Exercise 10 —————————————————————— Volumes
The volume of objects are calculated differently depending on the shape of the object.

a) The volume of rectangular prism is calculated using the formula:

 Create a Volumes application that prompts the user for the length, width, and height
of a rectangular prism and then calculates the volume.

b) The volume of a sphere is calculated using the formula:

Chapter 5 Conditional Control Structures 127

sa
mp
le

 Modify the Volumes application to prompt the user for the radius (d = 2*r) of a sphere
after displaying the volume of the rectangular prism. The application should then
display the volume of the sphere.

c) The volume of a cube is calculated using the formula:

 Modify the Volumes application to prompt the user for the length of each side of a cube
after displaying the volume of the rectangular prism and the sphere. The application
should then display the volume of the cube.

 The application output should look similar to:

Exercise 11 ————————————————— QuadraticEquation
Create a QuadraticEquation application that gives the solution to any quadratic equation. The applica-
tion should prompt the user for values for a, b, and c (ax2 + bx + c = 0) and then display the roots, if
any. The quadratic equation takes the form:

Application output should look similar to:

128 Chapter 5 Conditional Control Structures

sa
mp
le

Exercise 12 —————————————————————— MyPow
Create a MyPow application that uses the formula e (Y * log(X)) to calculate XY. The MyPow application
should prompt the user for two numbers and then display the result from the formula and, for com-
parison, show the same result using the Math pow() method. The application should display output
similar to:

The Math library provides methods for calculating base 10 and base e (natural) logarithms. The exp()
method raises e to a given power:

Class Math (java.lang.Math)

Methods
log(double num) returns the natural logarithm of num.
log10(double num) returns the base 10 logarithm of num.
exp(double num) returns e raised to the power of num.

Exercise 13 ———————————————————— CarPayment
Create a CarPayment application that calculates a monthly car payment after prompting the user for
the principal owing (P), the interest rate (r) and the number of monthly payments (m). The monthly
car payment is calculated using the formula:

������������

�������������������������

Application output should be similar to:

Chapter 5 Conditional Control Structures 129

sa
mp
le

Exercise 14 —————————————————— BacteriaGrowth
The formula y = nekt can be used for estimating growth where:

y is the final amount

n is the initial amount

k is a constant

t is the time

For example, this formula could be used for estimating population growth in a region or for estimating
cell growth in a lab experiment. Create a BacteriaGrowth application that calculates how many bacte-
ria will be present based on this formula. The application should prompt the user initial bacteria, the
constant k, and the time. Refer to Exercise 12 for documentation for the Math methods for this exercise.
Application output should look similar to:

Exercise 15 ——————————————————————— Decay
The formula used in Exercise 14 for growth problems can also be used in decay problems. In decay prob-
lems, k is negative. Create an application that allows the user to select from the following options:

• calculate the final amount: ne–kt

• calculate the initial amount: y / e–kt

• calculate the constant (called the half-life): (log (y/n)) / t

 (where log e = 0.4343)

The application should prompt the user to select one of the three choices and based on the selected
option prompts the user to enter the appropriate known information. For example, a radioactive mass of
200 grams will reduce to 100 grams in 10 years. Based on this information, the half-life is calculated to
be –0.06931. Refer to Exercise 12 for documentation for the Math methods for this exercise. Application
output should look similar to:

130 Chapter 5 Conditional Control Structures

sa
mp
le

Exercise 16 ——————————————————— TrigFunctions
Create a TrigFunctions application that prompts the user for an angle in degrees and then displays the
sine, cosine, and tangent of the angle. The application should display output similar to:

The Math library provides methods for performing trigonometric functions:

Class Math (java.lang.Math)

Methods
sin(double angle) returns the sine of angle, where angle is in

radians.
cos(double angle) returns the cosine of angle, where angle is

in radians.
tan(double angle) returns the sine of angle, where angle is in

radians.
toRadians(double deg)

converts degrees to radians.

Exercise 17 ———————————————— InverseTrigFunctions
Create an InverseTrigFunctions application that prompts the user for an angle in degrees and then
displays the arcsin, arccos, and arctan of the angle. The application should display output similar to:

The Math library provides methods for performing trigonometric functions:

Class Math (java.lang.Math)

Methods
asin(double s) returns the angle, in radians, that has the

sine s.
acos(double s) returns the angle, in radians, that has the

cosine s.
atan(double s) returns the angle, in radians, that has the

tangent s.
toDegrees(double rad)

converts radians to degrees.

Chapter 6 Loop Structures and Strings 131

sa
mp
le

Loop structures, counters and accumulators, and flags are explained
in this chapter. Debugging techniques and the String class are also
discussed.

 The while Statement
 The while statement is a loop structure, which executes a set of statements
over and over again based on a condition. Loop structures are used to
perform tasks such as summing a set of numbers as they are entered by
the user or repeatedly prompting the user for a value until valid data is
entered. The while statement takes the form:

while (<condition>) {
 <statements>
}

The condition of the while loop is a Boolean expression, which is evaluated
before the statements are executed. When the condition is true the state-
ments are executed, when the condition is false program flow continues to
the next statement after the closing curly brace of the while. Each execution
of the loop is called an iteration. Note that a while loop may never execute
if the condition initially evaluates to false.

 The following while statement executes five times:

int num = 0;
while (num < 5) {
 num += 1;
}

After the fifth execution, num is equal to 5, making the condition false.

 The do-while Statement
 The do-while statement is an alternative form of the while statement. In
the do-while statement the condition is not evaluated until after the first
execution of the loop. Therefore, the do-while executes at least once.

 The do-while takes the following form:

do {
 <statements>
} while (<condition>);

Chapter 6
Loop Structures and Strings

loop structure

iteration

Nested Loops
A loop structure can contain
another loop structure. Loops
placed within a loop are called
nested loops. Each time the
outer loop iterates, the inner
loop iterates until its condition
is met.

132 Chapter 6 Loop Structures and Strings

sa
mp
le

 The following do-while example prompts the user until a valid number
is entered:

do {
 System.out.print("Enter a number less than 4:");
 playerNum = input.nextInt();
} while (playerNum >= 4);

 Infinite Loops
 The condition of a loop is used to determine when the loop should stop
executing. A while continues until its condition is false. What happens,
though, if the condition never becomes false? The result is an infinite
loop—one which continues forever. For example, the following generates
an infinite loop. Can you see why?

int num = -1;
while (num < 0) {
 num = -1;
}

The code causes the application to simply stop responding or just “hang.”
When this happens, close the output window to end the application. Note
that some compilers may require a different procedure to end an infinite
loop.

 Syntax errors are a common cause of infinite loops. For example, a
semicolon after the condition causes the statement to check the condition,
do nothing, check the condition, do nothing, and on and on:

while (num < 0); { //an infinite loop here--added semicolon
 num += 1;
}

 Another example of a syntax error that can lead to an infinite loop is
omitting the curly braces:

while (num < 0) //an infinite loop here--no braces
 System.out.print("Enter a value: ");
 num = input.nextInt();

In this case, only the first statement is executed and num is never assigned
the input. Although properly done, the indentation makes it difficult to
find the syntax error.

 A logic error can also lead to an infinite loop condition. For example, in
the code below num is initialized to 1 and never decremented to a number
less than 0 in the loop, making the condition of the loop structure always
true:

int num = 1;
do {
 num += 1;
} while (num >= 0);

In this case, the loop isn’t infinite because num is eventually assigned a
number so large that an overflow results. An overflow occurs when there
are not enough bits to store a number. This may generate a run-time error
or, in the case of the code above, actually cause the condition to become
false. An overflow changes the sign of the number stored.

overflow

Chapter 6 Loop Structures and Strings 133

sa
mp
le

 Review: Prompter
Create a Prompter application that prompts the user for two numbers. The first number is a min value and
the second is a max value. Prompter then prompts the user for a number between the min and max numbers
entered. The user should be continually prompted until a number within the range is entered. Be sure to
include the min and max numbers in the prompt.

 Counters and Accumulators
 Many algorithms require counting and summing values. For example,
an application that calculates the average of a set of numbers must sum
the numbers and then divide the total by the count. The AverageValue
application performs counting and summing. A run of the application
looks similar to:

 The AverageValue application is based on the pseudocode:

Prompt user for a value
while (value != 0)
 count value
 add value to sum of values
 prompt user for another value
Display average of values (sum/count)

 A program that counts the number of values entered by the user is
actually counting the number of loop iterations. To count loop iterations,
a statement similar to the following is used within the loop:

numValues += 1;

Each time the statement executes, one is added to the current value of the
variable. This type of variable is called a counter because it is incremented
by a constant value. Counters are useful for keeping track of the number
of times a user enters a value, makes a guess, or types a password. A
counter should be initialized when it is declared and then incremented
by a fixed amount.

 A similar assignment statement is used to sum values as they are
entered by the user:

sumOfValues += newValue;

Each time the statement executes, the value of newValue is added to the
current value of the variable. This type of variable is called an accumulator
because its value “accumulates.” As with a counter, an accumulator should
be initialized when it is declared.

134 Chapter 6 Loop Structures and Strings

sa
mp
le

 The AverageValue code includes both a counter (numValues) and an
accumulator (sumOfValues):

/* AverageValue application. */

import java.util.Scanner;

 /**
 * Displays the average of a set of numbers
 */
 public class AverageValue {

 public static void main(String[] args) {
 final int SENTINEL = 0;
 int newValue;
 int numValues = 0;
 int sumOfValues = 0;
 double avg;
 Scanner input = new Scanner(System.in);

 /* Get a set of numbers from user */
 System.out.println("Calculate Average Program");
 System.out.print("Enter a value (" + SENTINEL + " to quit): ");
 newValue = input.nextInt();
 while (newValue != SENTINEL) {
 numValues += 1;
 sumOfValues += newValue;
 System.out.print("Enter a value(" + SENTINEL + " to quit): ");
 newValue = input.nextInt();
 }
 input.close();

 /*Calculate average of numbers entered by user */
 avg = (double)sumOfValues / (double)numValues;
 System.out.println("Average is " + avg);
 }
}

 The AverageValue code uses a constant named SENTINEL. This constant
stores a value to act as a flag, or sentinel, to signify that the loop should
stop iterating. AverageValue defines the sentinel with a constant. Another
approach is to use a variable and prompt the user for the sentinel value.

 Review: Evens
Create an Evens application that displays the even numbers between 1 and 20, inclusive.

 Review: NumbersSum
Create a NumbersSum application that prompts the user for a number and then displays the numbers 1
through the number entered, each on a separate line. Below the numbers, the sum is displayed.

 Review: PercentPassing
Create a PercentPassing application that prompts the user for a set of scores and then calculates the percent-
age of scores above 70%. The user should have the option to enter as many scores as needed. (Hint: Use an
if statement and another counter.)

flag, sentinel

Chapter 6 Loop Structures and Strings 135

sa
mp
le

 The for Statement
 The for statement is a loop structure that executes a set of statements a
fixed number of times. The for statement takes the form:

for (<initialization>; <condition>; <increment>) {
 <statements>
}

The initialization is performed only once when a for statement is executed.
The condition is a Boolean expression, which is evaluated before each loop
iteration. When the condition is true the statements are executed, when
false, program flow continues to the next statement after the closing curly
brace of the for. After each loop iteration, the increment is executed.

 The following statement uses a counter to control the iterations of a for
statement. The counter i is the loop control variable. When i is greater than
10, looping terminates:

for (int i = 1; i <= 10; i++) {
 System.out.println(i);
}

Note that the counter is declared in the initialization of the for statement
(int i = 1). With a declaration in this location, the scope of the counter
is from the initialization to the closing curly brace of the for statement.
The application will not recognize the variable outside of that statement.
Declaring variables so that their scope is limited to where they are needed
is good programming style because it produces cleaner code and helps
eliminate the possibility of errors.

 The statement above uses the ++ operator in the increment part of the
for statement (i++). The ++ operator is called the increment operator because
it increases the value of a variable by 1. The ++ operator is a good choice
in the increment of a for statement because the effect is to increase the
operand by 1. However, ++ should not be used within an expression, such
as i++ <= 10, because the value returned by the operator is used in the
expression, not the final value of the operand.

 Any combination of components can be left out of a for statement. This
can be useful when a counter is declared and initialized outside the state-
ment, as in the following code:

int num;
System.out.print("Enter the starting number: ");
num = input.nextInt();
for (; num <= 10; num++) {
 System.out.println(num);
}

 A for statement may also count down from a start value to an end value
using the decrement operator, --:

for (int countDown = 10; countDown <= 0; countDown--) {
 System.out.println(countDown);
}

 While it is possible to modify a loop control variable from within a for
loop or to terminate a loop prematurely, this is considered poor program-
ming style. Good programming style dictates that changes to the loop
control variable occur in the increment portion of the loop only and that
the loop end only when the condition is false.

TIP Counter variables in a
for loop are often named i,
j, or k.

Expressions Using ++
or ––

I f the + + or - - operator
appears before the operand,
it is called prefix (i.e. ++i). An
operator after the operand is
called postfix (i.e. i++). Either
operator location has the
same effect on the final value
of the operand. However,
in an expression, the prefix
version uses the value of the
operand after the operation.
For example, when x is 12,
the statement ++x returns 13.
In the postfix version, x++,
12 is returned. Therefore, a
statement such as x++ >= 13 is
false and could be ambiguous.
Using the ++ and -- operators
in an expression is poor
programming style.

programming style

loop control variable

increment operator

scope

136 Chapter 6 Loop Structures and Strings

sa
mp
le

 Review: Factorial
Create a Factorial application that prompts the user for a number and then displays its factorial. The factorial
of a number is the product of all the positive integers from 1 to the number. For example, 5! = 5*4*3*2*1.

 Review: OddSum
Create an OddSum application that prompts the user for a number and then sums the odd numbers from 1
to the number entered.

 Debugging Techniques
 The source of bugs, which are often logic errors, can be hard to deter-
mine without tools for debugging an application. Debugging is the process
of getting an application to work correctly. One tool included with many
compilers is called a debugger.

 A debugger is used to select statements where execution will be sus-
pended. These statements are called breakpoints. Application output goes
to a Debug Window and statements can be executed one at a time between
breakpoints by using a Step command. When stepping through an applica-
tion, selected variables are displayed in a Watch window along with their
value. When a watch variable is assigned a new value, the Watch window
is updated. Stepping through code and watching variables can an effective
way to determine logic errors.

 Another debugging tool is called a variable trace and is done manu-
ally. A variable trace is a table listing the values of variables at the points
of assignment. For the following code, num1 and num2 would be included
in a variable trace:

int num1 = 0;
int num2 = 0;
while (num1 < 10) {
 if (num1 % 3 == 0) {
 num2 += num1;
 System.out.print(num2 + " ");
 }
 num1 += 1;
}

The variables are listed in the order that assignment occurs within the
loop. Output is also listed to better understand the code:

debugger
breakpoints

variable trace

TIP A “bug” is an error in a
program.

TIP A common error with
loops is an off-by-one error.
This occurs when a loop iter-
ates one too many or one too
few times due to a Boolean
expression error.

Chapter 6 Loop Structures and Strings 137

sa
mp
le

 A third debugging technique involves adding additional println() state-
ments to an application. Adding println() statements just after a variable is
assigned a new value or before and after a condition is evaluated can help
detect the source of a logic error. For example, the code segment below
includes additional statements for debugging:

int num1 = 0;
int num2 = 0;
System.out.println("num1 before while: " + num1); //debug
while (num1 < 10) {
 System.out.println("num1 in while: " + num1); //debug
 if (num1 % 3 == 0) {
 num2 += num1;
 System.out.println("num2:" + num2); //debug
 System.out.println(num2 + " ");
 }
 num1 += 1;
}

When run, the code above displays the following output, which can be
compared to the values expected. Note the similarity to a variable trace:

 Commenting out statements can be an effective way to locate a bug
through process of elimination. Typically the // characters are easiest to
type at the beginning of a statement to “comment it out.”

 Review: Variable Trace
Using paper and pencil, create a variable trace for the following code, tracing the values of num1, num2, i, and
any output:

int num1 = 0;
int num2 = 0;
for (int i = 0; i <= 4; i++) {
 num1 = i * i;
 num2 += num1;
 System.out.print(num1 + " ");
}
System.out.println(num2);

additional println()

commenting out code

138 Chapter 6 Loop Structures and Strings

sa
mp
le

 The String Class
 Primitive data types such as int and double are used for storing numeric
data. However, when data is comprised of a sequence of characters, a data
type for storing strings is needed. Java includes the String class in the
java.lang package for storing and manipulating strings. The String class
is large, with numerous methods for string manipulation. Some of the
String class methods include:

Class String (java.lang.String)

Methods
length() returns an integer corresponding to the number

of characters in the string.
substring(int start, int end)

 returns a substring of the string, which starts
at start position and ends one character before
the end position.

substring(int start)

 returns a substring of the string, which starts
at start position and extends to the end of the
string.

toLowerCase() returns a copy of the string with all lowercase
letters.

toUpperCase() returns a copy of the string with all uppercase
letters.

trim() returns a copy of the string with all leading and
trailing spaces removed.

replaceFirst(String str, String str2)

 returns a string with the first occurrence of str
replaced by str2.

replaceAll(String str, String str2)

 returns a string with all occurrences of str
replaced by str2.

 The position of a character in a string is called its index. The first char-
acter of a string is at index 0. The last character of a string is at index
length() – 1. The MiddleThree class below displays the three letters in the
middle of a string:

public class MiddleThree {

 public static void main(String[] args) {
 String phrase, threeLetters;
 int phraseLength;
 int mid;
 Scanner input = new Scanner(System.in);

 /* get string from user */
 System.out.print("Enter text that contains at least
 three characters: ");
 phrase = input.nextLine();
 input.close();

 /* determine middle of phrase */
 phraseLength = phrase.length();
 mid = phraseLength / 2;

index

More on Concatenation
As introduced in Chapter 4,
concatenation appends one
string to another. When the
+ operator is used to join a
string and a numeric, the com-
piler first converts any non-
String data to a String object
before joining the strings. The
String class also contains the
concat() method for joining
two strings.

Chapter 6 Loop Structures and Strings 139

sa
mp
le

 /* display middle three characters */
 threeLetters = phrase.substring(mid - 1, mid + 2);
 System.out.println("Middle three characters are: "
 + threeLetters);
 }
}

Note that the String objects (phrase, threeLetters) can be declared in the
same way primitives are declared—the data type followed by the vari-
able name. With the String class, the following two statements perform
the same task:

String alpha = new String("abc"); //these assignments are
String alpha = "abc"; //efffectively the same

The MiddleThree application produces output similar to:

 A string is said to be immutable because it cannot be changed. Methods
that manipulate the original string, for example toLowerCase(), create
a new string in memory because the original string cannot be changed.
Assigning a new string to a String object simply changes the object refer-
ence to point to the new string in memory. For example, the following code
generates a new string. Assigning the string to the text object changes the
object’s reference:

String text;
text = "heLlO";
text = text.toLowerCase();
System.out.println(text);

The code produces the output:

 Until a String object is assigned a value, it refers to null. Calling a method
from a null String object generates the exception NullPointerException.

 Review: AccountSetup
Create an AccountSetup application that prompts the user for a user name and a password. The application
should prompt the user until a password with at least eight characters is entered. The user name and pass-
word should be converted to all lowercase letters and then an appropriate message displayed. Application
output should look similar to:

�����

���������

immutable

NullPointerException
null

140 Chapter 6 Loop Structures and Strings

sa
mp
le

 Comparing Strings
 Strings are compared when determining equality or alphabetical order.
In chapter 5, relational operators, including == and >, were used to compare
primitive types. When objects need to be compared, methods from their
class are used. Some of the String class methods for comparing strings
include:

Class String (java.lang.String)

Methods
equals(String str)
 returns true when the string is the same as str.

Returns false otherwise.
equalsIgnoreCase(String str)
 same as equals() except that uppercase and

lowercase differences between the strings are
ignored.

compareTo(String str)
 returns 0 when str is the same as the string, a

negative integer is returned when str comes
alphabetically after the string, and a positive
integer is returned when str comes alphabeti-
cally before the string. Note that uppercase and
lowercase letters are considered different.

compareToIgnoreCase(String str)
 same as compareTo() except that uppercase and

lowercase differences between the strings are
ignored.

indexOf(String str)
 returns the integer corresponding to the

location of the first occurrence of str in the
string. Otherwise –1 is returned.

lastIndexOf(String str)
 returns the integer corresponding to the

location of the last occurrence of str in the
string. Otherwise –1 is returned.

startsWith(String str)
 returns true when the string begins with str.

Returns false otherwise.
endsWith(String str)
 returns true when the string ends with str.

Returns false otherwise.

 The AlphaOrder class compares two strings and then displays them in
alphabetical order:

public class AlphaOrder {

 public static void main(String[] args) {
 String word1, word2;
 Scanner input = new Scanner (System.in);

Unicode

The Unicode Standard is
a 16-bit encoding system
that assigns a value for
each character and symbol
of every language. Java
uses this standard when
def in ing st r ings, and
String class methods use
the character values when
comparing strings.

Chapter 6 Loop Structures and Strings 141

sa
mp
le

 System.out.print("Enter a word: ");
 word1 = input.nextLine();
 System.out.print("Enter a second word: ");
 word2 = input.nextLine();
 input.close();

 if (word1.compareToIgnoreCase(word2) == 0) {
 System.out.println("Words are equal.");
 } else if (word1.compareToIgnoreCase(word2) < 0) {
 System.out.println("In alphabetical order: " + word1
 + " " + word2);
 } else {
 System.out.println("In alphabetical order: " + word2
 + " " + word1);
 }
 }
}

AlphaOrder produces output similar to the following:

 Review: FormalGreeting
Create a FormalGreeting application that prompts the user for his or her name, including title. The applica-
tion should display “Hello, sir.” if the string starts with Mr., “Hello, ma’am.” if the string starts with Ms., Mrs.,
or Miss, and “Hello, name.” otherwise where name is the user’s name.

 Chapter 6 Case Study
 In this case study, a word guessing game will be created. The word
guessing game allows the player to guess the letters of a secret word. At
the start of the game, the player is shown only how many letters the word
contains through a set of dashes. When a letter matching one in the word
is guessed, it replaces the appropriate dash. Play continues until the entire
word is guessed letter-by-letter or when the player chooses to guess the
entire word.

WordGuess Specification

 WordGuess is played between the computer and a single player. The
secret word is BRAIN. At the start of the game, six dashes are displayed
(––––––), one for each letter of the word. The player is repeatedly prompted
for a letter guess. When a letter matching one in the word is guessed, the
letter replaces the corresponding dash. Letters may be entered as upper-
case or lowercase. However, only uppercase letters should be displayed. If
the player enters an exclamation point (!), the player is prompted to guess
the word. At that point the player either wins (a correct guess) or loses
(an incorrect guess). Alternatively, the player can continue to guess letters
until the entire word is revealed. The games ends by showing the player
the total number of guesses.

142 Chapter 6 Loop Structures and Strings

sa
mp
le

 The WordGuess interface should display a row of dashes, one dash for
each letter in the word. Prompts should be used to get letter guesses from
the player. As corresponding letters are guessed, the letter is displayed
instead of the dash. At the end of the game, the user should be shown the
word along with the number of guesses.

 The WordGuess output sketch:

���������������
�����
��
�����
��
�����
��
�����

�������������������
�����
��������
������������������������
�������������������

 The WordGuess algorithm:

1. Display a row of dashes to represent the word.

2. Prompt the user for a letter guess.

3. If the letter guessed is part of the word, then display that letter in
place of the corresponding dash.

4. Repeat steps 2 and 3 until all the letters have been guessed or an
exclamation point has been entered by the user.

5. If an exclamation point has been entered, prompt the user to guess
the entire word.

6. If the player correctly guesses the entire word or all the letters have
been guessed, then display a message indicating that the player
has won, otherwise the message should indicate that the player
has lost.

7. Display the secret word and the number of guesses.

Chapter 6 Loop Structures and Strings 143

sa
mp
le

 The WordGuess flowchart:

�����

���������������
���������������

�������������
�����

����������
�������������

��������������������
����������������

����������
�������

����
�������������

�����

���

��

���

�����������������
�����������

���������������
�����������

���

��

����������
�������

������������������������
�����������������������

���

����������
�������

��

144 Chapter 6 Loop Structures and Strings

sa
mp
le

WordGuess Code Design

 The input for WordGuess are letters typed by the user. A String vari-
able to store the player’s letter guess will be needed. The player may also
choose to guess the entire word, so another String variable to store a word
guess will be needed.

 The output for WordGuess is the secret word displayed as dashes and
then redisplayed whenever a dash should be replaced by a letter, a prompt
for the user’s guess, a message indicating a win or loss, and a message
indicating the secret word and the number of guesses made.

 Data generated by WordGuess is a count of the number of guesses made
by the user. A counter variable to store the number of guesses will be
needed. Other data used in this application can be represented by String
constants to represent the secret word (SECRET_WORD) and to use as a
loop sentinel (FLAG). A String variable will also be needed to “build” a
new string that contains any correctly guessed letters.

 Based on the algorithm and flowchart, the code design for the WordGuess
application will include a loop structure to compare the user’s input to
the letters in the secret word. The best loop structure will be a do-while
because under any condition the loop statements should iterate at least
once. It also unknown how many times the loop statements should iter-
ate, so a type of while statement, not a for statement, should be used. This
comparison will be done with an if statement. A pseudocode algorithm
for WordGuess follows:

Generate and display a set of dashes that represent the word
do
 update guesses counter
 Prompt user for a letter
 Convert to all uppercase
 Determine if letter is in word
 if letter is in word
 Create new string that contains the guessed letter
while (all letters haven't been guessed and user hasn't chosen
to guess the entire word)
if (! has been entered)
 get a word guess from player
 convert word to all uppercase
if (word guessed equals secret word OR all the letters have
been guessed)
 display message that player has won
else
 display message that player has lost
Display secret word
Display number of guesses

WordGuess Implementation

 Based on the code design, the WordGuess implementation follows:

/*
 * WordGuess.java
 */

 import java.util.Scanner;

Chapter 6 Loop Structures and Strings 145

sa
mp
le

 /**
 * Plays a word guessing game with one player.
 */
 public class WordGuess {

 public static void main(String[] args) {
 final String SECRET _ WORD = "BRAIN";
 final String FLAG = "!";
 String wordSoFar = "", updatedWord = "";
 String letterGuess, wordGuess = "";
 int numGuesses = 0;
 Scanner input = new Scanner(System.in);

 /* begin game */
 System.out.println("WordGuess game.\n");
 for (int i = 0; i < SECRET _ WORD.length(); i++) {
 wordSoFar += "-"; //word as dashes
 }
 System.out.println(wordSoFar + "\n"); //display dashes

 /* allow player to make guesses */
 do {
 System.out.print("Enter a letter (" + FLAG + " to guess entire word): ");
 letterGuess = input.nextLine();
 letterGuess = letterGuess.toUpperCase();

 /* increment number of guesses */
 numGuesses += 1;

 /* player correctly guessed a letter--extract string in wordSoFar
 * up to the letter guessed and then append guessed letter to that
 * string Next, extract rest of wordSoFar and append after the guessed
 * letter
 */
 if (SECRET _ WORD.indexOf(letterGuess) >= 0) {
 updatedWord = wordSoFar.substring(0, SECRET _ WORD.indexOf(letterGuess));
 updatedWord += letterGuess;
 updatedWord += wordSoFar.substring(SECRET _ WORD.indexOf(letterGuess)+1,
 wordSoFar.length());
 wordSoFar = updatedWord;
 }

 /* display guessed letter instead of dash */
 System.out.println(wordSoFar + "\n");
 } while (!letterGuess.equals(FLAG) && !wordSoFar.equals(SECRET _ WORD));

 /* finish game and display message and number of guesses */
 if (letterGuess.equals(FLAG)) {
 System.out.println("What is your guess? ");
 wordGuess = input.nextLine();
 wordGuess = wordGuess.toUpperCase();
 }
 if (wordGuess.equals(SECRET _ WORD) || wordSoFar.equals(SECRET _ WORD)) {
 System.out.println("You won!");
 } else {
 System.out.println("Sorry. You lose.");
 }
 System.out.println("The secret word is " + SECRET _ WORD);
 System.out.println("You made " + numGuesses + " guesses.");
 }

}

146 Chapter 6 Loop Structures and Strings

sa
mp
le

A run of WordGuess looks similar to:

WordGuess Testing and Debugging

 This case study should test all possible guess combinations. For example,
the player may enter an exclamation point on the first guess. Testing
should also include incorrect word guesses.

 Review: WordGuess
Modify the WordGuess Chapter 6 Case Study to display a score at the end of each game. The player should
start with 100 points and have 10 points taken off for each guess. The score should be updated and displayed
as the game is played. Display a player loses message if the score gets down to 0.

 Chapter Summary
 This chapter introduced loop structures and the String class. The while
statement and do-while statement are loop structures that iterate a set of
statements repeatedly based on a condition. The difference between the
loops is when the condition is evaluated. The while statement evaluates
the condition before any iterations are performed. The do-while does not
evaluate the condition until after the first iteration.

Chapter 6 Loop Structures and Strings 147

sa
mp
le

 Some syntax errors and logic errors can lead to an infinite loop, which
executes forever causing the application to just hang. A logic error can also
cause an overflow, which occurs when there are not enough bits to store
a number.

 Counters are used for keeping track of loop iterations and are used
in applications that keep track of the number of guesses or the number
of values entered. An accumulator is increased by varying amounts.
Accumulators are often used to sum values. Both counters and accumula-
tors should be initialized when they are declared.

 A flag, also called a sentinel, is used to signify that a loop should stop
iterating. Flags are usually a constant that is declared in the application,
but may also be determined by prompting the user for a value.

 The for statement is another loop structure. This loop structure executes
a set of statements a fixed number of times. A loop control variable is used
to determine loop iterations and can be declared in the for statement itself.
When a variable is declared in a statement, its scope is limited to the open-
ing and closing curly braces of that statement. The increment operator (++)
and decrement operator (--) are used to increase or decrease the value of
a for loop control variable.

 Debugging techniques include using a debugger, often included with
a compiler, and a variable trace, which is a manual technique. Debuggers
have the advantage of being able to display the actual value of a variable
as it changes. Other techniques include adding println statements before
and after variable assignment. Commenting out statements can also locate
an error through process of elimination.

 The String class is used to declare string variables. It contains numerous
methods for determining the length of a string, converting a string to low-
ercase or uppercase characters, extracting substrings, and for comparing
strings. A string is immutable, which means it cannot be changed from
its original value. However, a String object can be assigned a new string
in memory. The characters of a string have an index value, with the first
character at index 0.

 Code conventions introduced in this chapter are :

• The statements of an while statement should be indented.

• The statements of a do-while statement should be indented.

• The statements of a for statement should be indented.

• Declare variables so that their scope is limited to where they are
needed.

• Changes to a loop control variable should occur in the increment
portion of the loop only, and the loop should end only when the
condition is false.

148 Chapter 6 Loop Structures and Strings

sa
mp
le

 Vocabulary

Accumulator A variable that is incremented by
varying amounts.

Breakpoint A statement selected where execution
will be suspended.

Counter A variable that is incremented by a fixed
value.

Debugger A tool included with some compilers
for debugging.

Debugging The process of getting an application
to work correctly.

Decrement operator The -- operator, which
decreases the value of a variable by 1.

Flag see Sentinel.

Immutable Unable to change.

Increment operator The ++ operator, which increases
the value of a variable by 1.

Index The position of a character in a string.

Infinite loop A loop that continues forever.

Iteration The execution of a loop.

Loop control variable A counter that is used to
control the number of for loop iterations.

Loop structure A statement that executes a set of
statements repeatedly based on a condition.

NullPointerException exception An excep-
tion thrown when operations on a null String are
attempted.

Overflow A condition that occurs when a number
is too large to be stored in a specified number of
bits.

Sentinel A constant that stores a value that is used
to signify that a loop should stop iterating. Also
called a flag.

Scope The set of statements that can access a declared
variable.

Variable trace A table listing the values of vari-
ables at the points of assignment. Used for manually
debugging an application.

 Java

++ The increment operator.

-- The decrement operator.

do-while A loop structure that executes a set of
statements over and over again based on a condition,
which is evaluated after an iteration.

for A loop structure that executes a set of statements
a fixed number of times.

while A loop structure that executes a set of state-
ments over and over again based on a condition,
which is evaluated before any iterations.

String A java.lang class with methods for manipu-
lating and comparing strings.

Chapter 6 Loop Structures and Strings 149

sa
mp
le

 Critical Thinking

1. What is the purpose of a loop structure?

2. Explain the difference between a while statement
and a do-while statement.

3. An input validation loop is a loop that checks
user input for valid data. If valid data is not
entered, the loop iterates until valid data is
entered. In which review of this chapter did
you write code for an input validation loop?

4. a) What is an infinite loop?
 b) List two types of errors that can lead to an

infinite loop.
 c) What is meant by overflow?

5. How many times will the do-wh ile loop
execute?

 int x = 0;
 do {
 x = x + 2;
 while (x < 120);

6. What initial value of x would make the loop
infinite?

 do {
 x = x + 3;
 while (x < 120);

7. Compare and contrast counters and accumula-
tors. List two uses for each.

8. Write a for statement that sums the integers
from 3 to 10, inclusive.

9. List two factors that should be considered when
determining which loop structure to choose.

10. a) List two methods for debugging an
application.

 b) Which method listed in part (a) would be
best for debugging an application that gen-
erates random numbers that are used for
determining the condition of an if state-
ment? Why?

11. Consider the following assignment:
 String x = "my string.";

 Determine the value returned by each of the
following methods:

 a) x.length()
 b) x.substring(0, 3)

 c) x.toLowerCase()
 d) x.toUpperCase
 e) x.trim()

12. Consider the following statements:
 String x = "lots of words.";
 String y = "Lots of Words.";
 String z = "Two words.";

 Determine the value returned by each of the
following methods:

 a) x.equals(y)
 b) x.equalsIgnoreCase(y)
 c) x.compareTo(z)
 d) x.compareToIgnoreCase(y)
 e) x.compareToIgnoreCase(z)
 f) x.IndexOf("or")
 g) x.lastIndexOf("o")
 h) z.startsWith("Tw")
 i) x.endsWith("ds")

13. a) Write an algorithm to count the number of
words in a sentence.

 b) Write an algorithm to count the number of
letters in a sentence.

True/False

14. Determine if each of the following are true or
false. If false, explain why.

 a) A while statement iterates once before evalu-
ating the condition.

 b) A counter is incremented by a constant
amount.

 c) An accumulator signifies that a loop should
stop iterating.

 d) Sentinel values must always be the value
–1.

 e) A variable declared in a for statement can be
used again anywhere in the program code.

 f) String variables are primitive data types.
 g) The first character of a string has index

position 1.
 h) Strings are compared using relational opera-

tors such as >.
 i) The String class includes a method for deter-

mining the location of a substring within a
string.

150 Chapter 6 Loop Structures and Strings

sa
mp
le

 Exercises

Exercise 1 ——————————————————— PrimeNumber
a) A prime number is an integer greater than 1 that is evenly divisible by only 1 and

itself. For example, 2, 3, 5, and 7 are prime numbers, but 4, 6, 8, and 9 are not. Create
a PrimeNumber application that prompts the user for a number and then displays a
message indicating whether the number is prime or not. Hint: The % operator can be
used to determine if one number is evenly divisible by another.

b) Modify the application to prompt the user for two numbers and then display the prime
numbers between those numbers.

Exercise 2 ————————————————————PrimeFactors
The Fundamental Theorem of Arithmetic states that every positive integer is the product of a set of
prime numbers. This set is called the prime factors. For example, the prime factors for 140 are 2, 2, 5,
and 7 (2*2*5*7 = 140). Create a PrimeFactors application that prompts the user for a positive integer
and then displays that integer’s prime factors. Use the following pseudocode when implementing the
PrimeFactors code:

Initialize a counter to 2
while the counter is less than or equal to the number
 if the counter divides the number evenly
 display the counter
 divide the number by the counter to get a new number
 else increment counter by 1

Exercise 3 ————————————————————— Investment
Create an Investment application that calculates how many years it will take for a $2,500 investment
to be worth at least $5,000 if compounded annually at 7.5%

Exercise 4 ö ———————————————————— CarRecall
Modify the CarRecall application created in Chapter 5 Exercise 4 to allow the user to input as many
model numbers as needed. Use 0 as a sentinel to end user input. The application output should look
similar to:

Chapter 6 Loop Structures and Strings 151

sa
mp
le

Exercise 5 ——————————————————— DigitsDisplay
Create a DigitsDisplay application that prompts the user for a non-negative integer and then displays
each digit on a separate line. Application output should look similar to:

Exercise 6 ————————————————————— DigitsSum
Create a DigitsSum application that prompts the user for a non-negative integer and then displays the
sum of the digits. Application output should look similar to:

Exercise 7 ————————————————————— CubesSum
a) Create a CubesSum application that prompts the user for a non-negative integer and

then displays the sum of the cubes of the digits. Application output should look similar
to:

b) Modify the application to determine what integers of two, three, and four digits are
equal to the sum of the cubes of their digits.

Exercise 8 ö ————————————————— GuessingGame
The GuessingGame application created in Chapter 5 Exercise 8 would be more fun if users could make
as many guesses as necessary to guess the secret number. Modify the GuessingGame application as
follows:

a) Modify the algorithm to allow for as many guesses as needed.

b) Modify the flowchart based on the algorithm modifications.

c) Modify the GuessingGame code. Application output should look similar to:

152 Chapter 6 Loop Structures and Strings

sa
mp
le

d) A binary search is a divide-and-conquer technique for efficiently searching a list of
numbers that are sorted from lowest to highest. A strategy that incorporates the binary
search technique can be used by the Guessing Game player when making guesses
about the secret number:

1. Guess the number halfway between the lowest and highest numbers.

2. If the number guessed matches the secret number, then the player wins.

3. If the number guessed is too high, then take the number guessed minus one and
make this the highest number and go back to Step 1.

4. If the number guessed is too low, then take the number guessed plus one and make
this the lowest number and go back to Step 1.

 For example, assuming 15 is the random number generated in the Guessing Game
application, the game would play out as follows when the player uses a divide-and-
conquer technique:

Current Low Current High Player Types Message Displayed

 1 50 26 (i.e., (1+50)/2=25.5) Too high.

 1 25 13 (i.e., (1+25)/2=13) Too low.

 14 25 20 (i.e., (14+25)/2=19.5) Too high.

 14 19 16 (i.e., (14+19)/2=16.5) Too high.

 14 15 14 (i.e., (14+15)/2=14.5) Too low.

 15 15 15 (i.e., (15+15)/2=15) You guessed it!

 In another program run, assuming the random number generated is 20, the game
would play out as follows using the same divide-and-conquer technique:

Current Low Current High Player Types Message Displayed

 1 50 26 (i.e., (1+50)/2=25.5) Too high.

 1 25 13 (i.e., (1+25)/2=13) Too low.

 14 25 20 (i.e., (14+25)/2=19.5) You guessed it!

 When this approach is taken, it has been proven that a player will not be required
to make more than Log2n guesses, in this case Log250, or at most 6 guesses. Try this
technique yourself. Explain in your own words why this works. Would this strategy
be possible if hints were not given after each guess?

Exercise 9 ———————————————————— PowersTable
Create a PowersTable application that displays a table of of powers similar to:

Chapter 6 Loop Structures and Strings 153

sa
mp
le

Exercise 10 ——————————————————————— GCD
Create a GCD application that prompts the user for two non-negative integers and then displays the
greatest common divisor (GCD) of the two numbers. The GCD is the largest integer that divides into
both numbers evenly. An algorithm for finding the GCD is called Euclid’s Algorithm. Use the follow-
ing pseudocode when implementing the GCD code:

while (num2 > 0) {
 temp = num1 % num2;
 num1 = num2;
 num2 = temp;
}

Application output should look similar to:

Exercise 11 ——————————————— ElapsedTimeCalculator
What comes 13 hours after 4 o’clock? Create an ElaspsedTimeCalculator application that prompts the
user for a starting hour, whether it is am or pm, and the number of elapsed hours. The application then
displays the time after that many hours have passed. Application output should look similar to:

Exercise 12 ————————————————————— Necklace
An interesting problem in number theory is sometimes called the “necklace problem.” This problem
begins with two single-digit numbers. The next number is obtained by adding the first two numbers
together and saving only the ones digit. This process is repeated until the “necklace” closes by return-
ing to the original two numbers. For example, if the starting two numbers are 1 and 8, twelve steps are
required to close the necklace: 1 8 9 7 6 3 9 2 1 3 4 7 1 8

Create a Necklace application that prompts the user for two single-digit integers and then displays the
sequence and the number of steps taken. The application output should look similar to:

154 Chapter 6 Loop Structures and Strings

sa
mp
le

Exercise 13 ————————————————————— Hailstone
An interesting (yet unsolved) question in mathematics is called “hailstone numbers.” This series is
produced by taking an initial integer, and if the number is even, dividing it by 2. If the number is
odd, multiply it by 3 and add 1. This process is then repeated. For example, an initial number of 10
produces:

10, 5, 16, 8, 4, 2, 1, 4, 2, 1 …

An initial value of 23 produces:

23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1 …

Note that both numbers eventually reach the 4, 2, 1, 4, 2, 1 … cycle. Create two applications (Hailstone1
and Hailstone2) that answer the following questions for initial values of 1 to 200:

a) Do all integers from 1 to 200 eventually reach this cycle?

b) What is the maximum number of iterations to reach the cycle and which starting
number produces this maximum?

Exercise 14 ————————————————————— DiceRolls
Create a DiceRolls application that displays five rolls of two dice where each die is numbered from 1
to 6. The application should also show the total of each roll:

Exercise 15 ——————————————————————— Chaos
“Chaos theory” is a subfield of mathematics which relies heavily on the computer. A simple chaos
experiment is:

 Start with any real number x between 0 and 1. Generate a new number using the
“logistic equation:”

x = 2*x(1 - x)

 Display this new x and repeat the process 50 times.

a) Create a Chaos application that prompts the user for a starting value and then performs
this experiment. Make a prediction about what happens for different starting values.

b) Modify the application so that the 2 in the logistic equation can be replaced with a
value specified by the user in the range 2 to 4, but the starting value of x is always 0.5.
Note any interesting behavior.

Chapter 6 Loop Structures and Strings 155

sa
mp
le

Exercise 16 ————————————————————RandomWalk
In the “random walk” problem, a person is placed at the center of a 7 meter long bridge. Each step the
person moves 1 meter either forward or backward at random.

Create a RandomWalk application that determines how many steps the person will walk before taking
a step off the bridge. Have the application average 50 trials, and display the average and the greatest
number of steps. (Hint: Generate a random number between 0 and 1, with 0 meaning to go forward
and 1 meaning to go backward.)

Exercise 17 ————————————————————— Password
Create a Password application that stores a secret password of your choice. The Password application
should prompt the user for the password and then display “Welcome” if the correct password is typed.
If after three tries the correct password has not been entered, the message “Access denied.” should be
displayed. Application output should look similar to:

Exercise 18 —————————————————————Monogram
Create a Monogram application that prompts the user for his or her first name, middle name, and last
name and then displays a monogram with the first and middle initials in lowercase and the last initial
in uppercase. Application output should look similar to:

Exercise 19 ——————————————————— RemoveString
Create a RemoveString application that prompts the user for a sentence and a string. The application
should then remove every occurrence of the string from the sentence. The application should look
similar to:

156 Chapter 6 Loop Structures and Strings

sa
mp
le

Exercise 20 ————————————————————CountVowels
Create a CountVowels application that prompts the user for a string and then displays a count of the
number of vowels in the string. Application output should look similar to:

Exercise 21 ————————————————— GroupAssignment
Create a GroupAssignment application that prompts the user for his or her name and then displays a
group assignment. The group assignment depends on the first letter of the student’s last name. Last
names beginning with A through I are assigned to Group 1, J through S are assigned to Group 2, T
through Z are assigned to Group 3. Application output should look similar to:

Chapter 7 Methods 157

sa
mp
le

Object-oriented programs use classes with methods to perform
tasks. A program often performs several tasks, each with its own level of
complexity. To manage these tasks, they are broken down into methods.
This chapter discusses top-down program development and writing and
documenting methods.

 Program Development Using Methods
 The solution to a task can be developed by breaking the task down into
smaller subtasks. These subtasks can then be reduced to yet simpler tasks.
This process can be continued until the original task is broken down into
units that each describe a specific goal. As the task is broken down into
smaller subtasks and then further into units, more detail for achieving the
specific goal is added. This problem-solving approach describes a software
development process called top-down development.

 In top-down development, the first level of subtasks translates into the
main() method. Levels of tasks below main() are developed into a series
of additional methods. Using methods to define tasks is called procedural
abstraction. For example, consider the following program specification:

 TempConverter allows the user to convert a temperature from
either Fahrenheit to Celsius or Celsius to Fahrenheit.

The algorithm for this application breaks the program specification down
into the first level of subtasks:

1. Determine the type of conversion to be done.

2. Convert the temperature using the appropriate formula.

Step 2 can then be broken down into another level of subtasks:

 2a. Prompt the user for a Celsius temperature.
 Convert the temperature to Fahrenheit using the formula:
 F=9/5C + 32.
 Display the temperature.

 2b. Prompt the user for a Fahrenheit temperature.
 Convert the temperature to Celsius using the formula:
 C=5/9(F – 32).
 Display the temperature.

Chapter 7
Methods

top-down development

procedural abstraction

TIP Top-down development
is also called top-down design
or step-wise refinement.

158 Chapter 7 Methods

sa
mp
le

Top-down development and procedural abstraction were used to break
the program specification down into levels of subtasks, as shown on the
previous page. Outlining the levels of subtasks in pseudocode defines a
main() method and two other methods:

main()
Prompt the user for the conversion type.
Execute the appropriate method to convert the temperature.

fahrenheitToCelsius()
Prompt the user for a temperature in degrees Fahrenheit
Convert the temperature to degrees Celsius
Display the temperature

celsiusToFahrenheit()
Prompt the user for a temperature in degrees Celsius
Convert the temperature to degrees Fahrenheit
Display the temperature

The TempConverter application implements the pseudocode above:

 import java.util.Scanner;

 public class TempConverter {

 public static void fahrenheitToCelsius() {
 double fTemp, cTemp;
 Scanner input = new Scanner(System.in);
 System.out.print("Enter a Fahrenheit temperature: ");
 fTemp = input.nextDouble();
 input.close();
 cTemp = (double)5/(double)9*(fTemp - 32);
 System.out.println("The Celsius temperature is " + cTemp);
 }

 public static void celsiusToFahrenheit() {
 double cTemp, fTemp;
 Scanner input = new Scanner(System.in);
 System.out.print("Enter a Celsius temperature: ");
 cTemp = input.nextDouble();
 input.close();
 fTemp = (double)9/(double)5*cTemp + 32;
 System.out.println("The Fahrenheit temperature is "
 + fTemp);
 }

 public static void main(String[] args) {
 int choice;
 Scanner input = new Scanner(System.in);

 /* Prompt user for type of conversion */
 System.out.println("1. Fahrenheit to Celsius conversion.");
 System.out.println("2. Celsius to Fahrenheit conversion.");
 System.out.print("Enter your choice: ");
 choice = input.nextInt();
 if (choice == 1) {
 fahrenheitToCelsius();
 } else {
 celsiusToFahrenheit();
 }
 input.close();
 }
}

TIP Methods must be part of
a class.

Chapter 7 Methods 159

sa
mp
le

 The TempConverter controlling class contains two methods as well
as a main() method. The methods are executed when they are called. A
method call consists of the method name followed by parentheses. The if
statement in the main() method on the previous page contains two method
calls, fahrenheitToCelsius() and celsiusToFahrenheit().

 TempConverter produces output similar to:

In this run of the application, the user entered 1 and therefore the
fahrenheitToCelsius() method was called.

 Writing Methods
 A method consists of a declaration and a body. The method declaration
includes access level, return type, name, and parameters, if any. The method
body contains the statements that implement the method. A method takes
the form:

<access _ level> <return _ type> <name>(<parameters>) {
 <statements>
}

For example, consider the fahrenheitToCelsius() method from the
TempConverter application:

 public static void fahrenheitToCelsius() {
 double fTemp, cTemp;
 Scanner input = new Scanner(System.in);

 System.out.print("Enter a Fahrenheit temperature: ");
 fTemp = input.nextDouble();
 input.close();

 cTemp = (double)5/(double)9*(fTemp - 32);
 System.out.println("The Celsius temperature is " + cTemp);
 }

 The method above is a class method with access level public, return
type void, name fahrenheitToCelsius, and no parameters. The access level
of a method determines if other classes can call the method. The keyword
public is an access modifier. A public method can be called by any other
method. The access level of a method can also be thought of as its visibility.
Access levels are discussed further in Chapter 8.

 The keyword static declares the method a class method. A class method
can be called from the class itself. Methods that are not class methods must
be called from an instantiated object of that class.

 The return type void means that the method will not return a value,
and parameters are specified when a method needs values to perform its
task. The body of the method starts with the first opening brace ({) and
ends with the closing brace (}).

method declaration

method body

access level

class method

call

access modifier

void

visibility

160 Chapter 7 Methods

sa
mp
le

 Method names should indicate an action. Verbs make good method
names. A method name should also begin with a lowercase letter and
then an uppercase letter should begin each word within the name. Method
names may not contain spaces.

 Methods can also have their own set of variables, constants, and objects.
Variable, constant, and object declarations in the body of a method have
a scope that extends from the declaration to the end of the method
body. These variables, constants, and objects are said to be local to the
method because their scope is limited to that method. For example, the
fahrenheitToCelsius() method contains local variables fTemp and cTemp and
a local object named input.

 Review: TimeConverter
Create a TimeConverter application that allows the user to choose among converting hours to minutes, days
to hours, minutes to hours, or hours to days. Use methods as appropriate.

 Method Parameters
 A method declaration can include method parameters, which accept values
from the method call. The data passed to the method can then be used
inside the method to perform its task. For example, the drawBar() method
includes an int parameter named length:

public static void drawBar(int length) {

 for (int i = 0; i < length; i++) {
 System.out.print("*");
 }
 System.out.println();
}

 Data is given, or passed, to a method by enclosing the data in parentheses
in the method call. The value or variable passed to a method is called the
argument. For example, the RightTriangle application makes six calls to
drawBar(). Each call passes a different variable argument:

 public class RightTriangle {

 public static void drawBar(int length) {

 for (int i = 1; i <= length; i++) {
 System.out.print("*");
 }
 System.out.println();
 }

 public static void main(String[] args) {

 /* draw a right triangle with base size 6 */
 for (int i = 1; i <= 6; i++) {
 drawBar(i);
 }
 }
}

local scope

TIP The terms “parameter”
and “argument” are often used
synonymously.

naming conventions

passing data

argument

TIP The term “formal parame-
ter” is sometimes used to refer
to a parameter in the method
declaration, and the term
“actual parameter” is used to
refer to the argument being
passed to the method.

Chapter 7 Methods 161

sa
mp
le

The RightTriangle application produces the output:

 In Java, arguments are passed by value, which means that the data stored
in an argument is passed. An argument that is a primitive data type gives
the method a copy of its value. An argument that is an object gives the
method a copy of its reference that points to methods for changing object
data. Therefore, a method can change the data stored in an object because
it has access to the object’s methods, but it cannot change the data stored
in a primitive variable because the method does not have access to the
actual location of the primitive data.

 When a method declaration includes more than one parameter, the
parameters are separated by commas. For example, a modified drawBar()
has an int parameter for the length of the bar and a String parameter for
the character to use to draw the bar:

public static void drawBar(int length, String mark) {

 for (int i = 1; i <= length; i++) {
 System.out.print(mark);
 }
 System.out.println();
}

 A call to the modified drawBar() method includes two arguments sepa-
rated by commas:

drawBar(6, "$");

This call produces the following output:

 The order of the arguments in a method call is important because the
first argument corresponds to the first parameter in the method declara-
tion, the second argument corresponds to the second parameter, and so
on. Note that argument names do not necessarily match parameter names.
Descriptive variable names should be used throughout a program without
regard to matching parameter names in a method declaration.

 Review: SpanishNumbers
Create a SpanishNumbers application that displays numbers 1 through 10 in Spanish. A method with an int
parameter should display the Spanish word for the number passed. A loop structure in the main() method
should be used to call the method ten times. The Spanish word equivalents for numbers 1 through 10 are:

1 uno 6 seis
2 dos 7 siete
3 tres 8 ocho
4 cuatro 9 nueve
5 cinco 10 diez

pass by value

multiple parameters

TIP Passing an argument of a
type that is not expected by a
method generates the exception
IllegalArgumentException.

162 Chapter 7 Methods

sa
mp
le

 Review: DisplayBox – part 1 of 2
Create a DisplayBox application that prompts the user for a height and width and then displays a box of that
size. The DisplayBox application should include a method named drawBox() that has two parameters and
makes calls to the drawBar() method.

 Method Overloading
 The method declaration is used by the compiler to determine which
method to execute. Therefore, method names do not have to be unique
as long as the parameters are different for methods with the same name.
Method overloading is when more than one method of the same name is
included in a class. For example, the following application contains two
drawBar() methods:

public class MethodOverloadingExample {

 public static void drawBar(int length) {

 for (int i = 1; i <= length; i++) {
 System.out.print("*");
 }
 System.out.println();
 }

 public static void drawBar(int length, String mark) {

 for (int i = 1; i <= length; i++) {
 System.out.print(mark);
 }
 System.out.println();
 }

 public static void main(String[] args) {

 drawBar(10);
 drawBar(5, "@");
 }
}

The MethodOverloading application produces the output:

Note that the first call in main() executes the drawBar() method containing
only one parameter. The second call executes the drawBar() method that
contains two parameters. The compiler uses the types, order, and number
of parameters to determine which method to execute.

Chapter 7 Methods 163

sa
mp
le

 Review: DisplayBox – part 2 of 2
Modify the DrawBox application to ask the user if a specific character should be used for the display. For
example, the prompt could be “Do you want to enter a character to use to display the box? (enter y for yes):”
If the user types y, then prompt the user for the character. Otherwise, the default character should be used.
The modified application should contain overloaded drawBox() and drawBar() methods.

 The return Statement
 A method can return a value. For example, the cubeOf() method returns
the cube of its parameter:

public static double cubeOf(double x) {
 double xCubed;

 xCubed = x * x * x;
 return(xCubed);
}

The return statement is used to send a value back to the calling statement.
A return statement can return only one value.

 A method that returns a value must include the return type in the
method declaration. For example, the cubeOf() method declaration
declares a return type double. Return types can be primitive types, such
as int, double, and boolean, or abstract types, such as the String class. The
return type void is used when there will be no return value. A method
declared as void does not contain a return statement.

 A method that returns a value is called from a statement that will
make use of the returned value, such as an expression or an assignment
statement. For example, the following application calls cubeOf() from an
assignment statement:

 public class CubeCalculator {

 public static double cubeOf(double x) {
 double xCubed;

 xCubed = x * x * x;
 return(xCubed);

 }

 public static void main(String[] args) {
 double num = 2.0;
 double cube;

 cube = cubeOf(num);
 System.out.println(cube);
 }
}

The CubeCalculator application produces the following output:

TIP The return types of
methods cannot be used to
distinguish one method from
another for overloading.

164 Chapter 7 Methods

sa
mp
le

 Review: Exponentiation
Create an Exponentiation application that prompts the user for two numbers and then displays the first num-
ber raised to the power of the second number. The application should include a method named powerOf()
that returns its first parameter raised to the power of its second parameter.

 Documenting Methods
 Methods should be carefully commented so that a reader of the program
understands what task the method is performing and what data, if any,
will be returned by the method. Method documentation is in the form of
documentation comments (/** */) that appear just above the method
declaration. For example, the drawBar() method with documentation:

/**
 * Print a bar of asterisks across the screen.
 * pre: length > 0
 * post: Bar drawn of length characters, insertion
 * point moved to next line.
 */
public static void drawBar(int length) {

 for (int i = 0; i < length; i++) {
 System.out.print("*");
 }
 System.out.println();
}

 The assumptions, or initial requirements, of a method are stated in the
documentation in a section called the precondition, or just pre. Note that
the pre for drawBar() states that length must be greater than 0, but not that
length must be an int. Information that the compiler will verify, such as
data types, should not be stated in method documentation.

 The postcondition section of the documentation, or post, states what must
be true after the method has been executed. However, the post should not
state how the method accomplished its task.

 A method may not have a precondition, but every method must
have a postcondition. For example, below is the cubeOf() method with
documentation:

/**
 * Calculates the cube of a number.
 * pre: none
 * post: x cubed returned
 */
public static double cubeOf(double x) {
 double xCubed;

 xCubed = x * x * x;
 return(xCubed);
}

precondition

postcondition

Chapter 7 Methods 165

sa
mp
le

 To summarize, the guidelines for writing pre and post conditions are:

• The precondition states what must be true at the beginning of a
method for the method to work properly.

• The postcondition states what must be true after the method has
executed if the method has worked properly.

• Preconditions and postconditions should not state facts that the
compiler will verify. They should also not refer to variables or
information outside the method.

• The postcondition should not state how the method accomplished
its task.

 Review
Modify each of the Reviews in this chapter so that the methods are properly documented.

 Chapter 7 Case Study
 This case study will focus on top-down development and procedural
abstraction. Testing and debugging methods in isolation will also be
demonstrated.

 An application for generating a letter grade based on a numeric grade
will be created. The GradeConverter application allows the user to enter
a numeric grade and then a letter grade is displayed. The user may then
choose to enter another grade or quit.

GradeConverter Specification

The GradeConverter application prompts the user for a numeric grade in
the range 0 to 100 or a –1 to end the application. When a valid numeric
grade is entered, the corresponding letter grade is then displayed. Grades
from 90 to 100 are an A, grades from 80 to 89 are a B, grades from 70 to 79
are a C, grades from 60 to 69 are a D, and grades below 60 are an F. After
displaying the corresponding letter grade, the user is prompted to enter
another letter grade or can choose to quit the application.

 The GradeConverter interface should include a prompt asking for the
numeric grade. The prompt should give the option of quitting the appli-
cation. After displaying the letter grade, the user should be prompted to
enter another numeric grade or quit the application.

 The GradeConverter output sketch:

��������������������������������������
�����������������������
��������������������������������������
�����������������������
��������������������������������������

166 Chapter 7 Methods

sa
mp
le

 The GradeConverter algorithm:

1. Prompt the user for a number.

2. Determine the letter grade that corresponds to the entered
numeric grade and display the result.

3. Repeat steps 1 and 2 until the user chooses to quit.

 The GradeConverter flowchart:

�����

������������������
���������

��������������
��������������������

���

GradeConverter Code Design

 Using the top-down development approach, the algorithm is further
refined:

 Step 1 of the algorithm can be broken down further:

1a. Display a prompt that gives the user the option to quit.

 Check that the number entered is valid. It should correspond to
either a sentinel value that indicates the user wants to quit or a
number in the range 0 through 100.

 Step 2 of the algorithm can be broken down further:

2a. Determine if the numeric grade is between 90 to 100, 80 to 89, 70
to 79, 60 to 69, or 0 to 59.

 Assign the letter A to a grade from 90 to 100, a letter B to a grade
from 80 to 89, the letter C to a grade from 70 to 79, the letter D to
a grade from 60 to 69, and the letter F to a grade from 0 to 59.

Chapter 7 Methods 167

sa
mp
le

 Using the flowchart, algorithm, and procedural abstraction, the pseudo-
code for the GradeConverter application can be created. The code will
include a loop structure to get the user’s input and two additional methods.
One method will determine if the input is valid and another determines
which letter corresponds to the numeric grade:

main()
Prompt the user for a number
while (number != -1) {
 if (isValidNumber(number)) {
 getLetterGrade(number)
 Display message with letter grade
 }
 Prompt the user for a number
}

isValidNumber(userNum, maxNum, minNum)
if (minNum <= userNum <= maxNum) {
 return (true);
} else {
 return(false);
}

getLetterGrade(numericGrade)
if (numericGrade < 60) {
 return ("F");
} else if (numericGrade < 70) {
 return ("D");
} else if (numericGrade < 80) {
 return ("C");
} else if (numericGrade < 90) {
 return ("B");
} else {
 return ("A");
}

GradeConverter Implementation

 Testing methods in isolation is important to ensure that the program
as a whole will run without error. When testing a method, statements in
main() should call the method using test data. The main() method should
not call any other method or perform any other task except test the current
method.

 Rather than writing code for the entire application at once, one method
at a time will be added and then tested. When testing the methods is com-
plete, the main() method will be rewritten to implement the GradeConverter
pseudocode.

168 Chapter 7 Methods

sa
mp
le

 The isValidNumber() method is the first method written and tested:

 public class GradeConverter {

 /**
 * Determines if a numeric entry is valid.
 * pre: none
 * post: true return if minNum <= userNum <= maxNum;
 * false returned otherwise
 */
 public static boolean isValidNumber(int userNum, int minNum, int maxNum) {
 if (minNum <= userNum && userNum <= maxNum) {
 return(true);
 } else {
 return(false);
 }
 }

 public static void main(String[] args) {
 final int minValue = 0;
 final int maxValue = 100;
 int numericGrade;

 numericGrade = 0;
 if (isValidNumber(numericGrade, minValue, maxValue)) {
 System.out.println(numericGrade + " is valid.");
 } else {
 System.out.println(numericGrade + " is NOT valid.");
 }

 numericGrade = 100;
 if (isValidNumber(numericGrade, minValue, maxValue)) {
 System.out.println(numericGrade + " is valid.");
 } else {
 System.out.println(numericGrade + " is NOT valid.");
 }

 numericGrade = -1;
 if (isValidNumber(numericGrade, minValue, maxValue)) {
 System.out.println(numericGrade + " is valid.");
 } else {
 System.out.println(numericGrade + " is NOT valid.");
 }

 numericGrade = 101;
 if (isValidNumber(numericGrade, minValue, maxValue)) {
 System.out.println(numericGrade + " is valid.");
 } else {
 System.out.println(numericGrade + " is NOT valid.");
 }
 }
}

 The statements in main() test the isValidNumber() method with data
that includes boundary values. A boundary value is data that is just inside
or just outside the range of valid values. For example, the value 100 lies just
inside the high end of the range of valid grades. Testing the method with
this data verifies that the <= operator was used rather than the < operator.
The GradeConverter application produces the following output:

boundary value

Chapter 7 Methods 169

sa
mp
le

 Next, the getLetterGrade() method is added and the main() statements
are changed to test that method:

 public class GradeConverter {

 /**
 * Determines if a numeric entry is valid.
 * pre: none
 * post: true has been returned if minNum <= userNum <= maxNum;
 * false has been returned otherwise
 */
 public static boolean isValidNumber(int userNum, int minNum, int maxNum) {
 if (minNum <= userNum && userNum <= maxNum) {
 return(true);
 } else {
 return(false);
 }
 }

 /**
 * Determines the letter grade that corresponds to the numeric grade.
 * pre: 0 <= numGrade <= 100
 * post: The letter grade A, B, C, D, or F has been returned.
 */
 public static String getLetterGrade(int numGrade) {
 if (numGrade < 60) {
 return("F");
 } else if (numGrade < 70){
 return("D");
 } else if (numGrade < 80) {
 return("C");
 } else if (numGrade < 90) {
 return("B");
 } else {
 return("A");
 }
 }

 public static void main(String[] args) {
 int numericGrade;

 numericGrade = 90;
 System.out.println(numericGrade + " is " + getLetterGrade(numericGrade));
 numericGrade = 89;
 System.out.println(numericGrade + " is " + getLetterGrade(numericGrade));
 numericGrade = 80;
 System.out.println(numericGrade + " is " + getLetterGrade(numericGrade));
 numericGrade = 79;
 System.out.println(numericGrade + " is " + getLetterGrade(numericGrade));
 numericGrade = 70;
 System.out.println(numericGrade + " is " + getLetterGrade(numericGrade));
 numericGrade = 69;
 System.out.println(numericGrade + " is " + getLetterGrade(numericGrade));
 numericGrade = 60;
 System.out.println(numericGrade + " is " + getLetterGrade(numericGrade));
 numericGrade = 59;
 System.out.println(numericGrade + " is " + getLetterGrade(numericGrade));
 }

}

170 Chapter 7 Methods

sa
mp
le

 Boundary values for getLetterGrade() are tested with statements in
main(). Running GradeConverter displays the output:

 After verifying that the methods are working as expected, the final
GradeConverter application can be completed:

/*
 * GradeConverter.java
 */

 import java.util.Scanner;

 /**
 * Display the letter grade that corresponds to the numeric
 * grade entered by the user.
 */
 public class GradeConverter {

 /**
 * Determines if a numeric entry is valid.
 * pre: none
 * post: true has been returned if minNum <= userNum <= maxNum;
 * false has been returned otherwise
 */
 public static boolean isValidNumber(int userNum, int minNum, int maxNum) {
 if (minNum <= userNum && userNum <= maxNum) {
 return(true);
 } else {
 return(false);
 }
 }
 /**
 * Determines the letter grade that corresponds to the numeric grade.
 * pre: 0 <= numGrade <= 100
 * post: The letter grade A, B, C, D, or F has been returned.
 */
 public static String getLetterGrade(int numGrade) {
 if (numGrade < 60) {
 return("F");
 } else if (numGrade < 70){
 return("D");
 } else if (numGrade < 80) {
 return("C");
 } else if (numGrade < 90) {
 return("B");
 } else {
 return("A");
 }
 }

Chapter 7 Methods 171

sa
mp
le

 public static void main(String[] args) {
 final int FLAG = -1;
 final int minValue = 0;
 final int maxValue = 100;
 int numericGrade;
 String letterGrade;
 Scanner input = new Scanner(System.in);

 System.out.print("Enter a numeric grade (-1 to quit): ");
 numericGrade = input.nextInt();
 while (numericGrade != FLAG) {
 if (isValidNumber(numericGrade, minValue, maxValue)) {
 letterGrade = getLetterGrade(numericGrade);
 System.out.println("The grade " + numericGrade + " is a(n) " +
 letterGrade + ".");
 } else {
 System.out.println("Grade entered is not valid.");
 }
 System.out.print("Enter a numeric grade (-1 to quit): ");
 numericGrade = input.nextInt();
 }
 }

}

The GradeConverter application produces output similar to:

GradeConverter Testing and Debugging

 Testing done at this point should test the logic in main() because the
other methods have already been verified. The logic in main() is simple.
Therefore, testing need only include verifying that the loop control vari-
able is working as expected, the user is able to enter grades as expected,
and that letter grades are returned for values entered by the user in the
range 0 though 100.

 Review: GradeConverter
Modify the GradeConverter Case Study to display an A+ for a grade of 100, a B+ for a grade of 89, a C+ for
a grade of 79, and a D+ for a grade of 69.

 Chapter Summary
 This chapter introduced a new level of software development that
included writing methods to perform tasks. In the software development
process, top-down development is a problem-solving approach that breaks a
task down into smaller subtasks and then further into units. Implementing
these tasks with methods is called procedural abstraction.

172 Chapter 7 Methods

sa
mp
le

 Methods are executed in a statement by including the method name
followed by parentheses. A statement that executes a method is said to
call the method. When a method requires data to perform its tasks, the
data is included inside the parentheses in the method call. A method that
returns data must be called from an assignment statement or from inside
an expression.

 A method includes a declaration and a body. The method declaration
includes the access level, return type, if any, method name, and param-
eters for receiving data, if necessary. The access level of a method can
be declared public, which means that the method can be called from a
statement in any other method. The keyword public is called an access
modifier. A method declaration that includes the keyword static is a class
method, which can be called from the class itself.

 The return type of a method declares what type of value will be given
back to the calling statement. The return type void indicates that the
method will not return a value at all. Return types can be primitive types,
such as int and double, or abstract data types, such as String. Methods that
return a value must include a return statement in the method body.

 A method can have multiple parameters. Arguments in a method call
must be passed to a method in the same order as the parameter declara-
tions. Methods with the same name, but with different parameters are
said to be overloaded. The compiler determines which method to call by
the types, order, and number of parameters in overloaded methods.

 Primitive arguments are passed by value, which means that the data
stored in the argument is passed, not a reference to the argument loca-
tion. A method can only use the argument values in the task it performs.
A method cannot change the data stored in an argument.

 The body of a method can include variable, constant, and object decla-
rations. These declarations are said to be local because they have a scope
that extends just from the declaration to the end of the method body.

 Careful documentation is important for the reader of a program to
understand a method. Method documentation is enclosed by /** */ and
includes a brief description of the method, a precondition, and a postcon-
dition. Every method must have a postcondition, but not every method
requires a precondition.

 Code conventions introduced in this chapter are:

• Method names should indicate an action and begin with a lower-
case letter and then an uppercase letter should begin each word
within the name.

• Method documentation should be enclosed in /** */ comment
blocks.

• Method documentation should include a brief description of the
task the method performs, a precondition, and a postcondition.

Chapter 7 Methods 173

sa
mp
le

 Vocabulary

Access level The part of a method declaration that
determines if the method can be called by other
classes.

Access modifier A keyword in the declaration
of a method that determines the access level of a
method.

Argument The value or variable passed to a
method.

Call A statement that contains a method name
followed by parentheses.

Boundary value A value that lies just inside or just
outside the range of valid values.

Class method A method that can be called from
the class itself.

Local Variables, constants, and objects that are
declared within a method and therefore have a scope
limited to that method.

Method body The statements that implement a
method.

Method declaration The first line of a method,
which contains the method name, access level, return
type, and parameters, if any.

Method overloading Writing more than one method
of the same name in a class.

Method parameters The part of a method declara-
tion that accepts values from the method call.

Pass Giving data to a method by enclosing the data
in parentheses in the method call.

Pass by value Passing the value of an argument to a
method. The type of data passed depends on whether
the argument is a primitive or an object.

Precondition The part of a method’s documentation
that states the assumptions, or initial requirements,
of the method. Also called pre.

Procedural abstraction Breaking a task down into
methods.

Postcondition The part of a method’s documenta-
tion that states what must be true after the method
has been executed. Also called post.

Top-down development A problem-solving
approach where a task is broken down into subtasks
and then the subtasks are reduced to yet simpler
tasks.

Visibility The access level of a method.

 Java

/** */ Used to enclose documentation comments
for a method.

public An access modifier used in the declaration
of a method to indicate that the method is visible
to any other class.

static A keyword used in the declaration of a method
to indicate that the method is a class method.

void A keyword used in the declaration of a method to
indicate that the method will not return a value.

return Statement used to send a value from a method
back to the calling statement.

174 Chapter 7 Methods

sa
mp
le

 Critical Thinking

1. Use top-down development and procedural
abstraction to write pseudocode for the follow-
ing specification:

 The Pizza application allows the user to
choose to display the instructions for mak-
ing a pizza in either English or Spanish.

2. Explain the difference between method declara-
tion and method body.

3. What type of keyword is used to change the
access level of a method?

4. What is another word used for describing the
access level of a method?

5. Explain the scope of each of the variables in the
code below:

 public class ScopeExample {
 public static void main(String[] args) {
 int var1;
 for (int var2 = 0; var2 < 5; var2++) {
 method1();
 }
 }

 public static void method1() {
 int var3;
 for (int var4 = 0; var4 < 2; var4++) {
 var3 += 1;
 }
 }
 }

6. Write a method declaration for each of the fol-
lowing descriptions:

 a) A class method named getVowels that can be
called by any other method, requires a String
parameter, and returns an integer value.

 b) A class method named extractDigit that can
be called by any other method, requires an
integer parameter, and returns an integer
value.

 c) A class method named insertString that can
be called by any other method, requires a
String parameter and an integer parameter,
and returns a String parameter.

7. a) How does the compiler distinguish one
method from another?

 b) Can two methods in the same class have the
same name? Explain.

8. a) What is the return statement used for?
 b) How many values can a return statement

send back to the calling statement?
 c) How is the declaration of a method return-

ing a value different from the declaration of
a method that does not return a value?

9. Find and explain the error in the code below:

 public class MethodCallExample {
 public static void main(String[] args) {
 int num;
 doSomething();
 num = doSomething();
 }

 public static int doSomething() {
 return(5);
 }
 }

10. a) What type of comments should be used for
describing a method?

 b) What three things should the comments for
a method describe?

True/False

11. Determine if each of the following are true or
false. If false, explain why.

 a) Breaking a task down into methods is called
procedural abstraction.

 b) A method call consists of the method decla-
ration in an assignment statement.

 c) A void method must return a value.
 d) An access modifier declares the return type

of a method.
 e) The keyword static declares a method is a

class method.
 f) Method parameters are enclosed by braces

({}).
 g) Local variables can be used by any method

in a class.
 h) The value of an argument passed to a method

can be changed in an assignment statement
in the method.

 i) Method overloading means that an applica-
tion contains more than 10 methods.

 j) The return statement is used to send a value
back to the calling statement.

 k) The precondition of a method states the data
types of the method’s parameters.

 l) The postcondition of a method describes the
way the method accomplishes its task.

Chapter 7 Methods 175

sa
mp
le

 Exercises

Exercise 1 ——————————————————————— House
Create a House application that calls methods addRoof(), addBase(), and addWalk() to display the
following:

Exercise 2 ————————————————— MetricConversion
The following formulas can be used to convert English units of measurements to metric units:

inches * 2.54 = centimeters

feet * 30 = centimeters

yards * 0.91 = meters

miles * 1.6 = kilometers

Create a MetricConversion application that displays a menu of conversion choices and then prompts
the user to choose a conversion. Conversion choices should include inches to centimeters, feet to cen-
timeters, yards to meters, miles to kilometers, and vice versa. The application should include separate
methods for doing each of the conversions. Application output should look similar to:

Exercise 3 ö —————————————————— PrimeNumber
Modify the PrimeNumber application created in Chapter 6 Exercise 1 to include a method named
isPrime(). The isPrime() method should require one parameter and return a Boolean value.

176 Chapter 7 Methods

sa
mp
le

Exercise 4 ———————————————————— IsoTriangle
Create an IsoTriangle application that prompts the user for the size of an isosceles triangle and then
displays the triangle with that many lines. The IsoTriangle application code should include:

• the drawBar() method from the chapter.

• An addSpaces() method which “prints” spaces.

Application output should look similar to:

Exercise 5 ————————————————————— AddCoins
Create an AddCoins application that prompts the user for the number of pennies, nickels, dimes,
and quarters, and then displays their total dollar amount. The AddCoins application should include
a getDollarAmount() method that has four int parameters corresponding to the number of pennies,
nickels, dimes, and quarters, and returns a String that corresponds to the dollar value of the coins.
Note that the String returned should include the currency sign ($). Application output should look
similar to:

Exercise 6 ————————————————— PythagoreanTriple
Create a PythagoreanTriple application that displays all pythagorean triples with values of A and B
less than 100. A pythagorean triple is a set of three integers that make the equation a2 + b2 = c2 true.
The application should include a PerfectSquare() method that uses the solution from the PerfectSquare
review in Chapter 6. (Hint: You will need to generate all possible combinations of A and B and display
just those that work.)

Chapter 7 Methods 177

sa
mp
le

Exercise 7 ———————————————————PerfectIntegers
Create a PerfectIntegers application that displays all perfect integers up to 100. A perfect integer is a
number which is equal to the sum of all its factors except itself. For example, 6 is a perfect number
because 1 + 2 + 3 = 6. The application should include a boolean method isPerfect().

Exercise 8 ————————————————————————HiLo
a) In the Hi-Lo game, the player begins with a score of 1000. The player is prompted for the

number of points to risk and a second prompt asks the player to choose either High or
Low. The player’s choice of either High or Low is compared to random number between
1 and 13, inclusive. If the number is between 1 and 6 inclusive, then it is considered
“low”. A number between 8 and 13 inclusive is “high”. The number 7 is neither high
nor low, and the player loses the points at risk. If the player had guessed correctly,
the points at risk are doubled and added to the total points. For a wrong choice, the
player loses the points at risk. Create a HiLo application based on this specification.
Application output should look similar to:

b) Modify the application to allow the player to continue until there are 0 points left. At
the end of the game, display the number of guesses the user took before running out
of points.

178 Chapter 7 Methods

sa
mp
le

Exercise 9 ———————————————————————— Nim
The game of Nim starts with a random number of stones between 15 and 30. Two players alternate
turns and on each turn may take either 1, 2, or 3 stones from the pile. The player forced to take the last
stone loses. Create a Nim application that allows the user to play against the computer. In this version
of the game, the application generates the number of stones to begin with, the number of stones the
computer takes, and the user goes first. The Nim application code should:

• prevent the user and the computer from taking an illegal number of stones. For
example, neither should be allowed to take three stones when there are only 1 or 2
left.

• include an isValidEntry() method to check user input.

• include a drawStones() method that generates a random number from 1 to 3 for the
number of stones the computer draws.

• include separate methods to handle the user’s turn and the computer’s turn.

Application output should look similar to that shown on the next page:

Exercise 10 ö ————————————————— GuessingGame
The GuessingGame application modified in Chapter 6 Exercise 8 should include a separate method for
displaying a hint to the user. Modify the GuessingGame application as follows:

a) Modify the algorithm to include a call to a method named giveHint(), which displays
a hint, but does not return a value.

b) Modify the flowchart based on the algorithm modifications.

c) Modify the GuessingGame code. Application output should look similar to:

Chapter 8 Classes and Object-Oriented Development 179

sa
mp
le

Java applications use objects to perform tasks. Objects are defined
with classes. This chapter explains how to design and write a class. The
Object class and inheritance are introduced. Object-oriented development,
encapsulation, and reusability are also discussed.

 What is an Object?
 In object-oriented programming, an object stores data and can perform
actions and provide communication. The state of an object refers to the
data it stores. The behavior of an object is defined by the action and com-
munication it provides.

 Objects often model, or simulate, real-world things. For example, con-
sider a circle shape. To create a Circle object modeled after the circle shape,
we analyze the state and behavior of the shape. A circle is defined by its
radius, so this will make up the state of the object. A circle shape doesn’t
do much in the way of actions, but a Circle object could change its radius,
calculate its area, and tell us what its radius is. These actions will make
up the behavior of a Circle object.

 An object is an instance of a class. A class is a data type that defines vari-
ables for the state of an object and methods for an object’s behavior. Good
programming style dictates that the state of an object can only be changed
through its behavior. For example, to change the radius of a Circle object,
a method for changing the radius variable must be called. Protecting an
object’s data is called encapsulation. Encapsulation is also called information
hiding because the object hides certain data from code outside the class.
For example, a Circle object declared in client code can be visualized as:

�������������������������������������

��������������������������������������

��

Chapter 8
Classes and Object-Oriented

Development

state
behavior

TIP A class is an abstract data
type, which was discussed in
Chapter 4.

encapsulation
information hiding

180 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

 Client code refers to an application that uses one or more classes. The
client can access the methods of the class, but cannot directly access the
data defined in the class. This reinforces that the state of an object can
only be changed through its behavior.

 TestCircle is client code. It uses the Circle class:

public class TestCircle {

 public static void main(String[] args) {
 Circle spot = new Circle();

 spot.setRadius(5);

 System.out.println("Circle radius:" + spot.getRadius());
 System.out.println("Circle area: " + spot.area());
 }
}

In the TestCircle application, a Circle object named spot is instantiated.
The object spot uses behavior setRadius() to change the state of the object,
making the radius of the circle 5. Two other behaviors are implemented
to produce the application output:

 Designing and Writing a Class
 Designing a class requires choosing the data the object will store and
determining the actions and communication the object will provide. The
design should include variable names and method names along with a
description of the method and any required parameters. For example, the
Circle class design appears similar to:

������

���������������������

��������
���
� ���������������������������������
��
��
� ���������������������

 A class is written in a separate file and consists of a declaration and
a body. The class declaration includes the access level, the keyword class,
and the class name. The class body contains variables, constructors, and
methods. Constructors are used to initialize variables in a class. Variables
and methods are called the members of a class. A class takes the form:

<access _ level> class <name> {
 <variables>
 <constructors>
 <methods>
}

Functional
Decomposition

The process of creating clearly
defined functions, or behavior,
for a class is sometimes called
functional decomposition. A
well-written class has been
functionally decomposed into
a set of methods that cannot
be simplified further.

class declaration, body

member
constructor

client code

TIP In Java, the controlling
class is the client code.

Chapter 8 Classes and Object-Oriented Development 181

sa
mp
le

 The Circle class code is based on the design on the previous page:

/**
 * Circle class.
 */
public class Circle {
 private static final double PI = 3.14;
 private double radius;

 /**
 * constructor
 * pre: none
 * post: A Circle object created. Radius initialized to 1.
 */
 public Circle() {
 radius = 1; //default radius
 }

 /**
 * Changes the radius of the circle.
 * pre: none
 * post: Radius has been changed.
 */
 public void setRadius(double newRadius) {
 radius = newRadius;
 }

 /**
 * Calculates the area of the circle.
 * pre: none
 * post: The area of the circle has been returned.
 */
 public double area() {
 double circleArea;
 circleArea = PI * radius * radius;
 return(circleArea);
 }

 /**
 * Returns the radius of the circle.
 * pre: none
 * post: The radius of the circle has been returned.
 */
 public double getRadius() {
 return(radius);
 }
}

 The Circle class has access level public which means that it is visible
to other classes and can be used to instantiate objects in those classes.
The class name is Circle. A class name should be a noun, begin with an
uppercase letter, and each word within the name should also begin with
an uppercase letter. Class names may not contain spaces.

 The body of a class starts with an opening brace ({) and ends with a
closing brace (}). Member variables are declared after the opening brace,
and outside of any methods. Variable declarations in the body of a class
have a local scope that extends from the opening brace of the class body
to the closing. Note that the Circle class also has a member variable that
is a constant.

naming conventions

Organizing Files
Each class is writ ten in a
separate file. The client code
and the classes it uses are then
compiled together as part of a
project.

Interface
The public methods of a class
define the interface of an
object. The interface is how
client code can interact with
an object.

182 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

 The visibility of a member variable is controlled with an access modifier.
Declaring a variable as private makes it visible to the class, but not to
client code. This encapsulates the data and provides information hiding.
For example, the Circle class contains a private variable radius that can be
used by any of the methods of the class, but cannot be directly accessed
by statements in the client code where the Circle object was created.

 A constructor is automatically called when an object is created. The con-
structor is where variables are initialized. Variables that are not initialized
may contain data that could generate a run-time error when a method of
the class is executed.

 The methods in a class are accessor methods, modifier methods, or
helper methods. Accessor methods are called to determine the value of
a variable. For example, in the Circle class, getRadius() is an accessor
method. It returns the value of the variable radius. A modifier method is
called to change the value of a variable. In the Circle class, setRadius() is a
modifier method. It assigns a value passed in a parameter to the variable
radius. Accessor and modifier methods have access level public so that
they may be called from the class where the Circle object was created.

 Helper methods are called from within a class by other methods. They
are used to help complete a task and have access level private. The Circle
class does not contain helper methods.

 An application that includes Circle objects can include statements that
call the public methods, but statements that refer to the private members
will generate a compiler error.

 Review: Circle – part 1 of 4
Modify the Circle class to include a member method named circumference. The circumference() method
should return the circumference of the circle (2πr). Test the class with the following client code:

public static void main(String[] args) {
 Circle spot = new Circle();

 spot.setRadius(3);
 System.out.println("Circle radius: " + spot.getRadius());
 System.out.println("Circle circumference: " + spot.circumference());
}

 Review: Coin – part 1 of 2
Create a Coin class that includes a variable faceUp that stores either a 0 for heads up or 1 for tails up, an
accessor method named showFace() that returns a 0 if the coin is heads up or a 1 if the coin is tails up, and a
modifier method named flipCoin() that assigns a random integer between 0 and 1, inclusive, to the variable
faceUp. Test the class with the following client code:

public static void main(String[] args) {
 Coin nickel = new Coin();

 if (nickel.flipCoin() == 0) {
 System.out.println("Heads up!");
 } else {
 System.out.println("Tails up!");
 }
}

helper method

accessor method

modifier method

TIP Access modifiers and
visibility were introduced in
Chapter 7.

Chapter 8 Classes and Object-Oriented Development 183

sa
mp
le

 Writing Constructors
 The constructor of a class is automatically executed when an object
is instantiated. Once an object is instantiated, the method members of
the class can be called in any order. Unexpected results may occur if an
accessor method is called before a member variable has been set to a valid
value. To prevent this, variables should be initialized in the constructor.

 A constructor takes the form:

public <class name>(<parameters>) {
 <statements>
}

The constructor of a class does not have a return type and always has the
same name as the class. When a constructor contains parameters, they
are separated by commas.

 Constructors can be overloaded to provide more options for instantiat-
ing an object. For example, if the radius of the circle object is known when
the Circle object is created, it would be more efficient to assign the value
to radius when the object is created:

 Circle spot = new Circle(5);

A constructor can be added to the Circle class to handle creating an object
with a parameter that contains the circle radius:

/**
 * Circle class.
 */
public class Circle {
 private static final double PI = 3.14;
 private double radius;

 /**
 * constructor
 * pre: none
 * post: A Circle object created. Radius initialized to 1.
 */
 public Circle() {
 radius = 1; //default radius
 }

 /**
 * constructor
 * pre: none
 * post: A Circle object created with radius r.
 */
 public Circle(double r) {
 radius = r;
 }

 …rest of Circle class

 When a class contains more than one constructor, the compiler uses
the number and types of parameters to determine which constructor to
execute.

overloading constructors

184 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

 Review: Circle – part 2 of 4
Modify the Circle class to include an overloaded constructor that accepts the radius of the Circle object, as
shown in the previous section.

 Review: Rectangle – part 1 of 5
Design and then create a Rectangle class that has overloaded constructors. The first constructor requires no
parameters. The second has two parameters, one for length and a second for width. Member variables store
the length and width of the rectangle, and member methods assign and retrieve the length and width and
return the area and perimeter of the rectangle. Test the class by writing appropriate client code.

 Instance and Class Members
 Each object, or instance, of a class has its own copy of variables called
instance variables. For example, the Circle class contains the instance
variable radius. A class may also contain class variables. A class variable is
declared with the keyword static and only one copy is maintained for all
objects to refer to. For example, the Circle class contains the class variable
PI. Note that because PI is a constant, it also includes the keyword final:

/**
 * Circle class.
 */
public class Circle {
 private static final double PI = 3.14; //class constant
 private double radius; //instance variable

 …rest of Circle class

 In the statements below, two Circle objects are instantiated. Each
instance has its own copy of the instance variable radius, but both objects
refer to the same copy of the class constant PI:

���

��

 Methods can be either instance methods or class methods. Accessor
and modifier methods are instance methods because they change the state
of an object. They must be called from an instance of a class. Chapter 7
introduced class methods that are declared with the keyword static. Class
methods can be called from the class itself, rather than an object of the
class, to perform a task. For example, consider the Circle class with the
following class method added:

/**
 * Displays the formula for the area of a circle.
 * pre: none
 * post: The formula for area of a circle has been displayed.
 */
public static void displayAreaFormula() {
 System.out.println("The formula for the area of a
 circle is a=Pi*r*r");
}

instance variable
class variable

instance methods

class methods

Chapter 8 Classes and Object-Oriented Development 185

sa
mp
le

 The following client code calls the displayAreaFormula() class
method:

public class TestCircle {

 public static void main(String[] args) {
 Circle spot = new Circle(5);

 System.out.println("Circle radius:" + spot.getRadius());
 System.out.println("Circle area: " + spot.area());
 Circle.displayAreaFormula();
 }
}

The class method is called from the class itself (Circle) rather than an object
of the class. The TestCircle application displays the following output:

 To summarize the differences between instance and class members:

• instance variables are created each time an object is declared.

• class variables and constants are created once for the class and then
objects of the class refer to this copy.

• instance methods can only be called from an object of the class.

• class methods can be called from the class itself.

 Review: Circle – part 3 of 4
Modify the Circle class to include a class method named displayAreaFormula, as shown in the previous sec-
tion. Modify existing client code to test the new method.

 Review: Rectangle – part 2 of 5
Modify the Rectangle class to include a class method named displayAreaFormula. Modify existing client code
to test the new method.

 The Object Class
 The Object class is the superclass of all other classes. Classes, such as
Circle and String, are subclasses of Object:

������

����������

������ ������

����������

TIP Class methods cannot be
used to change the value of an
instance variable.

superclass
subclass

186 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

 Subclasses inherit, or receive, the methods of its superclass. The Object
class includes methods for comparing objects and representing an object
as a string:

Class Object (java.lang.Object)

Method
equals(Object obj)

 returns true if obj is equal to the object.
toString() returns a String that represents the object.

A subclass typically contains its own version of the equals() and toString()
superclass methods to better suit the object of the subclass. For example,
two Circle objects are equal when they both have the same radius, and two
String objects are equal when they consist of the same set of characters.

 When a subclass redefines a superclass method, the subclass method
is said to override the superclass method. The Circle class should con-
tain an equals() method that compares the state of the object to another
Circle object and a toString() method that returns a String describing the
object:

 /**
 * Determines if the object is equal to another
 * Circle object.
 * pre: c is a Circle object.
 * post: true has been returned if the objects have
 * the same radii. false has been returned otherwise.
 */
 public boolean equals(Object c) {
 Circle testObj = (Circle)c;

 if (testObj.getRadius() == radius) {
 return(true);
 } else {
 return(false);
 }
 }

 /**
 * Returns a String that represents the Circle object.
 * pre: none
 * post: A string representing the Circle object has
 * been returned.
 */
 public String toString() {
 String circleString;

 circleString = "Circle has radius " + radius;
 return(circleString);
 }

 The equals() method requires an Object parameter. In the body of the
method, the obj parameter must be cast as the appropriate type, in this
case Circle, and then assigned to an object of the appropriate type. If an
Object variable is cast with an incompatible class, then the exception
ClassCastException will be generated. To convert an object to its superclass
Object, no class casting is required.

inherit

override

TIP If a subclass does not over-
ride the equals() and toString()
methods, then the Object class
methods are used.

object casting

equals() vs. ==
Objects compared using the
== operator are equal only if
they refer to the same object.
The == operator compares the
references of the objects, not
the data stored by the objects
as the equals() methods does.

ClassCastException

Chapter 8 Classes and Object-Oriented Development 187

sa
mp
le

 The code below creates two Circle objects, compares them, and displays
information about the objects. An object’s toString() method is invoked
when an object is passed to the println() method:

 public static void main(String[] args) {
 Circle spot1 = new Circle(3);
 Circle spot2 = new Circle(4);

 if (spot1.equals(spot2)) {
 System.out.println("Objects are equal.");
 } else {
 System.out.println("Objects are not equal.");
 }
 System.out.println(spot1);
 System.out.println(spot2);
 }

The code above displays the output:

 Review: Circle – part 4 of 4
Modify the Circle class to override the equals() and toString() methods, as shown in the previous section.
Modify existing client code to test the new methods.

 Review: Rectangle – part 3 of 5
Modify the Rectangle class to override the equals() and toString() methods. Two rectangles are equal when
they both have the same length and width. Modify the existing client code to test the new method.

 Review: Coin – part 2 of 2
Modify the Coin class to override the toString() method so that it indicates whether the coin is face up or face
down. For example, “The coin is face up.” Modify existing client code to test the new method.

 Classes Using Classes
 A class may contain member variables that are class data types. Complex
data can be easily represented in this way. A class that contains class
member variables demonstrates a has-a relationship. The class “has a” class.
For example, a class with a String member variable demonstrates a has-a
relationship.

 The Bank program specification on the next page is best implemented
with two classes. One class (Account) has a member variable (Customer)
for representing the customers that hold the accounts:

 A bank maintains accounts where account holders can deposit
money and withdraw money. The account holders are customers
with a first and last name and complete address.

println()

has-a relationship

TIP The concatenation opera-
tor + also invokes the toString()
method of an object.

188 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

 A model of Bank includes an Account object that stores customer data
and a current balance. Account methods should return a balance, perform
deposits, and perform withdrawals. If an Account object is passed to the
println() method, customer data and their balance should be displayed.

 The designs for the Bank classes are:

�������

���������������������������������

��������
���
��
���
���
���
���
���
��

��������

��

��������
��

The Bank client code uses the class designs and looks similar to:

 import java.util.Scanner;
 import java.text.NumberFormat;

 public class Bank {

 public static void main(String[] args) {
 Account munozAccount = new Account(250, "Maria", "Munoz", "110 Glades Road",
 "Mytown", "FL", "33445");
 Scanner input = new Scanner(System.in);
 double data;
 NumberFormat money = NumberFormat.getCurrencyInstance();

 System.out.println(munozAccount);

 System.out.print("Enter deposit amount: ");
 data = input.nextDouble();
 munozAccount.deposit(data);
 System.out.println("Balance is: " + money.format(munozAccount.getBalance()));

 System.out.print("Enter withdrawal amount: ");
 data = input.nextDouble();
 munozAccount.withdrawal(data);
 System.out.println("Balance is: " + money.format(munozAccount.getBalance()));
 }
}

Nested Classes and
Inner Classes

A nested class is a class
defined in another class as
a member of that class. The
member class has access to
other data members, just as
other members of the class. A
nested class is also called an
inner class, unless it is declared
static.

Chapter 8 Classes and Object-Oriented Development 189

sa
mp
le

 The Account class is implemented below:

import java.text.NumberFormat;

public class Account {
 private double balance;
 private Customer cust;

 /**
 * constructor
 * pre: none
 * post: An account created. Balance and
 * customer data initialized with parameters.
 */
 public Account(double bal, String fName, String lName,
 String str, String city, String st, String zip) {
 balance = bal;
 cust = new Customer(fName, lName, str, city, st, zip);
 }

 /**
 * Returns the current balance.
 * pre: none
 * post: The account balance has been returned.
 */
 public double getBalance() {
 return(balance);
 }

 /**
 * A deposit is made to the account.
 * pre: none
 * post: The balance has been increased by the amount of the deposit.
 */
 public void deposit(double amt) {
 balance += amt;
 }

 /**
 * A withdrawal is made from the account if there is enough money.
 * pre: none
 * post: The balance has been decreased by the amount withdrawn.
 */
 public void withdrawal(double amt) {
 if (amt <= balance) {
 balance -= amt;
 } else {
 System.out.println("Not enough money in account.");
 }
 }

this
The keyword this can be
used to distinguish between
a parameter and a member
variable. For example, it can
be convenient to use the
same name for both a method
parameter and a member
variable in a class, in which
case, the member variable is
preceded by this. If in the
Account class, the constructor
used double balance as a
parameter, then the statement
in the body must be written as:
this.balance = balance;

190 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

 /**
 * Returns a String that represents the Account object.
 * pre: none
 * post: A string representing the Account object has
 * been returned.
 */
 public String toString() {
 String accountString;
 NumberFormat money = NumberFormat.getCurrencyInstance();

 accountString = cust.toString();
 accountString += "Current balance is " + money.format(balance);
 return(accountString);
 }
}

 The Customer class is implemented below:

public class Customer {
 private String firstName, lastName, street, city,
 state, zip;

 /**
 * constructor
 * pre: none
 * post: A Customer object has been created.
 * Customer data has been initialized with parameters.
 */
 public Customer(String fName, String lName, String str,
 String c, String s, String z) {
 firstName = fName;
 lastName = lName;
 street = str;
 city = c;
 state = s;
 zip = z;
 }

 /**
 * Returns a String that represents the Customer object.
 * pre: none
 * post: A string representing the Account object has
 * been returned.
 */
 public String toString() {
 String custString;

 custString = firstName + " " + lastName + "\n";
 custString += street + "\n";
 custString += city + ", " + state + " " + zip + "\n";
 return(custString);
 }
}

Chapter 8 Classes and Object-Oriented Development 191

sa
mp
le

 Running the Bank application produces output similar to:

 Review: Bank
Modify the Customer class to include changeStreet(), changeCity(), changeState(), and changeZip() methods.
Modify the Account class to include a changeAddress() method that has street, city, state, and zip parameters.
Modify the Bank application to test the changeAddress() method.

 Object-Oriented Development
 Object-oriented programming requires that the solution to a task be
implemented as a system of objects. In this system, objects communicate
with other objects to provide a solution to the task. This approach to creat-
ing software is called object-oriented development.

 In object-oriented development, the programmer reads the specification
and selects objects to model the specification. Some of these objects will
require new classes designed and written by the programmer. Other
objects can be created from existing classes previously written by the
programmer or by other programmers. For example, the JRE contains
numerous classes for use in a Java application. Reusability is an important
feature of object-oriented programming because it reduces development
time and decreases the likelihood of bugs.

 To demonstrate object-oriented development, consider the following
Carnival program specification:

 A carnival has many games that are similar in nature. These games
allow the player three tries, and the player who is successful all
three times is a winner. For example, the Balloon Dart Toss game
allows the player to throw three darts at a wall of balloons. If each
dart pops a balloon, then the player is a winner. The Ring Toss and
Break A Plate games work similarly.

reusability

TIP The JRE was first discussed
in Chapter 4.

192 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

designing objects

 Every player gets a prize. There are winning prizes and consolation
prizes. The Balloon Dart Toss prizes are tiger plush and sticker. The
Ring Toss prizes are bear key chain and pencil, and the Break A
Plate prizes are pig plush and plastic dinosaur. The Balloon Dart
Toss and Ring Toss games are $2 to play. The Break A Plate game
costs $1.50.

 The player comes to the carnival with some spending money and
can play games until the money runs out. The player also holds
onto all the prizes won.

 The Carnival application should produce output similar to the
following when Shonda has $5 spending money and Luis has $3:

��
��
���
��
�������������������������������
�����������������������

 In the first step of object-oriented development, objects are selected to
model the specification. In this case, the carnival can be modeled with
game booth objects and player objects. A game booth object should store
data about the cost of playing the game, the winning prize, and the con-
solation prize. Game booth methods should start the game and give the
cost to play. A player object should store data about the spending money
of the player and the prizes won. Player methods should play the game
and show the list of prizes won.

 The designs for the Carnival classes are:

���������

���

��������
���
���

������

�����������������������������������

��������
��
���
��
��

selecting objects for the
model

Chapter 8 Classes and Object-Oriented Development 193

sa
mp
le

The Carnival client code uses the class designs and looks similar to:

GameBooth balloonDartToss = new GameBooth(2,"tiger plush", "sticker");
GameBooth ringToss = new GameBooth(2,"bear keychain", "pencil");
GameBooth breakAPlate = new GameBooth(1.5, "pig plush", "plastic dinosaur");
Player shonda = new Player(5); //$5 spending money
Player luis = new Player(3); //$3 spending money

System.out.print("Shonda goes to Balloon Dart Toss. ");
System.out.println(shonda.play(balloonDartToss));

System.out.print("Luis goes to Ring Toss. ");
System.out.println(luis.play(ringToss));

System.out.print("Shonda goes to Ring Toss. ");
System.out.println(shonda.play(ringToss));

System.out.print("Luis goes to Break A Plate. ");
System.out.println(luis.play(breakAPlate));

System.out.println("Shonda won: " + shonda.showPrizes());
System.out.println("Luis won: " + luis.showPrizes());

Note how simple the application appears. All the work is being done by
the objects, rather than with individual statements in the main() method.
The Carnival application, like other object-oriented applications, is modular.
It uses components that are separately written and maintained.

 Another aspect of object-oriented development is that objects send
information to other objects to perform a task. When information is passed
from one object to another, the object is said to be passing a message. For
example, in the pseudocode above, the Player objects are passed a message
that includes the cost of game and the prize the player won.

 The GameBooth class is implemented below. Note that in the start()
method, the player’s throws are simulated with random numbers. The
player is said to win if three ones are generated:

import java.util.Random;

public class GameBooth {
 private double cost;
 private String firstPrize, consolationPrize;

 /**
 * constructor
 * pre: none
 * post: A GameBooth object created.
 * The cost and prizes are set.
 */
 public GameBooth(double charge, String p1, String p2) {
 cost = charge;
 firstPrize = p1;
 consolationPrize = p2;
 }

modular

message

client code

implementing the classes

194 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

 /**
 * Game is played and prize awarded.
 * pre: none
 * post: Player had three tries. Player successful all
 * three times received the first prize. A consolation
 * prize has been awarded otherwise.
 */
 public String start() {
 int toss;
 int successes = 0;
 Random rand = new Random();

 /* play game */
 for (int i = 0; i < 3; i++) { //player gets three tries
 toss = rand.nextInt(2);
 if (toss == 1) {
 successes += 1; //1 is a successful toss
 }
 }

 /* award prize */
 if (successes == 3) {
 return(firstPrize);
 } else {
 return(consolationPrize);
 }
 }

 /**
 * Returns the cost to play the game.
 * pre: none
 * post: Cost of the game has been returned.
 */
 public double getCost() {
 return(cost);
 }
}

 The Player class is implemented below:

public class Player {
 private double spendingMoney;
 private String prizesWon;

 /**
 * constructor
 * pre: none
 * post: A Player object created. Spending money given to
 * player. The prizes won set to none.
 */
 public Player(double money) {
 spendingMoney = money;
 prizesWon = "";
 }

Chapter 8 Classes and Object-Oriented Development 195

sa
mp
le

 /**
 * Player pays for and then plays a game.
 * pre: none
 * post: Player's spending money decreased by cost of game.
 * The player has a new prize added to existing prizes.
 */
 public String play(GameBooth game) {
 String newPrize;

 if (game.getCost() > spendingMoney) {
 return("Sorry, not enough money to play.");
 } else {
 spendingMoney -= game.getCost(); //pay for game
 newPrize = game.start(); //play game
 prizesWon = newPrize + ", " + prizesWon;
 return("prize won: " + newPrize);
 }
 }

 /**
 * Returns the list of prizes won.
 * pre: none
 * post: The list of prizes has been returned.
 */
 public String showPrizes() {
 return(prizesWon);
 }
}

Running the Carnival application produces output similar to:

 Although the classes may look long, once written they are available for
many different implementations of a Carnival or another application that
involves games.

 Review: Carnival
Modify the Player class to override the toString() method. When a Player object is passed to the println()
method, a message should display how much money the player has left and the prizes won so far.

Modify the GameBooth class to keep track of the number of prizes awarded. There should be separate
totals for the first prizes awarded and the consolation prizes awarded. Add a method to the GameBooth
class named prizesAwarded() that displays the number of first prizes and the number of consolation prizes
given away.

Modify the Carnival client code to pass the Player objects to println() in the last two statements, and in
separate statements, display how many prizes were given away by each booth.

196 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

 Chapter 8 Case Study
 In this case study, a Rock Paper Scissors game will be created using
object-oriented development. Rock Paper Scissors is a popular game played
between two individuals for decision making or just for competitive fun.
The rules of the game are Rock dulls Scissors (Rock wins), Scissors cuts
Paper (Scissors wins), and Paper covers Rock (Paper wins). The two players
make a “throw” at the same time. The hand signals thrown by the players
are then compared to the rules of the game to determine the winner. In
the computerized version, the user plays against the computer.

RPS2 Specification

 The computerized version of the Rock Paper Scissors game is played
by one user that “throws” either rock, paper, or scissors. The game then
randomly selects either rock, paper, or scissors for the computer’s “throw”
and the winner is determined by comparing the two choices. Rock wins
over scissors, scissors wins over paper, and rock wins over scissors. The
player can initially choose to play multiple rounds. At the end of the
rounds, an overall winner is declared.

 The RPS2 interface should show the result of each round and the overall
winner. The RPS2 output sketch:

������������������
���
�������������������
����������������������
��������
���
�������������������
���������������������
��������������
���
����������������
���������������������
��������
���������������������������
��������

 The RPS2 algorithm:

1. Prompt the player for the number of rounds.

2. For each round:

 Prompt for the player’s throw.
 Generate the computer’s throw.
 Announce the winner of the round.

3. Announce an overall winner.

TIP An RPS application was
also developed for the Chapter
5 Case Study.

Chapter 8 Classes and Object-Oriented Development 197

sa
mp
le

RPS2 Code Design

 The RPS2 application can be modeled with a player object and a game
object. The player object should store the player’s throw (either rock,
paper, or scissors) and contain methods that make and return the player’s
throw. The game object should store the computer’s throw, the number
of computer wins, and the number of player wins and contain methods
that make and return the computer’s throw, determine the winner of each
round, and determine an overall winner.

 The designs for the RPS2 classes are:

���������

����������������������������������

��������
���
��

�������

��

��������
���
��
���
� � ���
� � �������������������������������������
���

 Based on the algorithm and the class designs, the RPS2 code design will
include two objects and a loop. The pseudocode for the RPS2 client code
follows:

declare game object
declare player object

prompt player for number of rounds
for (i = 0; i < rounds; i++) {
 prompt player for throw
 player.makeThrow(playerThrow);
 gameObject.makeThrow();
 gameObject.announceWinner(playerObject.getThrow);
}
gameObject.bigWinner

198 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

RPS2 Implementation

 The RPS2 implementation involves creating three files. One file contains
the client code and the other two files are the classes.

 The RPS2Player class is implemented below:

/**
 * models the player in a game of RPS
 */
public class RPSPlayer {
 private int playerThrow; //ROCK=1, PAPER=2, SCISSORS=3

 /**
 * constructor
 * pre: none
 * post: RPSPlayer object created. The player is given a
 * default throw.
 */
 public RPSPlayer() {
 playerThrow = 1; //default throw
 }

 /**
 * Sets the player's throw.
 * pre: newThrow is the integer 1, 2, or 3.
 * post: Player's throw has been made.
 */
 public void makeThrow(int newThrow){
 playerThrow = newThrow;
 }

 /**
 * Returns the player's throw.
 * pre: none
 * post: Player's throw has been returned.
 */
 public int getThrow() {
 return(playerThrow);
 }

}

Chapter 8 Classes and Object-Oriented Development 199

sa
mp
le

 The RPSGame class is implemented below:

/**
 * Models a game of RPS
 */

import java.util.Random;

public class RPSGame {
 public static final int ROCK = 1, PAPER = 2, SCISSORS = 3;
 private int compThrow;
 private int playerWins = 0, computerWins = 0;

 /**
 * constructor
 * pre: none
 * post: RPSGame object created. Computer throw generated.
 */
 public RPSGame() {
 Random rand = new Random();

 compThrow = rand.nextInt(3) + 1; //random int between 1 and 3
 playerWins = 0;
 computerWins = 0;
 }

 /**
 * Computer's throw is generated (ROCK, PAPER, or SCISSORS)
 * pre: none
 * post: Computer's throw has been made.
 */
 public void makeCompThrow(){
 Random rand = new Random();

 compThrow = rand.nextInt(3) + 1; //random int between 1 and 3
 }

 /**
 * Returns the computer's throw.
 * pre: none
 * post: Computer's throw has been returned.
 */
 public int getCompThrow() {
 return(compThrow);
 }

 /**
 * Determines the winner of the round.
 * pre: playerThrow is the integer 1, 2, or 3.
 * post: Displays a message indicating throws. Compares player's
 * throw to computer's throw and displays a message indicating
 * the winner.
 */
 public void announceWinner(int playerThrow) {

 /* Inform player of throws */
 System.out.print("You throw ");
 switch (playerThrow) {
 case ROCK: System.out.println("ROCK."); break;
 case PAPER: System.out.println("PAPER."); break;
 case SCISSORS: System.out.println("SCISSORS."); break;
 }

200 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

 System.out.print("Computer throws ");
 switch (compThrow) {
 case ROCK: System.out.println("ROCK."); break;
 case PAPER: System.out.println("PAPER."); break;
 case SCISSORS: System.out.println("SCISSORS."); break;
 }

 /* Determine and annouce winner */
 if (playerThrow == ROCK && compThrow == ROCK) {
 System.out.println("It's a draw!");
 } else if (playerThrow == ROCK && compThrow == PAPER) {
 System.out.println("Computer wins!");
 computerWins += 1;
 } else if (playerThrow == ROCK && compThrow == SCISSORS) {
 System.out.println("You win!");
 playerWins += 1;
 }

 if (playerThrow == PAPER && compThrow == ROCK) {
 System.out.println("You win!");
 playerWins += 1;
 } else if (playerThrow == PAPER && compThrow == PAPER) {
 System.out.println("It's a draw!");
 } else if (playerThrow == PAPER && compThrow == SCISSORS) {
 System.out.println("Computer wins!");
 computerWins +=1;
 }

 if (playerThrow == SCISSORS && compThrow == ROCK) {
 System.out.println("Computer wins!");
 computerWins += 1;
 } else if (playerThrow == SCISSORS && compThrow == PAPER) {
 System.out.println("You win!");
 playerWins += 1;
 } else if (playerThrow == SCISSORS && compThrow == SCISSORS) {
 System.out.println("It's a draw!");
 }
 }

 /**
 * Displays the overall winner.
 * pre: none
 * post: Computer and player wins compared and
 * an overall winner announced.
 */
 public void bigWinner() {
 if (computerWins > playerWins){
 System.out.println("Computer wins!");
 } else if (playerWins > computerWins){
 System.out.println("You win!");
 } else {
 System.out.println("It's a draw!");
 }
 }

}

Chapter 8 Classes and Object-Oriented Development 201

sa
mp
le

 The RPS2 client code follows:

/*
 * RPS2.java
 */

 import java.util.Scanner;

 /**
 * Computer plays Rock Paper Scissors against one player.
 */
 public class RPS2 {

 public static void main(String[] args) {
 RPSGame rps = new RPSGame();
 RPSPlayer rpsOpponent = new RPSPlayer();
 int rounds;
 int playerThrow;
 Scanner input = new Scanner(System.in);

 /* play RPS */
 System.out.print("How many rounds? ");
 rounds = input.nextInt();
 for (int i = 0; i < rounds; i++) {
 System.out.print("Enter your throw (ROCK=1,
 PAPER=2, SCISSORS=3): ");
 playerThrow = input.nextInt();
 rpsOpponent.makeThrow(playerThrow);

 rps.makeCompThrow();
 rps.announceWinner(rpsOpponent.getThrow());
 }
 rps.bigWinner();
 }
}

 Note how concise the client code is. The RPS2 application uses objects
to perform all the work.

 Although the classes may look long, once written they are available
for many different implementations of the RPS game. Client code can be
written to use the classes in many different ways. For example, multiple
players and games can be instantiated for tournaments.

RPS2 Testing and Debugging

 When a new class is written, client code should be written to test the
class. For the RPSGame class, client code should test all the possible throw
combinations, similar to the testing discussed in the Chapter 5 Case
Study.

202 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

 Review: RPS2 – part 1 of 2
Modify the RPSPlayer class to include a playerName variable and methods named assignName and getName. The
assignName() method has a String parameter name that is assigned to playerName. The getName() method
returns the value of playerName. Modify the announceWinner() and bigWinner() methods in the RPSGame
class to include a String parameter name that is the player’s name. Change the messages displayed in the
announceWinner() and bigWinner() methods to include the player’s name rather than the word “You”.
Modifying the two classes should produce output similar to the sketch below:

���������������������
������������������

���
���������������������
����������������������
����������

���
���������������������
���������������������
��������������

���
������������������
���������������������
����������

�����������������������������
�������������������

 Review: RPS2 – part 2 of 2
Modify the RPS2 client code to perform error checking on the player’s input. Have the client code verify that
the user has entered a 1, 2, or 3 for a throw before passing the entered value to the makeThrow() method.

 Chapter Summary
 This chapter introduced writing and designing classes. Classes are the
data types of objects. An object has a state (data) and behavior (actions and
communication in the form of methods). An important aspect of object-
oriented programming is encapsulation, also called information hiding.
In OOP, classes are written to encasulate, or hide, data from outside code.
Client code is code that uses one or more classes.

 A class includes a class declaration, variables, constructors, and meth-
ods. The class declaration includes the access level, the keyword class, and
a name. Variables and methods are the members of a class. Variables are
the data members and should be declared private. Accessor and modifier
methods are declared public, while helper methods are declared private.
Constructors are used to initialize variables and can be overloaded so that
objects can be declared with vaying numbers of parameters.

Chapter 8 Classes and Object-Oriented Development 203

sa
mp
le

 The variables and methods of a class are either instance or class mem-
bers. Instance members are copied for each instance of a class. Only one
copy of a class member exists for the class. Every object of a class refers to
the same class member. The keyword static is used for a class member
declaration. Class methods can be called from the class itself. An object
of the class can call either instance or class members.

 Every class is a subclass of the Object class. The Object class could also
be called the superclass of all other classes. The equals() and toString()
methods in the Object class are inherited by all other classes. In most cases,
these methods should be redefined in subclasses.

 An object that contains an object is said to demonstrate a has-a relation-
ship. Any class that contains a String data member demonstrates a has-a
relationship.

 Object-oriented development requires the solution to a task be imple-
mented as a system of objects. In this system, objects pass messages back
and forth to provide a solution to the task.

 This chapter discussed several important aspects of the object-oriented
paradigm, including encapsulation, reusability, and modularity.

 The code convention introduced in this chapter is:

• Class names should be a noun, begin with an uppercase letter, and
each word within the name should also begin with an uppercase
letter.

204 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

 Vocabulary

Accessor method A method of a class that is used to
determine the value of a variable member. Accessor
methods have access level public.

Behavior The action and communication an object
provides.

Class A data type that defines variables for the state
of an object and methods for an object’s behavior.

Class body The variables, constructors, and methods
that implement a class.

ClassCastException An exception thrown when an
object variable is cast with an incompatible class.

Class declaration The first line of a class, which
contains the access level, the keyword class, and
the class name.

Class method A method of a class that can be called
from the class itself. It cannot change the state of an
object. Class methods include the keyword static.

Class variable A variable of a class that exists as
one copy that all instances of a class refer to. Class
variables include the keyword static.

Client code An application that uses one or more
classes.

Constructor The part of a class that is used to
initialize the variable members of a class.

Encapsulation Protecting an object’s data from
code outside the class.

Has-a relationship The relationship demonstrated
by a class that contains another class.

Helper method A method of a class that is used
by other methods in a class to help complete a task.
Helper methods have access level private.

Information hiding Also called encapsulation.

Inherit To receive the methods of a superclass.

Instance An object of a class.

Instance method A method of a class that changes
the state of a class. It must be called from an instance
of the class.

Instance variable A variable of a class that is copied
for each instance of the class.

Member A variable or method of a class.

Message Information passed from one object to
another.

Modifier method A method of a class that is used
to change the value of a variable member. Modifier
methods have access level public.

Modular An application that uses components that
are separately written and maintained.

Object An instance of a class. An object stores
data and can perform actions and provide
communication.

Object casting To cast an object as the appropriate
class.

Object-oriented development The solution to a task
that is implemented as a system of objects.

Override To redefine a method from a superclass
in a subclass.

Reusability A feature of object-oriented program-
ming that reduces development time and decreases
the likelihood of bugs.

State The data an object stores.

Subclass A class below another class in a class
hierarchy. A class that inherits another class.

Superclass The upper-most class in a class hierarchy.
A class that has subclasses.

Visibility The access level of a method.

Chapter 8 Classes and Object-Oriented Development 205

sa
mp
le

 Java

class The keyword used to declare a class.

public An access modifier used in the declaration
of a class to indicate that the class is visible to client
code. Also used in the declaration of class methods to
indicate that the method is visible to client code.

static The keyword used in the declaration of a
variable or method in a class to indicate that the
member is a class method.

private A keyword used in the declaration of class
members when those members should be visible to
the class but not to client code.

206 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

 Critical Thinking

1. Which members of the Circle class are
encapsulated?

2. What name must the constructor of a class
have?

3. Explain the difference between the private and
public access modifiers.

4. Consider the following code. Is the last state-
ment valid or invalid? Explain.

 Circle dot = new Circle(2);
 dot.radius = 5;

5. Use the following class to answer the questions
below:

 public class Roo {
 private int x;

 public Roo {
 x = 1;
 }

 public void setX(int z) {
 x = z;
 }

 public int getX() {
 return(x);
 }

 public int calculate() {
 x = x * factor();
 return(x);
 }

 private int factor() {
 return(0.12);
 }
 }

 a) What is the name of the class?
 b) What is the name of the data member?
 c) List the accessor method.
 d) List the modifier method.
 e) List the helper method.
 f) What is the name of the constructor?
 g) How many method members are there?

6. What is the difference between a class and an
object?

7. Imagine a band festival where there are many
bands playing—the TwoToos, the EggRolls, and
Goop. Each band can TuneUp, PlayMusic, and
TakeABow. A set list can be read or created. If
this was simulated in an object-oriented pro-
gram, what would appropriate names be for:

 a) the class
 b) the objects
 c) a data member
 d) the method members

8. Assume a class for a sports team named
Team.

 a) List three possible object names.
 b) List three possible method members.
 c) List three possible data members.

9. Use the following class data member definitions
to answer the questions below:

 public class Moo {
 private double y;
 private static int x;
 private static final z;

 …

 a) Which data member is a constant?
 b) Which data members are variables?
 c) Which data member(s) are instance

members?
 d) Which data member(s) are class members?

10. Explain the difference between calling an
instance method member and a class method
member.

11. Compare and contrast overriding methods to
overloading methods.

12. The Customer class in the Bank application also
demonstrates a has-a relationship. Explain.

13. How can reusing code decrease the likelihood
of bugs in an application?

14. Explain what is meant by passing a message.

Chapter 8 Classes and Object-Oriented Development 207

sa
mp
le

True/False

15. Determine if each of the following are true or
false. If false, explain why.

 a) The state of an object is described by its
methods.

 b) The behavior of an object is described by its
variables.

 c) An instance of a class is called an object.
 d) Client code is an application that uses a

class.
 e) Encapsulation means that all the variables

in a class are available to client code.
 f) A constructor is a member of a class.
 g) A variable that is visible to a class, but not

to client code is declared with the keyword
private.

 h) An accessor method is called to change the
value of a data member.

 i) A modifier method returns the value of a
data member.

 j) A constructor of a class is automatically
called when an object of the class is instan-
tiated.

 k) A class can contain multiple constructors.
 l) An instance variable is copied for each

instance of a class.
 m) A class variable is declared with the key-

word public.
 n) A class method must be called from an object

of the class.
 o) A class constant is declared with only the

keyword final.
 p) The Object class is a subclass of all other

classes.
 q) The toString() method can be redefined in

subclasses.
 r) Object-oriented development requires that

only one object be used in an application.

208 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

 Exercises

Exercise 1 —————————————————————MySavings
Create a MySavings application that displays a menu of choices for entering pennies, nickels, dimes, and
quarters into a piggy bank and then prompts the user to make a selection. The MySavings application
should include a PiggyBank object that can add coins to the piggy bank, remove coins, and return the
total amount in the bank. Application output should look similar to:

Exercise 2 ——————————————————— DigitExtractor
Create a DigitExtractor application that prompts the user for an integer and then displays the ones,
tens, and hundreds digit of the number. The DigitExtractor application should include a Num object
that can return the ones digit, tens digit, hundreds digit, and the whole number. Application output
should look similar to:

Chapter 8 Classes and Object-Oriented Development 209

sa
mp
le

Exercise 3 ———————————————————— LunchOrder
Create a LunchOrder application that prompts the user for the number of hamburgers, salads, french
fries, and sodas and then displays the total for the order. The LunchOrder application should include
a Food object with a constructor that accepts the price, fat, carbs, and fiber for an item. Food methods
should return the price of the item and return the fat, carbohydrates, and fiber. Use the chart below for
food prices and nutrition information:

Item Price Fat(g) Carbohydrates(g) Fiber(g)
hamburger $1.85 9 33 1
salad $2.00 1 11 5
french fries $1.30 11 36 4
soda $0.95 0 38 0

Application output should look similar to:

210 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

Exercise 4 ——————————————————— DiceRollGame
In the Dice Roll game, the player begins with a score of 1000. The player is prompted for the number
of points to risk and a second prompt asks the player to choose either high or low. The player rolls
two dice and the outcome is compared to the player’s choice of high or low. If the dice total is between
2 and 6 inclusive, then it is considered “low”. A total between 8 and 12 inclusive is “high”. A total of
7 is neither high nor low, and the player loses the points at risk. If the player had called correctly, the
points at risk are doubled and added to the total points. For a wrong call, the player loses the points at
risk. Create a DiceRollGame application that uses a DRPlayer object based on this specification. The
DRPlayer object should have two Die member variables that represent the dice. The Die class should
use a random number generator to determine the outcome in a roll() method. Application output
should look similar to:

Exercise 5 ——————————————————————— Nim2
The game of Nim starts with a random number of stones between 15 and 30. Two players alternate
turns and on each turn may take either 1, 2, or 3 stones from the pile. The player forced to take the last
stone loses. Use object-oriented development to create a Nim2 application that allows the user to play
Nim against the computer. The Nim2 application and its objects should:

• Generate the number of stones to begin with.

• Allow the player to go first.

• Use a random number generator to determine the number of stones the computer
takes.

• Prevent the player and the computer from taking an illegal number of stones. For
example, neither should be allowed to take three stones when there are only 1 or 2
left.

Chapter 8 Classes and Object-Oriented Development 211

sa
mp
le

Exercise 6 ————————————————————— GameOf21
In the Game of 21, a player is dealt two cards from a deck of playing cards and then optionally given
a third card. The player closest to 21 points without going over is the winner. Use object-oriented
development to create a Game of 21 application that allows the user to play the Game of 21 against the
computer. The Game of 21 application and its objects should:

• Deal a card from a deck of playing cards by generating a random number between 1
and 13. A 1 corresponds to an Ace, numbers 2 through 10 correspond to those cards,
and 11 through 13 correspond to Jack, Queen, and King. The Jack, Queen, and King
have a value of 10 in the Game of 21. An Ace can have a value of either 1 or 11.

• Allow the player to stay with two cards or be given a third card.

• Announce the winner.

• Play rounds until the player says to stop.

Exercise 7 —————————————————————— Bowling
In bowling, a ball is rolled down a lane, also called an alley, at a set of ten pins. A game consists of a
bowler bowling for ten frames, where each frame consists of two chances (throws) to knock over all ten
pins. Bowling centers often use computers to electronically keep scores for bowlers. Use object-oriented
development to create a Bowling application that simulates a simplified game of bowling. The Bowling
application and its objects should:

• Allow a bowler to bowl ten frames. Each frame consists of two throws, unless a strike
is thrown.

• Award 20 points to the bowler when all ten pins are knocked over on the first throw
of a frame.

• Award 15 points to the bowler when all ten pins are knocked over within the two
throws of a frame.

• Award one point for each pin knocked over in the two throws of a frame when all
ten pins are not knocked over.

• If there is more than one bowler in a game, then the bowlers take turns until each
has bowled ten frames.

• Use a random number generator to determine how many pins a bowler has knocked
over with each throw.

• Display an updated score after each frame.

212 Chapter 8 Classes and Object-Oriented Development

sa
mp
le

Exercise 8 ——————————————————————— Adder
The Adder game prompts a player for the answer to an addition problem. The Adder game cre-
ates a problem from two randomly selected integers between 0 and 20. Adder allows the player
three tries to enter a correct answer. If the correct answer is entered on the first try, the player is
awarded 5 points. If the correct answer is entered on the second try, 3 points are awarded. The
correct answer on the third try earns 1 point. If after three tries, the correct answer is still not
entered, the player receives no points and the correct answer is displayed. The game continues until
999 is entered as an answer. At the end of the game, Adder displays the player’s score. Application
output should look similar to:

Chapter 9 Inheritance and Polymorphism 213

sa
mp
le

Object-oriented programming is based on a paradigm in which objects
are used to model a specification. Objects are created from classes, which
provide encapsulation. Inheritance extends a class and provides a means
of polymorphism. This chapter discusses inheritance and polymorphism.
Abstract classes and interfaces are also discussed.

 Extending a Class
 Often times there is an existing class that provides a basis for an object
that models a specification. However, the existing class may need addi-
tional methods or different implementations of existing methods to more
closely represent the object for the model. For example, consider a disk,
which has circular shape. It is similar to a circle. However, a disk is three-
dimensional and also has a thickness. Rather than create a whole new class
to represent a disk, a class named Disk could extend the Circle class.

 Making one class an extension of another involves inheritance. Inheritance
allows a class to define a specialized type of an already existing class. In
this case, a disk is a solid circle with a thickness. Classes that are derived
from existing classes demonstrate an is-a relationship. A class “is a” type
of another class. In this case, a disk is a circle with a thickness.

 A class can have many levels of inheritance. For example, consider the
following class hierarchy:

����

������

����

The Puck class inherits the Disk class, which inherits the Circle class. The
Circle class is the superclass of Disk. Disk is the subclass of Circle and the
superclass of Puck. Puck is the subclass of Disk.

Chapter 9
Inheritance and Polymorphism

inheritance

TIP The Object class is the
superclass of all other classes.

is-a relationship

214 Chapter 9 Inheritance and Polymorphism

sa
mp
le

 Implementing a Subclass
 A class that inherits another class includes the keyword extends in the
class declaration and takes the form:

public class <name> extends <class _ name> {
 <class definition>
}

 Designing a subclass requires selecting the superclass, or base class,
and then defining any additional variable and method members for the
subclass. In many cases, existing methods in the base class will also be
overridden by new definitions in the subclass, also called the derived class.
For example, the Disk class design appears similar to:

��������������������

�������������������

��������
���
���
��
��
���

 The Disk class implementation, based on the design above, is:

/**
 * Disk class.
 */
public class Disk extends Circle {
 private double thickness;

 /**
 * constructor
 * pre: none
 * post: A Disk object has been created with radius r
 * and thickness t.
 */
 public Disk(double r, double t) {
 super(r);
 thickness = t;
 }

 /**
 * Changes the thickness of the disk.
 * pre: none
 * post: Thickness has been changed.
 */
 public void setThickness(double newThickness) {
 thickness = newThickness;
 }

extends

base class

derived class

Chapter 9 Inheritance and Polymorphism 215

sa
mp
le

 /**
 * Returns the thickness of the disk.
 * pre: none
 * post: The thickness of the disk has been returned.
 */
 public double getThickness() {
 return(thickness);
 }

 /**
 * Returns the volume of the disk.
 * pre: none
 * post: The volume of the disk has been returned.
 */
 public double volume() {
 double v;

 v = super.area() * thickness;
 return(v);
 }

 /**
 * Determines if the object is equal to another
 * Disk object.
 * pre: d is a Disk object.
 * post: true has been returned if objects have the same
 * radii and thickness. false has been returned otherwise.
 */
 public boolean equals(Object d) {
 Disk testObj = (Disk)d;

 if (testObj.getRadius() == super.getRadius()
 && testObj.getThickness() == thickness) {
 return(true);
 } else {
 return(false);
 }
 }

 /**
 * Returns a String that represents the Disk object.
 * pre: none
 * post: A string representing the Disk object has
 * been returned.
 */
 public String toString() {
 String diskString;

 diskString = "The disk has radius " + super.getRadius()
 + " and thickness " + thickness + ".";
 return(diskString);
 }
}

 In a subclass, the keyword super is used to access methods of the
base class. For example, the statement super(r) calls the constructor of
the superclass, Circle, and passes an argument for setting the radius
value. Members that are declared private are not accessible to derived
classes. Therefore, accessor methods are used to get inherited member
variable values. For example, the equals() method in the Disk class calls
getRadius().

super

TIP The equals() and toString()
methods override the methods
by the same name in the Circle
class.

visibility

216 Chapter 9 Inheritance and Polymorphism

sa
mp
le

 Inherited methods are called directly from an object, just as any method
of the class is called. Whether a method is original to the Disk class or
inherited from the Circle class is transparent to client code, as demonstrated
in the TestDisk application:

public class TestDisk {

 public static void main(String[] args) {
 Disk saucer = new Disk(10, 0.02);

 System.out.println("Disk radius: " + saucer.getRadius());
 System.out.println("Disk surface area: " + saucer.area());
 System.out.println("Disk volume: " + saucer.volume());

 Disk plate1 = new Disk(12, 0.05);
 Disk plate2 = new Disk(12, 0.07);
 if (plate1.equals(plate2)) {
 System.out.println("Objects are equal.");
 } else {
 System.out.println("Objects are not equal.");
 }
 System.out.println(plate1);
 System.out.println(plate2);
 }
}

 The TestDisk application displays the following output:

 Review: Puck – part 1 of 2
Create a Puck class that inherits the Disk class. The Puck class should include member variables weight,
standard, and youth. The standard and youth variables should be boolean variables that are set to either true
or false depending on the weight of the puck. A standard puck weighs between 5 and 5.5 ounces. A youth
puck weighs between 4 and 4.5 ounces. Official hockey pucks, regardless of weight, are one inch-thick with a
three-inch diameter. The Puck class should also contain member methods getWeight(), getDivision(), which
returns a string stating whether the puck is standard or youth, and equals() and toString(), which overrride
the same methods in the Disk class. The Puck constructor should require an argument for weight. Be sure
that the constructor initializes other variables to appropriate values as necessary.

Create a Hockey application that tests the Puck class.

Chapter 9 Inheritance and Polymorphism 217

sa
mp
le

 Polymorphism
 Polymorphism is an OOP property in which objects have the ability to
assume different types. In object-oriented programming, polymorphism
is based on inheritance. Because a subclass is derived from a superclass,
a superclass object can reference an object of the subclass. For example,
the following statements are valid because Disk inherits Circle:

Circle wafer;
Disk cookie = new Disk(2, 0.5);
wafer = cookie; //wafer now references cookie

 The wafer object, declared a Circle, is polymorphic, as demonstrated in
the statement wafer = cookie where wafer assumes the form of cookie, a
Disk object.

 Polymorphism is further demonstrated when the referenced object
determines which method to execute. This is possible when a subclass
overrides a superclass method. In this case, the Disk class has overridden
the equals() and toString() methods. Because of this, the following state-
ment executes the Disk toString() method even though wafer was declared
a Circle object:

/* displays: The disk has radius 2.0 and thickness 0.5. */
System.out.println(wafer);

 To further demonstrate polymorphism, the Music application will
be developed in this section. The Music application allows the user to
assemble a small band. The user can assign a band member either vocals
(voice) or a woodwind instrument (piccolo or clarinet). The user can then
select to hear either a solo, duet, or trio performance from this band.

 The Instrument class, its subclasses, and the Performance class are
used to model the objects for the Music application. The diagram below
illustrates the client code and classes for the Music application. Note the
hierarchy of the Instrument class and its subclasses:

����������

����������

�����������

�����

����� ��������

������� ��������

�����

�����������

218 Chapter 9 Inheritance and Polymorphism

sa
mp
le

 The Music client code is shown below:

/*
 * Music.java
 */
 import java.util.Scanner;

 public class Music {

 /* Returns a selected instrument.
 * pre: none
 * post: An instrument object has been returned.
 */
 public static Instrument assignInstrument() {
 String instrumentChoice;
 Scanner input = new Scanner(System.in);

 System.out.println("Select an instrument for the
 band member. ");
 System.out.print("Vocals, Piccolo, or Clarinet: ");
 instrumentChoice = input.nextLine();
 System.out.print("Enter the band member's name: ");
 name = input.nextLine();
 if (instrumentChoice.equalsIgnoreCase("V")) {
 return(new Vocal(name));
 } else if (instrumentChoice.equalsIgnoreCase("P")) {
 return(new Piccolo(name));
 } else { //default to clarinet
 return(new Clarinet(name));
 }
 }

 public static void main(String[] args) {
 Performance band;
 Instrument bandMember1, bandMember2, bandMember3;
 Scanner input = new Scanner(System.in);
 String performanceChoice;

 /* assign instruments */
 bandMember1 = assignInstrument();
 bandMember2 = assignInstrument();
 bandMember3 = assignInstrument();
 System.out.println(bandMember1 + " " + bandMember2 + " "
 + bandMember3 + "\n");

 System.out.print("Would you like to hear a Solo, a Duet,
 a Trio, or Leave? ");
 performanceChoice = input.nextLine();
 while (!performanceChoice.equalsIgnoreCase("L")) {
 if (performanceChoice.equalsIgnoreCase("S")) {
 band = new Performance(bandMember1);
 } else if (performanceChoice.equalsIgnoreCase("D")) {
 band = new Performance(bandMember1, bandMember2);
 } else { //default to trio
 band = new Performance(bandMember1, bandMember2,
 bandMember3);
 }
 band.begin();

 System.out.print("\nWould you like to hear a Solo,
 a Duet, a Trio, or Leave? ");;
 performanceChoice = input.nextLine();
 }
 }
}

Chapter 9 Inheritance and Polymorphism 219

sa
mp
le

The assignInstrument() method declares an Instrument return type, but
the individual return statements return Vocal, Piccola, and Clarinet types.
The Instrument object returned by the method is polymorphic, changing
to whichever subclass is actually returned.

 The Music application produces output similar to:

 The Music application allows the user numerous combinations for select-
ing a band and hearing performances. The code for such an application
would be more complicated and less flexible without the object-oriented
principles of inheritance and polymorphism. Music is versatile because it
takes advantage of inheritance and polymorphism.

 The documentation for the Instrument, Vocal, Woodwind, Piccolo,
and Clarinet classes is below. Note that the makeSound() method in the
Instrument class is a method that must be implemented (written) in a sub-
class. This is discussed further in the next section. The code for the classes
is also shown in the next section where abstract classes are discussed.

Class Instrument

Constructor/Methods
Instrument(String name)

 creates an instrument object with musician
name.

getMusician() returns a string that is the musician’s name.
makeSound() an abstract method that should return a String

representing the instrument’s sound.

220 Chapter 9 Inheritance and Polymorphism

sa
mp
le

Class Vocal (inherits Instrument)

Constructor/Methods
Vocal(String name)

 creates a singer object with singer name.
makeSound() returns the String LaLaLa.
toString() returns a String that represents the singer.

Class Woodwind (inherits Instrument)

Constructor/Method
Woodwind(String name)

 creates a woodwind instrument object with
musician name.

makeSound() returns the String toot.

Class Piccolo (inherits Woodwind)

Constructor/Methods
Piccolo(String name)

 creates a piccoloist object with musician name.
makeSound() returns the String peep.
toString() returns a String that represents the object.

Class Clarinet (inherits Woodwind)

Constructor/Methods
Clarinet(String name)

 creates a clarinetist object with musician name.
makeSound() returns the String squawk.
toString() returns a String that represents the object.

 The Performance class creates an arrangement of Instrument objects.
The constructors require Instrument arguments, but polymorphism
enables objects of Instructor subclasses to be passed:

/**
 * Performance class.
 */
public class Performance {
 private String arrangement;
 private Instrument solo;
 private Instrument duet _ 1, duet _ 2;
 private Instrument trio _ 1, trio _ 2, trio _ 3;

 /**
 * constructor
 * pre: none
 * post: A soloist has been selected.
 */
 public Performance(Instrument s) {
 solo = s;
 arrangement = solo.makeSound();
 }

Chapter 9 Inheritance and Polymorphism 221

sa
mp
le

 /**
 * constructor
 * pre: none
 * post: The members of a duet have been selected.
 */
 public Performance(Instrument d1, Instrument d2) {
 duet _ 1 = d1;
 duet _ 2 = d2;
 arrangement = duet _ 1.makeSound() + duet _ 2.makeSound();
 }

 /**
 * constructor
 * pre: none
 * post: The members of a trio have been selected.
 */
 public Performance(Instrument t1, Instrument t2,
 Instrument t3) {
 trio _ 1 = t1;
 trio _ 2 = t2;
 trio _ 3 = t3;
 arrangement = trio _ 1.makeSound() + trio _ 2.makeSound()
 + trio _ 3.makeSound();
 }

 /**
 * Begins the performance.
 * pre: none
 * post: The performance has been played.
 */
 public void begin() {
 System.out.println(arrangement);
 }

 /**
 * Returns a String that represents the performers.
 * pre: none
 * post: A string representing the performers has
 * been returned.
 */
 public String toString() {
 String program = "The performance includes ";
 program += arrangement;
 return(program);
 }
}

 Review: Music – part 1 of 2
Modify the Music application to allow the user to select a quartet (four band members) in addition to the
other performances. Changes to the Performance class will also be required to provide the option of creat-
ing a quartet.

222 Chapter 9 Inheritance and Polymorphism

sa
mp
le

 Abstract Classes
 An abstract class models an abstract concept. For example, a musical
instrument is an abstract concept. An instrument is something that can
be played, but there is no such thing an “instrument” instrument. There
are however, flutes, piccolos, drums, and cymbals.

 Abstract classes cannot be instantiated because they should not repre-
sent objects. They instead describe the more general details and actions
of a type of object. For example, the Instrument class describes the very
basics of an instrument—it can make a sound. The Woodwind class is also
an abtract class because it describes a group of instruments. It includes a
general sound that woodwind instruments make.

 Abstract classes are declared with the keyword abstract in the class
declaraction. They are intended to be inherited. The public members of
the abstract class are visible to derived objects. However, an abstract class
can also contain an abstract method. An abstract method is declared with
the keyword abstract and contains a method declaration, but no body.
The abstract class must be implemented in its subclass.

 The Instrument class is an abstract class with an abstract method. The
makeSound() method must be implemented in an Instrument subclass:

/**
 * Instrument class.
 */
abstract class Instrument {
 String musician;

 /**
 * constructor
 * pre: none
 * post: A musician has been assigned to the instrument.
 */
 public Instrument(String name) {
 musician = name;
 }

 /**
 * Returns the name of the musician
 * pre: none
 * post: The name of the musician playing the instrument
 * has been returned.
 */
 public String getMusician() {
 return(musician);
 }

 /**
 * Should return the sound of the instrument.
 * pre: none
 * post: The sound made by the instrument is returned.
 */
 abstract String makeSound();
}

 The Vocal class is a subclass of Instrument. It provides the body for the
makeSound() method:

abstract method

abstract

Chapter 9 Inheritance and Polymorphism 223

sa
mp
le

/**
 * Vocal class.
 */
public class Vocal extends Instrument {

 /**
 * constructor
 * pre: none
 * post: A singer has been created.
 */
 public Vocal(String singerName) {
 super(singerName);
 }

 /**
 * Returns the sound of the instrument.
 * pre: none
 * post: The sound made by the singer.
 */
 public String makeSound() {
 return("LaLaLa");
 }

 /**
 * Returns a String that represents the instrument.
 * pre: none
 * post: A string representing the singer.
 */
 public String toString() {
 return(super.getMusician() + " sings " + makeSound() + ".");
 }
}

 The Woodwind class is also an Instrument subclass. It too implements
the makeSound() method. However, Woodwind describes a group of
instruments so it has also been declared abstract:

/**
 * Woodwind class.
 */
abstract class Woodwind extends Instrument {

 /**
 * constructor
 * pre: none
 * post: A woodwind instrument has been created.
 */
 public Woodwind(String player) {
 super(player);
 }

 /**
 * Returns the sound of the instrument.
 * pre: none
 * post: The sound made by the instrument is returned.
 */
 public String makeSound() {
 return("toot");
 }
}

224 Chapter 9 Inheritance and Polymorphism

sa
mp
le

 The Piccolo class is a subclass of Woodwind. It overrides the makeSound()
method:

/**
 * Piccolo class.
 */
public class Piccolo extends Woodwind {

 /**
 * constructor
 * pre: none
 * post: A piccolo has been created.
 */
 public Piccolo(String piccoloist) {
 super(piccoloist);
 }

 /**
 * Returns the sound of the instrument.
 * pre: none
 * post: The sound made by the instrument is returned.
 */
 public String makeSound() {
 return("peep");
 }

 /**
 * Returns a String that represents the instrument.
 * pre: none
 * post: A string representing the instrument has
 * been returned.
 */
 public String toString() {
 return(super.getMusician() + " plays " + makeSound() + ".");
 }
}

 The Clarinet class is also a Woodwind subclass. It too overrides the
makeSound() method:

/**
 * Clarinet class.
 */
public class Clarinet extends Woodwind {

 /**
 * constructor
 * pre: none
 * post: A clarinet has been created.
 */
 public Clarinet(String clarinetist) {
 super(clarinetist);
 }

 /**
 * Returns the sound of the instrument.
 * pre: none
 * post: The sound made by the instrument is returned.
 */
 public String makeSound() {
 return("squawk");
 }

Chapter 9 Inheritance and Polymorphism 225

sa
mp
le

 /**
 * Returns a String that represents the instrument.
 * pre: none
 * post: A string representing the instrument has
 * been returned.
 */
 public String toString() {
 return(super.getMusician() + " plays " + makeSound() + ".");
 }
}

 Through inheritance and abstraction, a hierarchy of classes can be cre-
ated that begin with a general abstraction and lead to a specific object.

 Review: Music – part 2 of 2
Modify the Music application to allow the user to select a cymbal or drum in addition to the other instru-
ments for the band members. The Music application changes will require that Percussion, Cymbal, and Drum
classes be created. The Percussion class should be an abstract class that inherits the Instrument class. The
Cymbal and Drum classes should inherit the Percussion class.

 Interfaces
 An interface is a class with method declarations that have no implemen-
tations. Although an interface may seem similar to an abstract class, it is
very different. An interface cannot be inherited. It may only be imple-
mented in a class. An interface can add behavior to a class, but it does not
provide a hierarchy for the class.

 An interface takes the form:

<access _ level> interface <name> {
 <return _ type> <method _ name> (<method _ param>);

 …additional methods
}

The methods defined in an interface are by default public and abstract.
Therefore, the methods in an interface are only declarations followed by
a semicolon.

 The Comparable interface is part of the java.lang package. It contains
one method:

Interface Comparable (java.lang.Comparable)

Method
compareTo(Object obj)
 returns 0 when obj is the same as the object,

a negative integer is returned when obj is
less than the object, and a positive integer is
returned when obj is greater than the object.

 When an interface is implemented in a class, the class must implement
each method defined in the interface. In this case, the Comparable interface
contains just one method. The Circle class shown on the next page has
been modified to implement the Comparable interface.

Comparable interface

226 Chapter 9 Inheritance and Polymorphism

sa
mp
le

/**
 * Circle class.
 */
public class Circle implements Comparable {
 private static final double PI = 3.14;
 private double radius;

 /**
 * constructor
 * pre: none
 * post: A Circle object created. Radius initialized to 1.
 */
 public Circle() {
 radius = 1; //default radius
 }

 …getRadius(), setRadius(), and other Circle class methods

 /**
 * Determines if object c is smaller, the same,
 * or larger than this Circle object.
 * pre: c is a Circle object
 * post: -1 has been returned if c is larger than
 * this Circle, 0 has been returned if they are the
 * same size, and 1 has been returned if c is smaller
 * then this Circle.
 */
 public int compareTo(Object c) {
 Circle testCircle = (Circle)c;

 if (radius < testCircle.getRadius()) {
 return(-1);
 } else if (radius == testCircle.getRadius()) {
 return(0);
 } else {
 return(1);
 }
 }

 The TestCircle client code tests the compareTo() method:

/**
 * The Circle class is tested.
 */
 public class TestCircle {

 public static void main(String[] args) {
 Circle spot1 = new Circle(3);
 Circle spot2 = new Circle(4);
 if (spot1.compareTo(spot2) == 0) {
 System.out.println("Objects are equal.");
 } else if (spot1.compareTo(spot2) < 0) {
 System.out.println("spot1 is smaller than spot2.");
 } else {
 System.out.println("spot1 is larger than spot2.");
 }
 System.out.println(spot1);
 System.out.println(spot2);
 }
}

Chapter 9 Inheritance and Polymorphism 227

sa
mp
le

 The TestCircle application produces the output:

 A class can implement multiple interfaces. When more than one inter-
face is implemented, the interface names are separated by commas in the
class declaration.

 Review: Disk
Modify the Disk class to implement the Comparable interface. Two disks are equal when they have the same
thickness and same radius. Modify the existing client code to test the new method.

 Review: Puck – part 2 of 2
Modify the Puck class to implement the Comparable interface. Two pucks are the equal when they have the
same weight. Modify the existing client code to test the new method.

 Review: Rectangle – part 4 of 4
Modify the Rectangle class to implement the Comparable interface. Two rectangles are the equal when they
have the same width and height. Modify the existing client code to test the new method.

 Review: Rectangle – part 4 of 5
Create an interface named ComparableArea that contains one method named compareToArea(). This method
should return 0 when the object has the same area as another object, –1 should be returned when the object
has an area less than another object, and 1 returned otherwise.

Modify the Rectangle class to implement the ComparableArea interface as well as the Comparable interface
implemented in the previous review. Modify the existing client code to test the new method.

 Chapter 9 Case Study
 In this case study, a sales center application will be created. The sales
center has three employees, which include a manager and two associates.
The manager earns a salary and the associates are paid by the hour. The
owner of the sales center wants a computer application to display employee
information and calculate payroll.

multiple interfaces

228 Chapter 9 Inheritance and Polymorphism

sa
mp
le

SalesCenter Specification

 The SalesCenter application stores information about three employees.
There is one manager (Diego Martin, salary $55,000), and two associates
(Kylie Walter earning $18.50 per hour and Michael Rose earning $16.75
per hour). SalesCenter should be able to display the name and title for
a specified employee. Additionally, the SalesCenter application should
calculate and display the pay for a specified employee based on the pay
argument entered by the user. The pay argument should correlate to hours
worked if the pay for an associate is to be calculated. The pay argument
for a manager should correlate to the number of weeks the manager is to
be paid for.

 The SalesCenter interface should provide a menu of options. Depending
on the option selected, additional input may be needed. The SalesCenter
output sketch:

�����������������
���������������
���

�����������������
���������������
��������������������������������������
���
�����������������������
�������

�����������������
���������������

 The SalesCenter algorithm:

1. Display a menu of options.

2. Prompt the user for a menu choice.

3. If the user has not selected to quit, prompt the user to specify
employee 1, 2, or 3.

4. Perform the action requested by the user.

5. Repeat steps 1 through 4 until the user has selected the option to
quit.

Chapter 9 Inheritance and Polymorphism 229

sa
mp
le

SalesCenter Code Design

 The SalesCenter application can be modeled with objects for a man-
ager and two associates. The manager and associate objects are both
employee objects. Therefore, an Employee abstract class should be used
for subclasses Manager and Associate. The Employee class should define
an emplyee’s first and last name and include an abstract class for calcu-
lating pay. A manager’s pay is based on a pay period specified in weeks.
Associates are paid by the hour. The abstract pay() method in Employee
will have different implementations in Manager and Associate.

 The SalesCenter class designs are:

��������

������������������������������

��������
��
���
��
����������������������������

������������������������

����������������������

��������
��
���
���
��
���

��������������������������

�����������������������

��������
��
��
���
��������������������������
���

230 Chapter 9 Inheritance and Polymorphism

sa
mp
le

 Based on the algorithm and the class designs, the SalesCenter code
design will include a loop. The pseudocode for the SalesCenter client code
follows:

import java.util.Scanner;
import java.text.NumberFormat;

public class SalesCenter {

 payEmployee(emp, payArg) {
 System.out.println(emp);
 pay = emp.pay(payArg);
 System.out.println(pay);
 }

 public static void main(String[] args) {
 Manager emp1 = new Manager("Diego","Martin", 55000);
 Associate emp2 = new Associate("Kylie", "Walter", 18.50);
 Associate emp3 = new Associate("Michael", "Rose", 16.75);
 Employee emp = emp1; //default employee choice

 /* display menu of choices */
 do {
 prompt user for employee/pay/quit
 get user choice;

 if (not quit) {
 prompt user for employee number 1, 2, or 3
 get empNum
 switch (empNum) {
 case 1: emp = emp1; break;
 case 2: emp = emp2; break;
 case 3: emp = emp3; break;
 }
 if (choice == employee) {
 display employee name and title;
 } else if (choice == pay) {
 prompt user for hours or pay period;
 payEmployee(emp, payArg);
 }
 }
 } while (not quit);
 }
}

SalesCenter Implementation

 The SalesCenter implementation involves creating four files. Three files
are the classes and one file is the client code.

Chapter 9 Inheritance and Polymorphism 231

sa
mp
le

 The Employee class is implemented below:

/**
 * Employee class.
 */
abstract class Employee {
 String firstName, lastName;

 /**
 * constructor
 * pre: none
 * post: An employee has been created.
 */
 public Employee(String fName, String lName) {
 firstName = fName;
 lastName = lName;
 }

 /**
 * Returns the employee name.
 * pre: none
 * post: The employee name has been returned.
 */
 public String toString() {
 return(firstName + " " + lastName);
 }

 /**
 * Returns the employee pay.
 * pre: none
 * post: The employee pay has been returned.
 */
 abstract double pay(double period);
}

 The Manager class is implemented below:

/**
 * Manager class.
 */
class Manager extends Employee {
 double yearlySalary;

 /**
 * constructor
 * pre: none
 * post: A manager has been created.
 */
 public Manager(String fName, String lName, double sal) {
 super(fName, lName);
 yearlySalary = sal;
 }

 /**
 * Returns the manager salary.
 * pre: none
 * post: The manager salary has been returned.
 */
 public double getSalary() {
 return(yearlySalary);
 }

232 Chapter 9 Inheritance and Polymorphism

sa
mp
le

 /**
 * Returns the manager pay for a specified period.
 * pre: none
 * post: The manager pay for the specified period
 * has been returned.
 */
 public double pay(double weeks) {
 double payEarned;

 payEarned = (yearlySalary / 52) * weeks;
 return(payEarned);
 }

 /**
 * Returns the employee name and title.
 * pre: none
 * post: The employee name and title has been returned.
 */
 public String toString() {
 return(super.toString() + ", manager");
 }
}

 The Associate class is implemented below:

/**
 * Associate class.
 */
class Associate extends Employee {
 double hourlyPayRate;

 /**
 * constructor
 * pre: none
 * post: An associate has been created.
 */
 public Associate(String fName, String lName, double rate) {
 super(fName, lName);
 hourlyPayRate = rate;
 }

 /**
 * Returns the associate pay rate.
 * pre: none
 * post: The associate pay rate has been returned.
 */
 public double getRate() {
 return(hourlyPayRate);
 }

 /**
 * Returns the associate pay for the hours worked.
 * pre: none
 * post: The associate pay for the hours worked
 * has been returned.
 */
 public double pay(double hours) {
 double payEarned;

 payEarned = hourlyPayRate * hours;
 return(payEarned);
 }

Chapter 9 Inheritance and Polymorphism 233

sa
mp
le

 /**
 * Returns the employee name and title.
 * pre: none
 * post: The employee name and title has been returned.
 */
 public String toString() {
 return(super.toString() + ", associate");
 }
}

 The SalesCenter client code is implemented below:

 import java.util.Scanner;
 import java.text.NumberFormat;
 public class SalesCenter {

 /**
 * Displays employee name and pay.
 * pre: none
 * post: Employee name and pay has been displayed
 */
 public static void payEmployee(Employee emp, double payArg) {
 NumberFormat money = NumberFormat.getCurrencyInstance();
 double pay;

 System.out.println(emp);
 pay = emp.pay(payArg);
 System.out.println(money.format(pay));
 }

 public static void main(String[] args) {
 Manager emp1 = new Manager("Diego","Martin", 55000);
 Associate emp2 = new Associate("Kylie", "Walter", 18.50);
 Associate emp3 = new Associate("Michael", "Rose", 16.75);
 Scanner input = new Scanner(System.in);
 String action;
 int empNum;
 double payArg;
 Employee emp = emp1; //set to default emp1

 do {
 System.out.println("\nEmployee\\Pay\\Quit");
 System.out.print("Enter choice: ");
 action = input.next();

 if (!action.equalsIgnoreCase("Q")) {
 System.out.print("Enter employee number (1, 2, or 3):");
 empNum = input.nextInt();
 switch (empNum) {
 case 1: emp = emp1; break;
 case 2: emp = emp2; break;
 case 3: emp = emp3; break;
 }
 if (action.equalsIgnoreCase("E")) {
 System.out.println(emp);
 } else if (action.equalsIgnoreCase("P")) {
 System.out.print("Enter the hours for associate or
 pay period for manager: ");
 payArg = input.nextDouble();
 payEmployee(emp, payArg);
 }
 }
 } while (!action.equalsIgnoreCase("Q"));
 }
}

234 Chapter 9 Inheritance and Polymorphism

sa
mp
le

 The SalesCenter application generates output similar to:

SalesCenter Testing and Debugging

 Client code should first be written to test each class. Testing should be
done for the client code.

 Review: SalesCenter
Modify the SalesCenter application to compensate associates when they have worked more than 40 hours.
Associates should be paid their hourly wage when 40 or fewer hours are worked. However, associates earn
time and a half for hours over 40. For example, an associate paid $10 per hour will earn $300 for 30 hours of
work. However, an associate working 42 hours will earn $400 + $30, or $430. The overtime pay is calculated
as (hours over 40) * (1.5 * base hourly rate).

 Chapter Summary
 This chapter discussed inheritance and polymorphism, two key aspects
of object-oriented programming. Inheritance allows classes to be derived
from existing classes. By extending an existing class, there is less devel-
opment and debugging necessary. A class derived from an existing class
demonstrates an is-a relationship.

 A superclass is also called a base class, and a subclass is called a derived
class. The keyword extends is used to create a derived class from a base
class. The keyword super is used to access members of a base class from
the derived class.

 Polymorphism is the ability of an object to assume different types. In
OOP, polymorphism is based on inheritance. An object can assume the
type of any of its subclasses.

 Abstract classes model abstract concepts. They cannot be instantiated
because they should not represent objects. An abstract class is intended
to be inherited.

Chapter 9 Inheritance and Polymorphism 235

sa
mp
le

 Abstract classes may or may not contain abstract methods. An abstract
method is a method declaration with no implementation. If a class con-
tains one or more abstract methods, it must be declared abstract. Abstract
methods must be implemented in a class that inherits the abstract class.

 An interface is a class that contains only abstract methods. An interface
can be implemented by a class, but it is not inherited. A class that imple-
ments an interface must implement each method in the interface. The
Comparable interface is part of the java.lang package and is used to add
a compareTo() method to classes that implement the interface.

236 Chapter 9 Inheritance and Polymorphism

sa
mp
le

 Vocabulary

Abstract class A class that models an abstract
concept. A class that contains one or more abstract
methods must be declared abstract.

Abstract method A method that has been declared,
but not implemented. Abstract methods appear in
abstract classes. They are implemented in a subclass
that inherits the abstract class.

Base class A superclass.

Derived class A subclass.

Inheritance The OOP property in which a class
can define a specialized type of an already exist-
ing class.

Interface A class with abstract methods. An inter-
face cannot be inherited, but it can be implemented
by any number of classes.

Is-a relationship The relationship demonstrated
by a class derived from an existing class.

Polymorphism The OOP property in which objects
have the ability to assume different types.

 Java

abstract The keyword used for declaring a class
or a method as abstract.

Comparable A java.lang interface with the
compareTo() method that can be implemented in
classes to provide a means for an object to be com-
pared to another object of the same type.

extends The keyword used in a class declaration to
inherit another class.

interface The keyword used in a class declaration
to declare it an interface.

super The keyword used to call a superclass con-
structor or method.

Chapter 9 Inheritance and Polymorphism 237

sa
mp
le

 Critical Thinking

1. Explain the difference between a has-a and is-a
relationship among classes.

2. If a base class has a public method go() and a
derived class has a public method stop(), which
methods will be available to an object of the
derived class?

3. Compare and contrast implementing an abstract
method to overriding a method.

4. Compare and contrast an abstract class to an
interface.

5. List the method(s) contained in the Comparable
interface.

6. Use the following classes to answer the questions
below:

 interface Wo {
 public int doThat();
 }

 public class Bo {
 private int x;

 public Bo(int z) {
 x = z;
 }

 public int doThis() {
 return(2);
 }

 public int doNow() {
 return(15);
 }
 }

 public class Roo extends Bo implements Wo {

 public Roo {
 super(1);
 }

 public int doThis() {
 return(10);
 }

 private int doThat() {
 return(20);
 }
 }

 a) What type of method is doThat() in Wo?
 b) What is Wo?
 c) Why is doThat() implemented in Roo?
 d) List the methods available to a Roo object.

 e) How does the implementation of doThis() in
Roo affect the implementation of doThis() in
Bo?

 f) What action does the statement super(1) in
Roo perform?

 g) Can the doThis() method in Bo be called
from a Roo object? If so, how?

 h) Can a method in Roo call the doThis()
method in Bo? If so, how?

True/False

7. Determine if each of the following are true or
false. If false, explain why.

 a) Inheritance allows a class to define a special-
ized type of an already existing class.

 b) Classes that are derived from existing classes
demonstrate a has-a relationship.

 c) A c lass can have on ly one level of
inheritance.

 d) A class that inherits another class includes
the keyword i n herita nce in the class
declaration.

 e) When implementing a subclass, existing
me t ho d s i n t he ba s e c l a s s c a n b e
overridden.

 f) Members of a base class that are declared
private are accessible to derived classes.

 g) Inherited methods are called directly from
an object.

 h) Polymorphism is an OOP property in which
objects have the ability to assume different
types.

 i) Abstract classes can be instantiated.
 j) An abstract class must be implemented in its

subclass.
 k) An abstract method contains a method

declaration and a body.
 l) Inheritance and abstraction allow a hierarchy

of classes to be created.
 m) An interface can be inherited.
 n) An interface can add behavior to a class.
 o) The methods defined in an interface are pri-

vate by default.
 p) The Comparable interface contains three

methods.

238 Chapter 9 Inheritance and Polymorphism

sa
mp
le

 Exercises

Exercise 1 —————————————— UEmployee, Faculty, Staff
Create a UEmployee class that contains member variables for the university employee name and salary.
The UEmployee class should contain member methods for returning the employee name and salary.
Create Faculty and Staff classes that inherit the UEmployee class. The Faculty class should include
members for storing and returning the department name. The Staff class should include members for
storing and returning the job title.

Exercise 2 ———————— Account, PersonalAcct, BusinessAcct
Create PersonalAcct and BusinessAcct classes that inherit the Account class presented in Chapter 8.
A personal account requires a minimum balance of $100. If the balance falls below this amount, then
$2.00 is charged (withdrawn) to the account. A business account requires a minimum balance of $500,
otherwise the account is charged $10. Create client code to test the classes.

Exercise 3 ———————————— Vehicle, Car, Truck, Minivan
Create a Vehicle class that is an abstract class defining the general details and actions associated with
a vehicle. Create Car, Truck, and Minivan classes that inherit the Vehicle class. The Car, Truck, and
Minivan classes should include additional members specific to the type of vehicle being represented.
Create client code to test the classes.

Chapter 10 Arrays 239

sa
mp
le

Arrays are used to implement many different kinds of algorithms.
This chapter explains how to create and use arrays. Searching arrays, two-
dimensional arrays, and the ArrayList class are also discussed. Arrays of
characters and Unicode are explained.

 Declaring Arrays
 An array is a structure that can store many of the same kind of data
together at once. For example, an array can store 20 integers, another
array can store 50 doubles, and a third array can store 100 objects, such as
Strings. Arrays are an important and useful programming concept because
they allow a collection of related values to be stored together with a single
descriptive name.

 An array has a fixed length and can contain only as many data items
as its length allows:

�������

�

������ ������� ����� ���� ����

� � � �

An array element is one of the data items in an array. For example, in the
array of Strings above, Roxy is an element. Each element has an index value,
with 0 being the index of the first item, 1 the index of the second item,
and so on. In the array above, Roxy is the fourth element in the array and
has the index value 3.

 An array must be declared and then space allocated for the elements of
the array. The statements for declaring an array and allocating space for
its elements take the form:

<type>[] <name>; //declare array
<name> = new <type>[<num>]; //allocate space for elements

The declaration includes the type followed by brackets ([]) to indicate an
array. The array name can be any valid identifier. The new operator allocates
space for the number of elements indicated in brackets. The statements on
the next page declare an array and then prompt the user for the number
of elements:

Chapter 10
Arrays

array element
index

declaring and allocating
space for an array

TIP The [] bracket s are
operators used for declaring
and creating arrays and for
accessing array elements.

240 Chapter 10 Arrays

sa
mp
le

Scanner input = new Scanner(System.in);
int numFriends;
String[] friends; //declare array

System.out.print("How many friends? ");
numfriends = input.nextInt();
friends = new String[numFriends]; //allocate space

 If the size of the array is known when the application is written, then
the array can be created and space allocated for elements in one statement,
similar to:

String[] friends = new String[5]; //5 friends

 When space has been allocated for the elements of an array, the array is
initialized to the default values for that element type. For example, each
element of an int array is automatically initialized to 0. An array of objects,
such as a String array, contains null for each element.

 A third way to create an array is to initialize it in the declaration.
Initializing an array means that a value is given for each element. In this
case, the length of the array is determined by the number of elements
between the curly braces:

String[] friends = {"Kermit", "Lucille", "Sammy", "Roxy", "Myah"};

 Using Arrays
 An array element is accessed by including its index in brackets after
the array name. For example, the following statement displays the third
element:

System.out.println(friends[2]); //displays Sammy

 An array element is changed through assignment. For example, the
assignment statement below changes the third element to “Sunshine”:

friends[2] = "Sunshine";

 A run-time error is generated when an invalid index is used. For exam-
ple, the exception ArrayIndexOutOfBoundsException is thrown when the
following statement tries to execute:

friends[5] = "Wilbur"; //ERROR! Generates an exception.

 The Array structure includes the length attribute, which can be used at
run time to determine the length of an array:

numElements = friends.length; //5

 A for statement is often used to access the elements of an array because
the loop control variable can be used as the array index. Accessing each
element of an array is called traversing an array. For example, the following
statement displays each element of the friends array:

for (int i = 0; i < friends.length; i++) {
 System.out.println(friends[i]);
}

Note that the loop iterates from 0 to one less than the length of the array
because length is a count of the elements, not the greatest index value.

changing an element

accessing an element

initial array values

ArrayIndexOutOfBounds

TIP length is a property, not
a method. Therefore, paren-
theses should not follow its
name.

declaring and initializing

TIP An array is an immutable
data structure, which cannot
be changed from its original
size.

traversing

Chapter 10 Arrays 241

sa
mp
le

 Java also provides a type of for loop just for traversing an array.
Sometimes referred to as a for-each statement, the following statement
displays each element in the array:

for (String element : friends) {
 System.out.println(element);
}

The statement above displays the names in the array one after the other.
Using a for-each loop to traverse an array does not require a loop con-
trol variable. This type of for statement helps prevent the exception
ArrayIndexOutOfBoundsException.

 Although convenient at times, the modified for statement above cannot
be used in situations where the array index value is needed. One example,
is when the elements of an array are to be accessed in reverse order.

 Review: StudentRoster
Create a StudentRoster application that prompts the user for the number of students in the class and then
prompts the user for each student’s name and stores the names in an array. After all the names have been
entered, the application should display the title ”Student Roster” and then list the names in the array.

 Review: Squares
Create a Squares application that stores the square of an element’s index in an integer array of 5 elements.
For example, the third element, which has index 2, should store 4. The application should then display the
value of each element in the array.

 Review: Reverse
Create a Reverse application that stores the number corresponding to the the element’s index in an integer
array of 10 elements. For example, the second element, which has index 1, should store 1. The application
should then display the title “Countdown” and then list numbers stored in the array in reverse order.

 Array Parameters
 A method declaration can include array parameters. The array passed
to a method can be either an entire array or an element of the array. The
method below includes an array parameter. A second parameter, an int
parameter, corresponds to an element of the array:

public static void tryChanging(int[] numbers, int aNum) {
 numbers[1] = 123;
 aNum = 456;
}

Note that the data type followed by brackets indicates an array parameter,
similar to an array declaration.

for-each statement

TIP The for-each is new to
Java 5 and requires JDK 5.

242 Chapter 10 Arrays

sa
mp
le

 The statements below call the tryChanging() method shown on the
previous page:

int[] myNums = {5, 8, 3};
System.out.println(myNums[1] + " " + myNums[0]);
tryChanging(myNums, myNums[0]);
System.out.println(myNums[1] + " " + myNums[0]);

 The statements produce the output:

 An array is a reference data type similar to a class. Therefore, passing a
whole array to a method passes the reference to the elements, allowing the
method to access an element of the array and change its value. However,
because the elements of the array are a primitve data type, passing a single
element passes only the data stored, not a reference to the data location.

 Arrays with Meaningful Indexes
 Many algorithms make use of the index value of an array element for
simplifying the storage and retrievel of data. For example, a testScores
array with 101 elements indexed from 0 to 100 could store a count of all the
scores of 90 in the element with index 90, the count of scores 82 in element
82, and so on.

 The DiceRolls application counts the frequency of dice roll outcomes.
A roll is simulated by generating two random numbers between 1 and
6. The outcome of each roll is then used to increment the counter in the
element at the index corresponding to the outcome. For example, if a 4 is
rolled, then the value at index 4 is incremented:

import java.util.Scanner;
import java.util.Random;

public class DiceRolls {

 public static void main(String[] args) {
 int[] outcomes = new int[13];
 Scanner input = new Scanner(System.in);
 int numRolls;
 Random rand = new Random();
 int outcome;

 /* prompt user for number of rolls */
 System.out.print("How many rolls? ");
 numRolls = input.nextInt();

 /* roll dice and add to outcomes */
 for (int roll = 0; roll < numRolls; roll++) {
 outcome = (rand.nextInt(6) + 1) + (rand.nextInt(6) + 1);
 outcomes[outcome] += 1;
 }

 /* show counts of outcomes */
 for (int i = 2; i <= 12; i++) {
 System.out.println(i + ": " + outcomes[i]);
 }
 }
}

Chapter 10 Arrays 243

sa
mp
le

 The DiceRolls application displays output similar to:

 In the DiceRolls application, the outcomes ranged from 2 through 12
making it possible to store counters at array indexes directly correspond-
ing to the outcomes. However, this approach for a range of years 1900
through 2000 would require an array of 2001 elements with only the last
100 elements in use. For ranges such as these, the solution is to store coun-
ters at offset array indexes. For example, for an outcome of 1900, a counter
at index 0 would be incremented. for an outcome of 1901, a counter at index
1 would be incremented, and so on.

 To determine the array size when offset array indexes will be used,
subtract the low value from the high and add 1:

int[] counts;
counts = new int[HIGH - LOW + 1];

The following statement increments a counter stored at an offset index:

counts[value - LOW] += 1;

 Review: DiceRolls – part 1 of 2
Modify the DiceRolls application to roll three dice.

 Review: DiceRolls – part 2 of 2
The DiceRolls application is not written generically. The application has “hard-coded” data, including the
maximum random number in the nextInt() method and the initial and final values for i in the show counts
for loop. Modify the DiceRolls application to prompt the user for the number of sides on each die, the num-
ber of dice to be rolled, and the number of rolls to make. For example, a ten-sided die will show a number
between a 1 and a 10 on a roll. Rolling three ten-sided dice has the possible outcomes of 3 through 30.

 Review: NumberCounts
Create a NumberCounts application that prompts the user for a number and then counts the occurences of
each digit in that number.

offset array indexes

244 Chapter 10 Arrays

sa
mp
le

 Characters and Arrays
 Although strings are comprised of characters, a String object cannot
be manipulated as a set of characters. However, the string stored in a
String object can be converted to a char array. Additionally, an individual
character of the String object can be converted to a char. The String class
methods for working with the characters in a string include:

Class String (java.lang.String)

Method
charAt(int index)

 returns a char value that corresponds to the
letter at position index.

toCharArray() returns the String object converted to a char
array.

 The value returned by the charAt() method is a char data type. A char
data type represents a single character, such as a letter or symbol. The
toCharArray() method converts each character in the string to a char and
then assigns it to the appropriate element in an existing char array.

 Letters of every alphabet and symbols of every culture have been given a
representation in a digital code called Unicode. Unicode uses a set of sixteen
1s and 0s to form a sixteen-bit binary code for each symbol. For example,
the uppercase letter V is Unicode 00000000 01010110, which translates to
the base 10 number 86. Lowercase v has a separate code that translates to
the base 10 number 118.

 When a letter is assigned to a char variable, the variable actually stores
the Unicode representation of the letter. Uppercase letters from A to Z have
values from 65 through 90. Lowercase letters from a to z have values from
97 through 122. Because char is a primitive data type, char values can be
compared with relational operators, as the code below demonstrates:

char letter1, letter2;
letter1 = 'a';
letter2 = 'A'
if (letter1 > letter2) {
 System.out.println("greater than") //greater than displayed
} else {
 System.out.println("less than")
}

 The CountLetters application counts the frequency of letters in a string.
Each letter in the string is first converted to uppercase and then the coun-
ter at the appropriate index is incremented. Since uppercase letters have a
range from 65 to 90 in Unicode, offset array indexes are used to determine
which element to update:

 import java.util.Scanner;

 public class CountLetters {

 public static void main(String[] args) {
 final int LOW = 'A'; //smallest possible value
 final int HIGH = 'Z'; //highest possible value
 int[] letterCounts = new int[HIGH - LOW + 1];
 Scanner input = new Scanner(System.in);
 String word;
 char[] wordLetters;
 int offset; //array index

charAt()

toCharArray()

Unicode

TIP Refer to the appendix
in this text for more Unicode
symbols and their values.

TIP Assignment to a char vari-
able requires single quotation
marks around the character.

TIP The char data type was
introduced in Chapter 4.

Chapter 10 Arrays 245

sa
mp
le

 /* prompt user for a word */
 System.out.print("Enter a word: ");
 word = input.nextLine();

 /* convert word to char array and count letter occurrences */
 word = word.toUpperCase();
 wordLetters = word.toCharArray();
 for (int letter = 0; letter < wordLetters.length; letter++) {
 offset = wordLetters[letter] - LOW;
 letterCounts[offset] += 1;
 }

 /* show letter occurrences */
 for (int i = LOW; i <= HIGH; i++) {
 System.out.println((char)i + ": " + letterCounts[i - LOW]);
 }
 }
}

 Note the statements for creating a char array from a String object. First,
the char array wordLetters was declared. Later, wordLetters was initialized
using the toCharArray() method in the statement:

wordLetters = word.toCharArray();

The number of characters in the string determined the number of array
elements.

 Type casting was used in the last statement of the CountLetters applica-
tion ((char)i) to produce labels for the contents of the array. Casting the
int to a char produces the Unicode equivalent character for that number.

 The CountLetters application produces output similar to:

type casting

246 Chapter 10 Arrays

sa
mp
le

 Review: CountLetters
The CountLetters application is limited to counting letters in a single word. Modify the CountLetters
application to count the letters in an entire phrase, which contains spaces. Care must be taken to ignore the
spaces and any other nonalphabetic character found in the phrase. Be sure to change comments and vari-
able names appropriately so that the reader of the application code understands that the letters in a phrase
are counted.

 Review: NameBackwards
Create a NameBackwards application that prompts the user for his or her name and then displays the name
backwards.

 Searching an Array
 There are many ways to search an array for a specific value. The sim-
pliest searching algorithm is called linear search and works by proceeding
from one array element to the next until the specified value is found or
until the entire array has been searched. The Search class below contains
a linear() method that returns the index of a specified int element. If the
element is not found, then -1 is returned:

public class Search {

 /**
 * Returns the index of the element numToFind.
 * -1 returned if element not found.
 * pre: none
 * post: index of numToFind has been returned. -1 has been
 * returned if element not found.
 */
 public static int linear(int[] array, int numToFind) {
 int index = 0;

 while ((array[index] != numToFind) &&
 (index < array.length - 1)) {
 index += 1;
 }

 if (array[index] == numToFind) {
 return(index);
 } else {
 return(-1);
 }
 }
}

 The condition of the while statement checks all but the last element of
the array, unless the search element is found earlier. If the while statement
completes without finding the element, the index value has been incre-
mented to the last index of the array The if statement then checks the last
element of the array.

linear search

Algorithm Analysis
Algorithm analysis includes
measuring how efficiently an
algorithm performs its task.
A linear search sequentially
checks each element of an array
for a specified element. For an
array with n objects, finding an
element could take as many as
n checks. This measure can be
written as O(n). This notation
is called Big Oh notation and
is a theoretical measure of an
algorithm’s efficiency.

Chapter 10 Arrays 247

sa
mp
le

 The application below uses the linear() method to find an element in
the array:

 import java.util.Scanner;
 import java.util.Random;

 public class FindNum {

 public static void main(String[] args) {
 final int MAX = 20;
 int[] numArray = new int[MAX];
 Random rand = new Random();
 Scanner input = new Scanner(System.in);
 int num, location;

 /* fill array with random numbers */
 for (int i = 0; i < numArray.length;i ++) {
 numArray[i] = rand.nextInt(MAX);
 }

 /* prompt user for a number to search for */
 System.out.print("Enter a number between 0 and " + MAX
 + ": ");
 num = input.nextInt();

 /* Search for number and notify user of num location */
 location = Search.linear(numArray, num);
 if (location == -1) {
 System.out.println("Sorry, number not found in array.");
 } else {
 System.out.println("First occurrence is element "
 + location);
 }
 }
}

The FindNum application output looks similar to:

 Review: FindName
Add a static method to the Search class that performs a linear search on a String array. The linear() method
should overload the existing method, have parameters for accepting a String array and a String variable,
and return an int indicating the position of the String. Create a FindName application that uses the Search
class. FindName should prompt the user for names to fill an array and then prompt the user for the name
to find.

 Two-Dimensional Arrays
 An array with two dimensions can be used to represent data that cor-
responds to a grid. For example, a checkerboard, the streets in a city, and
seats in a theater can all be represented with a grid. A tic-tac-toe board
represented in a two-dimensional array can be visualized as shown on
the next page.

248 Chapter 10 Arrays

sa
mp
le

�

X
X

O
O

��

�

�

�

A two-dimensional array with three rows (0, 1, and 2) and
three columns (0, 1, and 2) represents a tic-tac-toe board

 A two-dimensional array must be declared and then space allocated
for the elements of the array in statements that take the form:

<type>[][] <name>;
<name> = new <type>[<num>][<num>];

The declaration includes the type followed by two sets of brackets ([][]).
The array name can be any valid identifier. The new operator allocates space
for the number of elements indicated in brackets. For example, a tic-tac-toe
board could be created with the statement:

String[][] tttBoard = new String[3][3];

 The length property can be used to determine the number of rows and
columns in a two-dimensional array with two separate statements:

rows = tttBoard.length;
cols = tttBoard[0].length;

Note that the number of columns is determined by checking the length
of the first row.

 An element of a two-dimensional array is accessed by including the
indexes of the row and column in brackets after the array name. For
example, the following statement assigns the element in the second row,
third column the letter "X":

tttBoard[1][2] = "X";

 Nested for statements are often used to access the elements of a two-
dimensional array because one loop counter indicates the row and the
second counter indicates the column. For example, the following state-
ments display the contents of a two-dimensional array:

for(int row = 0; row < tttBoard.length; row++) {
 for (int col = 0; col < tttBoard[0].length; col++) {
 System.out.print(tttBoard[row][col]);
 }
 System.out.println();
}

 A method that requires a two-dimensional array parameter includes
the array data type followed by two sets of brackets ([][]).

 The TicTacToe application allows two players to play a computerized
game of tic-tac-toe. The TTT class performs most of the work with private
methods. The client code simply instantiates a TTT object and then calls
the TTT object’s play() method. The client code implementation is shown
first and then the TTT class implementation:

declaration

accessing elements

nested for statements

length

array parameter

Chapter 10 Arrays 249

sa
mp
le

 /**
 * Tic-tac-toe is played.
 */

 public class TicTacToe {

 public static void main(String[] args) {
 TTT TTTGame = new TTT();
 TTTGame.play();
 }
}

/**
 * TTT class.
 */

import java.util.Scanner;

public class TTT {
 private String[][] tttBoard;
 private String player1, player2;

 /**
 * constructor
 * pre: none
 * post: tttBoard has been initialized.
 * player1 is X and player2 is O.
 */
 public TTT() {
 player1 = "X";
 player2 = "O";
 tttBoard = new String[3][3];
 for(int row = 0; row < tttBoard.length; row++) {
 for (int col = 0; col < tttBoard[0].length; col++) {
 tttBoard[row][col] = " ";
 }
 }
 }

 /**
 * Plays a game of tic-tac-toe with two users,
 * keeping track of player (X or O) turns.
 * player1 goes first.
 * pre: none
 * post: A game of tic-tac-toe has been played.
 */
 public void play() {
 String currPlayer = player1;
 int movesMade = 0;

 do {
 displayBoard();
 makeMove(currPlayer);
 movesMade += 1;
 if (currPlayer == player1){
 currPlayer = player2;
 } else {
 currPlayer = player1;
 }
 } while (movesMade <= 9 && winner() == " ");
 displayBoard();
 System.out.println("Winner is " + winner());
 }

250 Chapter 10 Arrays

sa
mp
le

 /**
 * Displays the board.
 * pre: none
 * post: The tic-tac-toe board has been displayed.
 */
 private void displayBoard() {
 for(int row = 0; row < tttBoard.length; row++) {
 for (int col = 0; col < tttBoard[0].length; col++) {
 System.out.print("[" + tttBoard[row][col] + "]");
 }
 System.out.println();
 }
 }

 /**
 * Prompt user for a move until a valid move has been made.
 * pre: none
 * post: A mark has been made in an empty tic-tac-toe
 * board square.
 */
 private void makeMove(String player) {
 Scanner input = new Scanner(System.in);
 boolean validMove = false;
 int row, col;

 do {
 System.out.print("Enter row number (0, 1, 2): ");
 row = input.nextInt();
 System.out.print("Enter column number (0, 1, 2): ");
 col = input.nextInt();
 if ((row >= 0 && row < tttBoard.length &&
 col >= 0 && col < tttBoard[0].length) &&
 tttBoard[row][col].equals(" ")) {
 tttBoard[row][col] = player;
 validMove = true;
 } else {
 System.out.println("Invalid move. Try again.");
 }
 } while (!validMove);
 }

 /**
 * Determine winner. Return " " if no winner.
 * pre: none
 * post: X, O, or " " has been returned as the winner.
 */
 private String winner() {

 /* test rows */
 for (int row = 0; row < tttBoard.length; row++) {
 if (tttBoard[row][0].equals(tttBoard[row][1]) &&
 tttBoard[row][1].equals(tttBoard[row][2]) &&
 !(tttBoard[row][0].equals(" "))) {
 return(tttBoard[row][0]);
 }
 }

Chapter 10 Arrays 251

sa
mp
le

 /* test columns */
 for (int col = 0; col < tttBoard[0].length; col++) {
 if (tttBoard[0][col].equals(tttBoard[1][col]) &&
 tttBoard[1][col].equals(tttBoard[2][col]) &&
 !(tttBoard[0][col].equals(" "))) {
 return(tttBoard[0][col]);
 }
 }

 /* test diagonal */
 if (tttBoard[0][0].equals(tttBoard[1][1]) &&
 tttBoard[1][1].equals(tttBoard[2][2]) &&
 !(tttBoard[0][0].equals(" "))) {
 return(tttBoard[0][0]);
 }

 /* test other diagonal */
 if (tttBoard[0][2].equals(tttBoard[1][1]) &&
 tttBoard[1][1].equals(tttBoard[2][0]) &&
 !(tttBoard[0][2].equals(" "))) {
 return(tttBoard[0][2]);
 }
 return(" ");
 }
}

 The TicTacToe application displays output similar to:

252 Chapter 10 Arrays

sa
mp
le

 The ArrayList Class
 A collection is a group of related objects, or elements, that are stored
together as a single unit. An array is an example of a collection. Java also
contains a collections framework, which provides classes for implementing
collections. One such class is the ArrayList class, which includes methods
for adding and deleting elements and finding an element.

Class ArrayList (java.util.ArrayList)

Method
add(int index, Object element)

 inserts element at index position of the array.
Existing elements are shifted to the next posi-
tion up in the array.

add(Object element)

 adds element to the end of the array.
get(int index)

 returns the element at index position in the
array.

indexOf(Object obj)

 returns the index of the first element matching
obj using the equals() method of the object’s
class to determine equality between the ele-
ment and the object.

remove(int index)

 removes the element at index position in the
array.

set(int index, Object element)
 replaces the element at index position with

element.
size() returns the number of elements in the array.

 The ArrayList class implements a dynamic array. A dynamic array var-
ies in size during run time and is used in applications where the size
of an array may need to grow or shrink. An ArrayList object shifts ele-
ments up one position when a new element is added at a specific index.
Elements added to the end of the ArrayList do not move existing elements.
Removing an element from an ArrayList also shifts elements as necessary
to close the gap left by the removed element.

 When using an ArrayList object, it is important to understand that only
objects, not primitive types, can be stored. Because the indexOf() method
compares its object parameter to each element of the array, it is important
that the object’s class has an appropriately overridden equals() method.

collection

collections framework

dynamic array

equals()

Data Structure Analysis
Data structure analysis includes
measuring the efficiency of a
data structure’s operations. For
example, adding an object to
the end of an ArrayList data
structure requires a single
operation, which can be writ-
ten as O(1). However, adding
an object to the beginning of
the array requires all the exist-
ing objects first be moved up
one position. For an array with
n objects, adding an object to
the front of the array requires n
operations, which can be writ-
ten as O(n). This is a much less
efficient operation.

TIP The ArrayList class is a
data structure. Data struc-
tures are discussed further in
Chapter 14.

Chapter 10 Arrays 253

sa
mp
le

 The following application creates an ArrayList object, adds elements,
removes an element, and then displays the remaining elements:

import java.util.ArrayList;

public class TestArrayList {

 public static void main(String[] args) {
 ArrayList myStrings = new ArrayList();

 myStrings.add("Kermit");
 myStrings.add("Lucille");
 myStrings.add("Sammy");
 myStrings.add("Roxy");
 myStrings.add("Myah");

 myStrings.remove(3);

 for (Object name : myStrings) {
 System.out.println(name);
 }
 }
}

The ArrayList declaration does not require an array size. An ArrayList
object grows and shrinks automatically as elements are added and
removed. The for-each statement traverses the ArrayList. An ArrayList
converts elements to their superclass Object, which is why name is type
Object, rather than String.

 The TestArrayList application displays the output:

 Wrapper Classes
 Primitive data types cannot be directly stored in an ArrayList because
the elements in an ArrayList must be objects. The Integer and Double
classes, provided with Java, are used to “wrap” primitive values in an
object. The Integer and Double wrapper classes include the methods for
comparing objects and for returning the value stored by the object as a
primitive:

Class Integer (java.lang.Integer)

Method
compareTo(Integer intObject)

 returns 0 when the Integer object value is the
same as intObject. A negative int is returned
when the Integer object is less than intObject,
and a positive int is returned when the Integer
object is greater than intObject.

intValue() returns the int value of the Integer object.

TIP Java also includes the
Character, Boolean, Byte,
Short, Long, and Float wrap-
per classes.

TIP The for-each statement
is not a safe structure for find-
ing and removing elements
from an ArrayList.

254 Chapter 10 Arrays

sa
mp
le

Class Double (java.lang.Double)

Method
compareTo(Double doubleObject)

 returns 0 when the Double object value is the
same as doubleObject. A negative int is returned
when the Double object is less than doubleObject,
and a positive int is returned when the Double
object is greater than doubleObject.

doubleValue() returns the double value of the Double object.

The Integer and Double wrapper classes are in the java.lang package.
Therefore applications do not require an import statement to use the
wrapper classes.

 The DataArrayList application creates an ArrayList of Integer values,
compares the values, and then sums the elements:

 import java.util.ArrayList;

 public class DataArrayList {

 public static void main(String[] args) {
 ArrayList numbers = new ArrayList();
 Integer element, element1, element2;
 int sum = 0;
 numbers.add(new Integer(5));
 numbers.add(new Integer(2));

 /* compare values */
 element1 = (Integer)numbers.get(0);
 element2 = (Integer)numbers.get(1);
 if (element1.compareTo(element2) == 0) {
 System.out.println("The elements have the same value.");
 } else if (element1.compareTo(element2) < 0) {
 System.out.println("element1 value is less than element2.");
 } else {
 System.out.println("element1 value is greater than element2.");
 }

 /* sum values */
 for (Object num : numbers) {
 element = (Integer)num;
 sum += element.intValue();
 }
 System.out.println("Sum of the elements is: " + sum);
 }
}

 In the first numbers.add() statement above, the new operator allocates
memory and returns a reference to the Integer object that stores the value
5. A second statement performs the same type of action to add another
Integer object to the ArrayList.

 The values stored in the elements are compared using the compareTo()
method. Note that the elements are first assigned to Integer objects
element1 and element2. The assignment statement must appropriately cast
the retrieved values because an ArrayList casts elements to their superclass
Object.

 Finally, the for-each statement traverses the ArrayList elements and
sums their values. The (Integer) cast is again required to convert the
retrieved value num for assignment to element. The int value of each Integer
object is then used to update sum.

object casting

TIP The Integer and Double
c la s s e s im p l e m e n t t h e
Comparable interface, intro-
duced in Chapter 9.

Generic Collection
Classes

ArrayList items can be declared
when the ArrayList is created.
For example:

ArrayList<Integer> numbers
= new ArrayList<Integer>;

designates the ArrayList as
a list of Integers. This allows
the ArrayList get() method to
be used without casting. For
example:

e le m e n t 1 = n u m b e r s.
get(0);

returns an Integer object with-
out the need to cast.

Chapter 10 Arrays 255

sa
mp
le

 The DataArrayList displays the output:

 Review: HighestGrade
Create a HighestGrade application that prompts the user for five grades between 0 and 100 points and stores
the grades in an ArrayList. HighestGrade then traverses the grades to determine the highest grade and then
displays the grade along with an appropriate message.

 Chapter 10 Case Study
 In this case study, a bank application will be created. A bank can open
new accounts, modify existing accounts, and close accounts. An account
has a number associated with it, and transactions, such as deposits and
withdrawals, require the account number.

LocalBank Specification

 The LocalBank application allows accounts to be opened, modified,
and closed. Each account has a unique account number, which is required
for all transactions. Transactions include deposits and withdrawals. An
account balance can also be checked.

 The LocalBank interface should provide a menu of options. Depending
on the option selected, additional input may be needed. When a transac-
tion is performed, updated account information should be displayed. The
LocalBank output sketch:

��������������������������������
��������������������������������
����
���������������
�������������������
��������������
����������������������
������������������������������������
��������������������������������
��������������������������������
����
���������������
����������������������
������������������
����
�����������
�����������������������
��������������������������������
��������������������������������
����
�������������

TIP A Bank application was
also developed in Chapter 8.

256 Chapter 10 Arrays

sa
mp
le

 The LocalBank algorithm:

1. Display a menu of options.

2. Prompt the user for a menu choice.

3. For all options except the option to add an account, prompt the
user for an account number.

4. Perform the action requested by the user on the account with the
number entered. If the user requested to create a new account, then
add an account and display the new account’s number.

5. Repeat steps 1 through 4 until the user has selected the option to
quit.

LocalBank Code Design

 The LocalBank application can be modeled with a Bank object, Account
objects, and Customer objects. The Bank object should store the accounts,
add and remove accounts, and perform transactions that also display
updated account information. A transaction requires finding the correct
account. The Account objects should store the current balance, make
deposits, make withdrawals, and return the current balance and account
ID. An Account object must also have an equals() method for the Bank
object to use when finding an account. The Customer objects should store
the account holder’s name. The Bank object will display account infor-
mation, therefore, the Account and Customer objects will override the
toString() methods.

 The LocalBank class designs are:

����

�������������������

��������
��
���
���
��
���
��
��
��
��
���

Chapter 10 Arrays 257

sa
mp
le

�������

���������������������������������

��������
�����������������������������������
���
��
���
���
���
���
���
��
���
���
��

��������

������������������������������

��������
��

 The Account and Customer class designs are similar to the classes devel-
oped in Chapter 8. In the real world, the existing classes would probably
be reused for the LocalBank application. The modularity of OOP makes
programming more efficient and less error-prone. For this case study,
simplified classes will be developed and used for the application.

 Based on the algorithm and the class designs, the LocalBank code
design will include a loop. The pseudocode for the LocalBank client code
follows:

Bank easySave = new Bank();
do {
 prompt user for transaction type

 if (add account) {
 easySave.addAccount();
 } else if (not Quit) {
 prompt user for account ID;
 if (deposit) {
 prompt user for deposit amount
 easySave.transaction(make deposit, acctID, amt);
 } else if (withdrawal) {
 prompt user for withdrawal amount
 easySave.transaction(make withdrawal, acctID, amt);
 } else if (check balance) {
 easySave.checkBalance(acctID);
 } else if (remove account) {
 easySave.deleteAccount(acctID);
 }
 }
} while (not quit);

258 Chapter 10 Arrays

sa
mp
le

LocalBank Implementation

 The LocalBank implementation involves creating four files. Three files
are the classes and one file is the client code.

 The Bank class is implemented below:

/**
 * Bank class.
 */

import java.util.ArrayList;
import java.util.Scanner;

public class Bank {
 private ArrayList accounts;

 /**
 * constructor
 * pre: none
 * post: accounts has been initialized.
 */
 public Bank() {
 accounts = new ArrayList();
 }

 /**
 * Adds a new account to the bank accounts.
 * pre: none
 * post: An account has been added to the bank's accounts.
 */
 public void addAccount() {
 Account newAcct;
 double bal;
 String fName, lName;
 Scanner input = new Scanner(System.in);
 System.out.print("First name: ");
 fName = input.nextLine();
 System.out.print("Last name: ");
 lName = input.nextLine();
 System.out.print("Beginning balance: ");
 bal = input.nextDouble();

 newAcct = new Account(bal, fName, lName); //create acct object
 accounts.add(newAcct); //add account to bank accounts

 System.out.println("Account created. Account ID is: " + newAcct.getID());
 }

 /**
 * Deletes an existing account.
 * pre: none
 * post: An existing account has been deleted.
 */
 public void deleteAccount(String acctID) {
 int acctIndex;
 Account acctToMatch;

Chapter 10 Arrays 259

sa
mp
le

 acctToMatch = new Account(acctID);
 acctIndex = accounts.indexOf(acctToMatch); //retrieve location of account
 if (acctIndex > -1) {
 accounts.remove(acctIndex); //remove account
 System.out.println("Account removed.");
 } else {
 System.out.println("Account does not exist.");
 }
 }

 /**
 * Performs a transaction on an existing account. A transCode of 1 is for deposits
 * and a transCode of 2 is for withdrawals.
 * pre: transCode is 1 or 2.
 * post: A transaction has occurred for an existing account.
 */
 public void transaction(int transCode, String acctID, double amt) {
 int acctIndex;
 Account acctToMatch, acct;

 acctToMatch = new Account(acctID);
 acctIndex = accounts.indexOf(acctToMatch); //retrieve location of account
 if (acctIndex > -1) {
 acct = (Account)accounts.get(acctIndex); //retrieve object to modify
 if (transCode == 1) {
 acct.deposit(amt);
 accounts.set(acctIndex, acct); //replace object with updated object
 System.out.println(acct);
 } else if (transCode == 2) {
 acct.withdrawal(amt);
 accounts.set(acctIndex, acct); //replace object with updated object
 System.out.println(acct);
 }
 } else {
 System.out.println("Account does not exist.");
 }
 }

 /**
 * Displays the account information, including the current balance,
 * for an existing account.
 * pre: none
 * post: Account information, including balance, has been displayed.
 */
 public void checkBalance(String acctID) {
 int acctIndex;
 Account acctToMatch, acct;

 acctToMatch = new Account(acctID);
 acctIndex = accounts.indexOf(acctToMatch); //retrieve location of account
 if (acctIndex > -1) {
 acct = (Account)accounts.get(acctIndex); //retrieve object to display
 System.out.println(acct);
 } else {
 System.out.println("Account does not exist.");
 }
 }
}

 In the deleteAccount() and transaction() methods, a new Account object
is created for the purposes of finding the account to delete or modify. The
new Account object is instantiated with just the acctID and then this object
is passed to the indexOf() method of the ArrayList class. The indexOf()

260 Chapter 10 Arrays

sa
mp
le

method searches the ArrayList and automatically invokes the equals()
method of the Account class to determine equality. The Account class is
implemented below. Note that the equals() method requires only that the
account numbers of two object match to be considered equal:

/**
 * Account class.
 */

import java.text.NumberFormat;

public class Account {
 private double balance;
 private Customer cust;
 private String acctID;

 /**
 * constructor
 * pre: none
 * post: An account has been created. Balance and
 * customer data has been initialized with parameters.
 */
 public Account(double bal, String fName, String lName) {
 balance = bal;
 cust = new Customer(fName, lName);
 acctID = fName.substring(0,1) + lName;
 }

 /**
 * constructor
 * pre: none
 * post: An empty account has been created with the specified account ID.
 */
 public Account(String ID) {
 balance = 0;
 cust = new Customer("", "");
 acctID = ID;
 }

 /**
 * Returns the account ID.
 * pre: none
 * post: The account ID has been returned.
 */
 public String getID() {
 return(acctID);
 }

 /**
 * Returns the current balance.
 * pre: none
 * post: The account balance has been returned.
 */
 public double getBalance() {
 return(balance);
 }

Chapter 10 Arrays 261

sa
mp
le

 /**
 * A deposit is made to the account.
 * pre: none
 * post: The balance has been increased by the amount of the deposit.
 */
 public void deposit(double amt) {
 balance += amt;
 }

 /**
 * A withdrawal is made from the account if there is enough money.
 * pre: none
 * post: The balance has been decreased by the amount withdrawn.
 */
 public void withdrawal(double amt) {
 if (amt <= balance) {
 balance -= amt;
 } else {
 System.out.println("Not enough money in account.");
 }
 }

 /**
 * Returns a true when objects have matching account IDs.
 * pre: none
 * post: true has been returned when the objects are equal,
 * false returned otherwise.
 */
 public boolean equals(Object acct) {
 Account testAcct = (Account)acct;
 if (acctID.equals(testAcct.acctID)) {
 return(true);
 } else {
 return(false);
 }
 }

 /**
 * Returns a String that represents the Account object.
 * pre: none
 * post: A string representing the Account object has been returned.
 */
 public String toString() {
 String accountString;
 NumberFormat money = NumberFormat.getCurrencyInstance();

 accountString = acctID + "\n";
 accountString += cust.toString();
 accountString += "Current balance is " + money.format(balance);
 return(accountString);
 }
}

 The Account class has two constructors. The second constructor is used
in the deleteAccount() and transaction() methods of the Bank class for the
purposes of finding the index of the account matching the given account
ID.

262 Chapter 10 Arrays

sa
mp
le

 The Customer class is implemented below:

/**
 * Customer class.
 */

public class Customer {
 private String firstName, lastName;

 /**
 * constructor
 * pre: none
 * post: A Customer object has been created.
 * Customer data has been initialized with parameters.
 */
 public Customer(String fName, String lName) {
 firstName = fName;
 lastName = lName;
 }

 /**
 * Returns a String that represents the Customer object.
 * pre: none
 * post: A string representing the Customer object has
 * been returned.
 */
 public String toString() {
 String custString;

 custString = firstName() + " " + lastName() + "\n";
 return(custString);
 }
}

 The LocalBank client code is implemented below:

 /**
 * A bank where accounts can be opened or closed and customers can
 * make transactions.
 */

 import java.util.Scanner;

 public class LocalBank {

 public static void main(String[] args) {
 Bank easySave = new Bank();
 Scanner input = new Scanner(System.in);
 String action, acctID;
 Double amt;

 /* display menu of choices */
 do {
 System.out.println("\nDeposit\\Withdrawal\\Check balance");
 System.out.println("Add an account\\Remove an account");
 System.out.println("Quit\n");
 System.out.print("Enter choice: ");
 action = input.next();

Chapter 10 Arrays 263

sa
mp
le

 if (action.equalsIgnoreCase("A")) {
 easySave.addAccount();
 } else if (!action.equalsIgnoreCase("Q")) {
 System.out.print("Enter account ID: ");
 acctID = input.next();
 if (action.equalsIgnoreCase("D")) {
 System.out.print("Enter deposit amount: ");
 amt = input.nextDouble();
 easySave.transaction(1, acctID, amt);
 } else if (action.equalsIgnoreCase("W")) {
 System.out.print("Enter withdrawal amount: ");
 amt = input.nextDouble();
 easySave.transaction(2, acctID, amt);
 } else if (action.equalsIgnoreCase("C")) {
 easySave.checkBalance(acctID);
 } else if (action.equalsIgnoreCase("R")) {
 easySave.deleteAccount(acctID);
 }
 }
 } while (!action.equalsIgnoreCase("Q"));
 }
}

 Running the LocalBank application displays output similar to:

 It was possible to create the LocalBank application with fewer classes.
However, by breaking the application into discrete objects, it will be
easier to later extend the classes to enhace the client code. For example,
an account can easily be extended to include an account holder’s address
by modifying, or extending, the Customer class. Then, only the first con-
structor of the Account class will need to be modifed to handle additional
parameters for creating a Customer object.

264 Chapter 10 Arrays

sa
mp
le

LocalBank Testing and Debugging

 When a new class is written, client code should be written to test the
class. Testing should be done first for each class and then for the client
code.

 Review: LocalBank
Modify the Bank class to prompt the user for a full address (street, city, state, and zip) when an account is
opened. Modify the Customer class to include street, city, state, and zip variable members and changeStreet(),
changeCity(), changeState(), and changeZip() method members. Modify the Account class to include a
changeAddress() method member. Modify the Bank class to include a modifyAccount() method member
that requires a parameter for the account ID. modifyAccount() should prompt the user for the new street,
city, state, and zip for the account, find the account with the matching account ID, and then overwrite the
existing account object with the object containing the updated information.

 Chapter Summary
 This chapter discussed arrays as a structure for storing many of the
same kind of data together at once. A data item stored by an array is called
an element. An element has an index value and is accessed by using the
index inside of [] brackets along with the array name. A for statement and
the for-each statement can be used to access all the elements of an array.
Accessing the elements of an array is called traversing the array. When
the index of an element is needed, the for statement should be used.

 An array can be passed to a method as a parameter and is a reference
data type. Passing a single element passes the data stored, not a reference
to the data location.

 Many algorithms make use of the index value of an array element for
simplifying the storage and retrieval of data. Offset array indexes are
used when a range should be shifted to correlate to a lower range of index
values.

 A String can be converted to an array of characters so that individual
characters can be maipulated. Unicode is the standard for numeric repre-
sentation of every letter and symbol in use.

 The linear search is an algorithm for searching an array where each ele-
ment is checked one after the other until the desired element is found.

 Two-dimensional arrays represent data that corresponds to a grid. The
number of rows in an existing two-dimensional array corresponds to the
length of the array. The number of columns corresponds to the length of
the first row. Elements in a two-dimensional array are accessed by using
a double bracket ([][]) along with the array name.

 The ArrayList class is used for storing a collection of objects. Methods
are used for accessing and retrieving elements and for determining the
number of elements in the collection. An ArrayList object is a dynamic
array, which can vary in size at run time. Because an ArrayList can store
only objects, wrapper classes are used to represent primitive types that
are to be stored in an ArrayList.

Chapter 10 Arrays 265

sa
mp
le

 Vocabulary

Array A structure that can store many of the same
kind of data together at once.

ArrayOutOfBoundsException An exception
thrown when an invalid array index is used.

Collection A group of related elements that are
stored together as a single unit.

Collections framework Classes for implementing
collections.

Dynamic array An array that varies in size at run
time.

Element A data item in an array.

Index The value associated with an element in an
array. Index values begin at 0 and count up.

Linear search An algorithm for searching an array
in which each element of the array is checked one
after the other.

 Java

[] The operators for accessing an array element.

ArrayList A java.util class with methods for imple-
menting a dynamic array.

Double A java.lang class for wrapping double values
in an object.

for A statement that can be used to traverse an array.
In one form, it is referred to as a for-each statement
and does not use a counter variable.

Integer A java.lang class for wrapping int values
in an object.

new Operator that allocates space for the elements
in an array.

String A java.lang class with methods for convert-
ing a string to a set of characters or for inspecting
individual characters of a string.

Traversing Iterating through element of an array.

Unicode The sixteen-bit digital code used to
represent every letter and symbol.

Wrapper class A class that wraps primitive values
in an object.

266 Chapter 10 Arrays

sa
mp
le

 Critical Thinking

1. What index value does the third element of an
array have?

2. Write the declaration for an array named
quantities that stores 20 integers.

3. Write a declaration for an array named heights
storing the numbers 1.65, 2.15, and 4.95.

4. Write a for-each statement that displays the inte-
ger values stored in an array named grades.

5. a) Write an algorithm for inserting data into an
array so that existing data is moved up one
position to make room for the new data.

 b) Write an algorithm for deleting data from an
array so that existing data is moved to close
the gap made by the deleted data.

6. How does passing an entire array to a method
differ from passing a single element of the
array?

7. Why are offset array indexes required in some
cases.

8. What output is displayed by the statements
below?

 String name = "Elaine";
 System.out.println(name.charAt(3));

9. Compare and contrast an array to an ArrayList
by describing the differences between the two
for:

 a) accessing an element.
 b) adding an element.
 c) deleting an element.
 d) assigning a new value to an element.
 e) determining the size of the collection.

10. Give an example of when a dynamic array might
be a better structure choice over an array.

11. How does the ArrayList indexOf() method
determine equality between the object passed
to the method and an element in the array?

12. How can the values of wrapper class objects be
compared?

True/False

13. Determine if each of the following are true or
false. If false, explain why.

 a) All data in an array has the same data
type.

 b) Index values always begin at 0.
 c) The statement int[] empNums = new int[10]

declares an array with 10 elements.
 d) In the statement int[] empNums = new int[10],

the elements are automatically initialized to
1.

 e) An entire array can be passed to a method.
 f) The method toCharArray() converts a String

object to a char array.
 g) A linear search never searches an entire

array.
 h) The statement int[][] grid = new int[4][4]

declares a total of eight elements.
 i) In Unicode, uppercase letters have higher

base 10 number values than lowercase
letters.

 j) The size of an array can change during the
execution of a program.

 k) The ArrayList class implements a dynamic
array.

 l) Primitive data types can be stored directly
in an ArrayList.

Chapter 10 Arrays 267

sa
mp
le

 Exercises

Exercise 1 —————————————————— EvensAndOdds
Create an EvensAndOdds application that generates 25 random integers between 0 and 99 and then
displays all the evens on one line and all the odds on the next line. Application output should look
similar to:

Exercise 2 —————————————————— GeneratedNums
Create a GeneratedNums application that generates the number to store in an array element by sum-
ming its index and the individual digits of the index. For example, the element with index 17 should
store 25 (17 + 1 + 7 = 25) and the element with index 2 should store 4 (2 + 0 + 2 = 4). GeneratedNums
should use an array with 101 elements and then display the value at each element. Application output
should look similar to:

Exercise 3 ———————————————————— RandomStats
Create a RandomStats application that generates 500 random numbers between 0 and 9 and then dis-
plays the number of occurrences of each number. Application output should look similar to:

268 Chapter 10 Arrays

sa
mp
le

Exercise 4 —————————————————————— Analysis
A program that analyzes a set of numbers can be very useful. Create an Analysis application that
prompts the user for numbers in the range 1 through 50, terminated by a sentinel, and then performs
the following analysis on the numbers:

• Determine the average number

• Determine the maximum number

• Determine the range (maximum – minimum)

• Determine the median (the number that occurs the most often)

• Displays a bar graph called a histogram that shows the numbers in each five-unit
range (1–5, 6–10, 11-15, etc.). The histogram may look similar to:

Exercise 5 ———————————————————— Mastermind
The game of Mastermind is played as follows: One player (the code maker) chooses a secret arrange-
ment of colored pegs and the other player (the code breaker) tries to guess it. For each guess, the code
breaker puts forth an arrangement of colored pegs, and the code maker reports two numbers:

1. The number of pegs that are the correct color and in the correct position.

2. The number of pegs that are the correct color regardless of whether they are in the
correct position.

Create a Mastermind application that plays the game of Mastermind with the computer as the code
maker and the user as the code breaker. The application should use a mastermindGame class, which has
a constructor with parameters for the number of pegs in the code (1 to 10) and the number of colors for
the pegs (1 to 9). The secret code generated by a mastermindGame object can contain duplicate colors.
For example, a 5-peg code could be 1 2 2 5 6. A guess with duplicates will require extra attention when
counting the number of pegs of the correct color. For example, if the code is 1 2 3 4 5 6 and the guess
is 2 1 1 2 2 2, then the mastermindGame object should only report two correct colors (a single 1 and a
single 2). Application output should look similar to:

Chapter 10 Arrays 269

sa
mp
leExercise 8 ———————————————————— Palindrome

Create a Palindrome application that prompts the user for a string and then displays a message
indicating whether or not the string is a palindrome. A palindrome is a word or phrase that is
spelled the same backwards and forwards. For example, “mom” is a palindrome, as well as “kayak”
and “Never odd or even”.

Exercise 9 ————————————————— CountConsonants
Create a CountConsonants application that prompts the user for a string and then displays the
number of consonants in the string. Application output should look similar to:

Exercise 10 ——————————————————————— Coder
Create a Coder application that prompts the user for a string and then displays an encoded string.
The encoding should add 2 to the Unicode value of each letter to create a new letter. The application
should keep all spaces between the words in their original places and the letters x and y should
be converted to a and b, respectively. Coder application output should look similar to:

270 Chapter 10 Arrays

sa
mp
le

Exercise 11 ———————————————————— SortedArray
An array is said to be sorted if its elements are in either increasing or decreasing order. One way the
selection sort algorithm works is by repeatedly taking the lowest element from an array and adding it
to a new array, so that all the elements in the new array are sorted from lowest to highest.

Create a SelectionSort class with a constructor that has an int array parameter, member variables
originalArray and sortedArray, public method display() that displays the contents of the sorted array,
private methods sort() that populates a new array with the elements of the original array in order from
lowest to highest, and findLowest() that returns the index of the element containing the lowest value.
Hint: Since elements of an array cannot actually be “removed” an element can be set to a very high
value after determining its value is the lowest.

Create client code SortedArray, which tests the SelectionSort class. Use the pseudocode below when
implementing the SortedArray client code:

int[] myNums;
SelectionSort sortedArray;

prompt user for the number of values to populate array with
myNums = new int[values];
populate array with random integers between 0 and 100
display contents of original array

sortedArray = new SelectionSort(myNums);
sortedArray.display();

Exercise 12 ——————————————————— CourseGrades
Create a CourseGrades application that simulates a grade book for a class with 12 students that each have
5 test scores. The CourseGrades application should use a GradeBook class that has member variables
grades, which is a two-dimensional array or integers, and methods getGrades() for prompting the user
for the test grades for each student, showGrades() that displays the grades for the class, studentAvg()
that has a student number parameter and then returns the average grade for that student, and testAvg()
that has a test number parameter and then returns the average grade for that test.

Exercise 13 —————————————————————PennyPitch
The Penny Pitch game is popular in amusement parks. Pennies are tossed onto a board that has certain
areas marked with different prizes. For example:

The prizes available on this board are puzzle, game, ball, poster, and doll. At the end of the game, if all
of the squares that say BALL are covered by a penny, the player gets the ball. This is also true for the
other prizes. The board is made up of 25 squares (5 x 5). Each prize appears on three randomly chosen
squares so that 15 squares contain prizes.

Chapter 10 Arrays 271

sa
mp
le

Create a PennyPitch application that displays a Penny Pitch board (use [and] to indicate squares) with
prizes randomly placed and then simulates ten pennies being randomly pitched onto the board. After
the pennies have been pitched, the application should display a message indicating which prizes have
been won, it any.

Exercise 14 ———————————————————————— Life
The Game of Life was devised by mathematician John Conway in 1970. It models a very simple world.
The Life world is a two-dimensional plane of cells. Each cell may be empty or contain a single creature.
Each day, creatures are born or die in each cell according to the number of neighboring creatures on
the previous day. A neighbor is a cell that adjoins the cell either horizontally, vertically, or diagonally.
The rules in pseudocode style are:

if (the cell is alive on the previous day) {
 if (the number of neighbors was 2 or 3) {
 the cell remains alive
 } else {
 the cell dies
 }
} else if (the cell is not alive on the previous day) {
 if (the number of neighbors was exactly 3) {
 the cell becomes alive
 } else {
 the cell remains dead
 }
}

For example, the world displayed as:

0000000000
0000000000
000XXX0000
0000000000
0000000000
0000000000

where X’s indicate living cells, becomes:

0000000000
0000X00000
0000X00000
0000X00000
0000000000
0000000000

Create a Life application that has a 20 x 20 grid. To initialize the grid, the application should prompt the
user for the coordinates of live cells on the first day. The application should then generate each day’s
world as long as the user wishes to continue or until there are no more live cells.

272 Chapter 10 Arrays

sa
mp
le

Exercise 15 ————————————————————— Manacala
The game of Mankala is played on a board like that illustrated below:

Players sit on opposite sides with the large bin to a player’s right designated her home bin. On a turn,
a player selects one of the six pits to remove the stones from and then “sows” the stones counterclock-
wise around the board, placing one stone in each pit including the player’s home bin (but excluding
the opponent’s home bin). If the last stone lands in the player’s home bin, the player gets another turn.
If the last stone lands in an empty pit on the player’s side of the board, the player takes all stones in
the corresponding pit on the opponent’s side and places them in the player’s home bin. When a player
cannot play, the game is over and all stones remaining in the opponent’s pits go to the opponent’s home
bin. The winner is the player with the most stones in the player’s home bin at the end of the game.

 For example, if the bottom player plays first and chooses the fourth pit to play from, the board
looks like:

 Since the last stone landed in the player’s home bin, the player takes nother turn. The player may
choose the first pit this time in order to capture the opponent’s stones:

 The player’s turn is now over, and the opponent now has a turn.

 Create a Mankala application. The application should use simple characters to illustrate the board,
and letters to identify the pits, similar to that shown below:

 3 3 3 3 3 3
0 0
 3 3 3 3 3 3
 A B C D E F

Chapter 10 Arrays 273

sa
mp
le

Exercise 16 ————————————————————— Inventory
Create an Inventory application that keeps track of the inventory for a sports store. Each item has a
stock number, with the first item having a stock number of 1000. The second item has a stock number
1001, the third has stock number 1002, and so on. Along with a stock number, each item has an item
name and an amount in stock. New items can be added to the inventory at any time. When added, the
item stock number is generated and displayed to the user. Discontinued items should not be deleted
from the inventory, but rather their item name should be changed to “discontinued” and the amount
in stock should be decreased to 0. The Inventory application should use an ArrayList for maintaining
the invemtory and application output should display a menu of choices, which allow for adding an
item, discontinuing an item, and displaying the amount in stock for an item.

274 Chapter 10 Arrays

sa
mp
le

Chapter 11 GUIs and Event-Driven Programming 275

sa
mp
le

Swing is a Java package that provides a set of classes for creating
graphical user interfaces (GUIs). This chapter explains how to use the
basic Swing components to create applications with a GUI. Components
covered in this chapter include frames, panels, labels, buttons, combo
boxes, and text fields.

 What is a GUI?
 A GUI is a graphical user interface (sometimes pronounced “gooey”). An
application written for the Microsoft Windows or Mac OSX Tiger operating
system typically has a GUI. The GUI below includes a frame, also called
a window, and a label:

 Not only does a GUI use components such as frames, buttons, and
text fields to communicate with the user, but GUIs are event-driven. An
event-driven application executes code in response to events. An event is an
interaction from the user, such as a button click. A GUI responds to an
event by executing a method called an event handler. For example, when
the user clicks a button, the application must be able to determine which
button was clicked and then execute the code that relates to that button.

 The Swing Package
 The Swing API is part of the Java Foundation Classes (JFC) and contains
numerous components for creating GUIs. This chapter focuses on the
javax.swing package. Two classes in this package are JFrame and JLabel.
The JFrame class is used to instantiate a frame. A frame is a window with
a border, title, and buttons for minimizing, maximizing, and closing the
frame. A frame is a top-level container for a GUI, which holds and displays
all the other components of an interface in a content frame. One of the most
common components in a content frame is a label. Labels, created with the
JLabel class, are used to display text that cannot be changed by the user.

Chapter 11
GUIs and Event-Driven

Programming

TIP The applications created
prior to this chapter had a text-
based, or console, interface.

event-driven application

event handler

javax.swing
frame

container, content frame

labels

276 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 The swing package includes the JFrame class with the following
methods:

Class JFrame (javax.swing.JFrame)

Method
setDefaultLookAndFeelDecorated(boolean)

 sets the frames created after this class method
is called to have Java Window decorations, such
as borders and a title, when the boolean argu-
ment is true.

setDefaultCloseOperation(class _ constant)

 sets the operation that occurs when the user
clicks the Close button. The class _ constant
argument is usually JFrame.EXIT _ ON _ CLOSE.

getContentPane()

 returns a Container object corresponding to the
content pane.

setContentPane(Container contentPane)

 sets the content pane to contentPane. The
Container class is the superclass for the JPanel
class, a class for creating content panes.

pack() sizes the frame so that all of its contents are at
or above their preferred sizes.

setVisible(boolean)

 displays the frame when the boolean argument
is true.

 A JFrame object uses a content pane to hold GUI components. A JPanel
object is one choice for a simple content pane. The JPanel class includes
the following methods for adding and removing components:

Class JPanel (javax.swing.JPanel)

Method
add(Component GUIcomponent)

 adds a GUIcomponent to the content pane. When
added, components are given an index value,
with the first component at index 0.

remove(int index)

 removes the component with index value
index.

After adding components to the JPanel object, the content frame is added
to the JFrame object using the JFrame setContentPane() method described
above.

 The swing package includes the JLabel class for creating labels that
can be added to a content pane. JLabels have several constructors, two of
which are described, in addition to the setText() method:

JPanel content pane

Chapter 11 GUIs and Event-Driven Programming 277

sa
mp
le

Class JLabel (javax.swing.JLabel)

Constructor/Method
JLabel(String str)

 creates a JLabel object with text str.
JLabel(String str, align _ constant)

 creates a JLabel object with text str and align-
ment align _ constant that can be set to JLabel
class constants LEADING or TRAILING, which are
left and right alignment, respectively.

setText(String str)

 sets the text of the JLabel object to str.

 The HelloWorldWithGUI1 application creates a frame and a content
pane, adds the content pane to the frame, and then displays the frame:

import javax.swing.*;

public class HelloWorldWithGUI1 {
 final static String LABEL _ TEXT = "Hello, world!";
 JFrame frame;
 JPanel contentPane;
 JLabel label;

 public HelloWorldWithGUI1(){
 /* Create and set up the frame */
 frame = new JFrame("HelloWorldWithGUI");
 frame.setDefaultCloseOperation(JFrame.EXIT _ ON _ CLOSE);

 /* Create a content pane */
 contentPane = new JPanel();

 /* Create and add label */
 label = new JLabel(LABEL _ TEXT);
 contentPane.add(label);

 /* Add content pane to frame */
 frame.setContentPane(contentPane);

 /* Size and then display the frame. */
 frame.pack();
 frame.setVisible(true);
 }

 /**
 * Create and show the GUI.
 */
 private static void runGUI() {
 JFrame.setDefaultLookAndFeelDecorated(true);

 HelloWorldWithGUI1 greeting = new HelloWorldWithGUI1();
 }

 public static void main(String[] args) {
 /* Methods that create and show a GUI should be
 run from an event-dispatching thread */
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 runGUI();
 }
 });
 }
}

TIP The HelloWorldWithGUI1
application output is shown on
the first page of this chapter.

278 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 The implementation of a Swing application is different from previous
applications presented in this text. The controlling class contains a con-
structor and members in addition to the main() method. Therefore, the
controlling class is actually used to instantiate an object, which imple-
ments the GUI.

 The statement in the main() method runs the GUI from an event-
dispatching thread. A thread is simply a process that runs sequentially
from start to finish. GUIs should be invoked from an event-dispatching
thread to ensure that each event-handler finishes executing before the
next one executes. Thorough coverage of this topic is beyond the scope
of this text. However, the code shown is needed in every application that
implements a Swing GUI.

 Review: Name – part 1 of 2
Create a Name application that displays your name in a label inside a JFrame.

 The JButton Class
 A button is a commonly used GUI component. A button can be clicked
by the user to communicate with the application. For example, the
HelloWorldWithGUI2 application includes a button that when clicked
either hides or displays text in the label:

 The swing package includes the JButton class for creating buttons:

Class JButton (javax.swing.JButton)

Method
JButton(String str)

 creates a JButton object displaying the text
str.

setActionCommand(String cmd)

 sets the name of the action performed when the
button is clicked to cmd .

getActionCommand()

 returns the name of the action that has been
performed by the button.

addActionListener(Object)

 adds an object that listens for the user to click
this component.

 Unlike a JLabel, a JButton can respond to interaction from the user.

thread

Chapter 11 GUIs and Event-Driven Programming 279

sa
mp
le

 Handling Events
 Swing components use listeners to determine if an event has occurred. A
listener is an object that listens for action events. When an event is heard, the
listener responds by executing an event handler named actionPerformed().
The actionPerformed() method has an ActionEvent parameter passed by
the GUI when an event occurs. The ActionEvent object includes an action
command. An action command is a string describing an event, or action.

 The HelloWorldWithGUI2 application output is shown in the previous
section. When the Hide button is clicked, the application GUI changes to
display:

 The HelloWorldWithGUI2 application code is below. For this GUI, a
JButton is created, the JButton action command is set, and the current
object is the listener for JButton action events. Note the use of the keyword
this for the listener object to indicate the HelloWorldWithGUI2 object
itself:

import javax.swing.*;
import java.awt.event.*

public class HelloWorldWithGUI2 implements ActionListener {
 final static String LABEL _ TEXT = "Hello, world!";
 JFrame frame;
 JPanel contentPane;
 JLabel label;
 JButton button;

 public HelloWorldWithGUI2(){
 /* Create and set up the frame */
 frame = new JFrame("HelloWorldWithGUI");
 frame.setDefaultCloseOperation(JFrame.EXIT _ ON _ CLOSE);

 /* Create a content pane */
 contentPane = new JPanel();

 /* Create and add label */
 label = new JLabel(LABEL _ TEXT);
 contentPane.add(label);

 /* Create and add button */
 button = new JButton("Hide");
 button.setActionCommand("Hide");
 button.addActionListener(this);
 contentPane.add(button);

 /* Add content pane to frame */
 frame.setContentPane(contentPane);

 /* Size and then display the frame. */
 frame.pack();
 frame.setVisible(true);
 }

listener

action command

this

280 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 /**
 * Handle button click action event
 * pre: Action event is Hide or Show
 * post: Clicked button has different text, and label
 * displays message depending on when the button was clicked.
 */
 public void actionPerformed(ActionEvent event) {
 String eventName = event.getActionCommand();

 if (eventName.equals("Hide")) {
 label.setText(" ");
 button.setText("Show");
 button.setActionCommand("Show");
 } else {
 label.setText(LABEL _ TEXT);
 button.setText("Hide");
 button.setActionCommand("Hide");
 }
 }

 /**
 * Create and show the GUI.
 */
 private static void runGUI() {
 JFrame.setDefaultLookAndFeelDecorated(true);

 HelloWorldWithGUI2 greeting = new HelloWorldWithGUI2();
 }

 public static void main(String[] args) {
 /* Methods that create and show a GUI should be
 run from an event-dispatching thread */
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 runGUI();
 }
 });
 }
}

 A class that uses a listener must implement an ActionListener. This is
done by adding implements ActionListener to the class declaration and then
defining an actionPerformed() method, which is the only method in the
ActionListener interface. An import java.awt.event statement is required
to import the package containing the ActionListener interface.

 The GUI is implemented in the constructor. The segment of code that
creates and adds the button does four things. First, a button that displays
Hide is created. Second, because the user will see a Hide button the action
command associated with this button should be “Hide”. Third, a listener
is needed to determine when the user clicks the button. The listener is set
to the HelloWorldWithGUI2 object itself (this). Fourth, the button is added
to the content pane.

 The actionPerformed() method is passed an ActionEvent argument
by the GUI when the button is clicked. ActionEvent objects have a
getActionCommand() method. This method returns the string assigned
as the object’s action command. For the Show/Hide button, the action
command, as well as the button text, is changed each time the button is
clicked.

TIP awt stands for Abstract
Windows Toolkit.

Chapter 11 GUIs and Event-Driven Programming 281

sa
mp
le

 Review: Name – part 2 of 2
Modify the Name application to display or hide your name depending on the button clicked by the user,
similar to the HelloWorldWithGUI2 application.

 Review: NumClicks
Create a NumClicks application that contains a button displaying how many times the user has clicked that
button. The application interface should look similar to the following after the user has clicked the button
12 times:

For this application it is not necessary to set the action command. A call to the getActionCommand() method
in the actionPerformed() method is also not needed.

 Controlling Layout
 Layout refers to the arrangement of components. In a Swing GUI, the
layout of a content pane can be controlled by adding borders, using a layout
manager, and setting alignments.

 A border can be added to most components, including the content pane.
An invisible, or empty, border can be used to add “padding” around a
component to give it distance from other components. Adding an empty
border to the content pane adds space between the components and the
edges of the frame. For example, the content pane in the GUI on the left
has no border, but the content pane on the right has an empty border of
20 pixels on the top, left, bottom, and right:

An empty border in the content pane on the right provides

padding between the components and the frame

 A layout manager determines the order of components on a content pane.
There are many layout managers to choose from, including FlowLayout,
BoxLayout, and GridLayout. The FlowLayout manager places components
one next to the other in a row. When a row becomes too long, a new
row is started. The FlowLayout manager is the default manager. The
HelloWorldWithGUI applications use this manager.

layout manager

layout

TIP Pixel stands for picture
element and the number of
pixels in a surface depends on
the screen resolution.

borders

FlowLayout manager

282 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 The BoxLayout manager places components one after the other in a col-
umn, with one component per line. For example, the GUI below uses the
BoxLayout manager:

The BoxLayout manager places components one after the
other in a column

 The GridLayout manager places components into a grid of rows and col-
umns. The intersection of a row and column is called a cell. There is one
component per cell in a GridLayout. The GUI below uses a GridLayout.
An additional button was added to illustrate the grid:

The GridLayout manager places components
into a grid of cells

 Another factor that affects layout is alignment. Alignment refers to the
placement of a component within a layout. For example, both GUIs below
use a BoxLayout, have an empty border of 20, 20, 20, and 20 in the content
pane, and a 20, 50, 20, 50 empty border around the label. The GUI on the
left specifies no aligment for the components, and the GUI on the right
center aligns the label and the button:

Alignment affects the placement of components

within a layout

 The HelloWorldWithGUI2 application modified to use a layout manager,
borders, and alignment:

GridLayout manager

BoxLayout manager

alignment

TIP The BoxLayout manager
also includes methods for add-
ing “glue” and “rigid areas” to
a layout to control placement
of components.

Chapter 11 GUIs and Event-Driven Programming 283

sa
mp
le

import javax.swing.*;
import java.awt.event.*;

public class HelloWorldWithGUI2 implements ActionListener {
 final static String LABEL _ TEXT = "Hello, world!";
 JFrame frame;
 JPanel contentPane;
 JLabel label;
 JButton button;

 public HelloWorldWithGUI2(){
 /* Create and set up the frame */
 frame = new JFrame("HelloWorldWithGUI");
 frame.setDefaultCloseOperation(JFrame.EXIT _ ON _ CLOSE);

 /* Create a content pane with a BoxLayout and
 empty borders */
 contentPane = new JPanel();
 contentPane.setLayout(new BoxLayout(contentPane,
 BoxLayout.PAGE _ AXIS));
 contentPane.setBorder(BorderFactory.createEmptyBorder(20,20,20,20));

 /* Create and add label that is centered and
 has empty borders */
 label = new JLabel(LABEL _ TEXT);
 label.setAlignmentX(JLabel.CENTER _ ALIGNMENT);
 label.setBorder(BorderFactory.createEmptyBorder(20, 50, 20, 50));
 contentPane.add(label);

 /* Create and add button that is centered */
 button = new JButton("Hide");
 button.setAlignmentX(JButton.CENTER _ ALIGNMENT);
 button.setActionCommand("Hide");
 button.addActionListener(this);
 contentPane.add(button);

 /* Add content pane to frame */
 frame.setContentPane(contentPane);

 /* Size and then display the frame. */
 frame.pack();
 frame.setVisible(true);
 }

…rest of HelloWorldWithGUI2 code

 The JPanel setLayout() method is used to specify a layout for the content
pane. A BoxLayout object requires arguments for the content pane and the
arrangement. To arrange components in a vertical line, the class constant
PAGE _ AXIS is specified.

 The JPanel setBorder() method is used to specify borders for the con-
tent pane. The BorderFactory class has many different kinds of borders
to choose from. For invisible, or empty borders, the createEmptyBorder()
method is used. The arguments specify the width of the top, left, bottom,
and right of the border.

 The JLabel and JButton setAlignmentX() methods are used to specify
the vertical alignment of the components within the layout. Both classes
include several alignment constants, including CENTER _ ALIGNMENT.

TIP Experiment with the
numerous types of borders.

setLayout() method

setBorder() method

setAlignment() method

284 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 The modified HelloWorldWithGUI2 application produces a GUI that
looks similar to:

 For GUIs with components that should be side by side in rows, the
GridLayout manager may be a better choice. The GridLayout manager is
specified in a statement similar to:

contentPane.setLayout(new GridLayout(0, 2, 10, 5))

The GridLayout object requires arguments for specifying the number
of rows and columns and the space between columns and rows. If 0 is
specified for either the rows or columns, the class creates an object with
as many rows or columns as needed. However, only one argument can be
0. In the statement above, the GridLayout object will have as many rows
as needed and 2 columns. There will be 10 pixels between columns and 5
pixels between rows. The GridLayout class is part of the java.awt package.
Code using this manager requires an import java.awt.* statement.

 Review: Sunflower
Create a Sunflower application that displays the Latin name for the sunflower when Latin is clicked and the
English name when English is clicked. The application GUI should use a BoxLayout manager and look similar
to the following after Latin has been clicked:

 Review: Riddle
Create a Riddle application that displays a riddle and then solves it when Answer is clicked. The application
GUI should use a GridLayout manager and look similar to the following after Answer has been clicked:

GridLayout manager

java.awt

TIP The GridLayout manager
places components in rows
from left to right in the order
that they are added to the con-
tent pane.

Chapter 11 GUIs and Event-Driven Programming 285

sa
mp
le

 Getting Input from the User
 A text field allows a user to enter information at run time. Text fields
are usually placed next to a label to prompt the user for the type of data
expected in the text field. For example, the SemesterAvg application
prompts the user to enter three test grades and then displays the average
of the grades when Average is clicked:

 The swing package includes the JTextField class with the following
constructors and methods:

Class JTextField (javax.swing.JTextField)

Constructor/Methods
JTextField(int col)

 creates a JTextField object with width col.
JTextField(String text, int col)
 creates a JTextField object displaying default

text text in a field with width col.
getText() returns a String containing the text in the

JTextField.
addActionListener(Object)

 adds an object that listens for the user to press
the Enter key in this component.

 The information typed into a text field is a string, even when numeric
data is entered. Conversly, the setText() method of a JLabel expects a string
even when the data is numeric. Class methods in the Double and Integer
classes can be used to convert data between numeric and String types:

Class Double (java.lang.Double)

Method
parseDouble(String text)

 returns the double value in the String text.

toString(double num)

 returns the String representation of num.

Class Integer (java.lang.Integer)

Method
parseInteger(String text)

 returns the int value in the String text.
toString(int num)

 returns the String representation of num.

converting between text and
numeric data

286 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 The parseDouble() and parseInteger() methods are used to convert
String data to numeric. The SemesterAvg application, the GIUI shown on
the previous page, uses parseDouble():

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class SemesterAvg implements ActionListener {
 JFrame frame;
 JPanel contentPane;
 JLabel prompt1, prompt2, prompt3, average;
 JTextField grade1, grade2, grade3;
 JButton avgButton;

 public SemesterAvg(){
 /* Create and set up the frame */
 frame = new JFrame("Semester Average");
 frame.setDefaultCloseOperation(JFrame.EXIT _ ON _ CLOSE);

 /* Create a content pane with a GridLayout */
 contentPane = new JPanel();
 contentPane.setLayout(new GridLayout(0, 2, 10, 5));
 contentPane.setBorder(BorderFactory.createEmptyBorder
 (10, 10, 10, 10));

 /* Create and add a prompt and then a text field */
 prompt1 = new JLabel("Enter the first grade: ");
 contentPane.add(prompt1);

 grade1 = new JTextField(10);
 contentPane.add(grade1);

 /* Create and add a second prompt and
 then a text field */
 prompt2 = new JLabel("Enter the second grade: ");
 contentPane.add(prompt2);

 grade2 = new JTextField(10);
 contentPane.add(grade2);

 /* Create and add a third prompt and then a text field */
 prompt3 = new JLabel("Enter the third grade: ");
 contentPane.add(prompt3);

 grade3 = new JTextField(10);
 contentPane.add(grade3);

 /* Create and add button that will display the
 average of the grades */
 avgButton = new JButton("Average");
 avgButton.setActionCommand("Average");
 avgButton.addActionListener(this);
 contentPane.add(avgButton);

 /* Create and add a label that will display the
 average */
 average = new JLabel(" ");
 contentPane.add(average);

 /* Add content pane to frame */
 frame.setContentPane(contentPane);

Chapter 11 GUIs and Event-Driven Programming 287

sa
mp
le

 /* Size and then display the frame. */
 frame.pack();
 frame.setVisible(true);
 }

 /**
 * Handle button click action event
 * pre: none
 * post: The average of the grades entered has been
 * calculated and displayed.
 */
 public void actionPerformed(ActionEvent event) {
 String eventName = event.getActionCommand();

 if (eventName.equals("Average")) {
 double avgGrade;
 String g1 = grade1.getText();
 String g2 = grade2.getText();
 String g3 = grade3.getText();

 avgGrade = (Double.parseDouble(g1) + Double.parseDouble(g2)
 + Double.parseDouble(g3))/3;
 average.setText(Double.toString(avgGrade));
 }
 }

 /**
 * Create and show the GUI.
 */
 private static void runGUI() {
 JFrame.setDefaultLookAndFeelDecorated(true);

 SemesterAvg myGrades = new SemesterAvg();
 }

 …main() method of SemesterAvg code

 In the actionPerformed() method, the strings are read from the text
fields. To calculate the average grade, each string is parsed for a double
value (with parseDouble()). The avgGrade value was then converted to a
String with the Double class method toString().

 Review: DivisibleBy3
Create a DivisibleBy3 application that prompts the user for an integer and then displays a message when
Check is clicked indicating whether the number is divisible by 3. The application interface should look similar
to the following after the user has typed a number and clicked Check:

288 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

JComboBox event

 Combo Boxes
 A combo box offers a user a way to select from a limited set of choices.
Combo boxes can offer choices without taking up much room on the inter-
face. The user simply clicks the combo box arrow to display additional
choices. The LatinPlantNames application allows the user to select a plant
name from a combo box:

 The swing package includes the JComboBox class for creating combo
boxes:

Class JComboBox (javax.swing.JComboBox)

Methods
JComboBox(Object[] items)

 creates a JComboBox object that contains the
items from the items array, which must be an
array of objects.

setSelectedIndex(int index)

 makes the item at index index the selected
item.

getSelectedItem()

 returns the String corresponding to the selected
JComboBox item.

setEditable(boolean)

 allows text to be typed in the combo box when
true is the boolean argument.

addActionListener(Object)

 adds an object that listens for the user to select
an item from this component’s list.

 Handling an event from a JComboBox requires two lines of code that
are similar to:

JComboBox comboBox = (JComboBox)event.getSource();
String itemName = (String)comboBox.getSelectedItem();

The first statement determines the source of the action event and then the
second statement determines which item has been selected.

Chapter 11 GUIs and Event-Driven Programming 289

sa
mp
le

 The LatinPlantNames application code includes a JComboBox object:

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class LatinPlantNames implements ActionListener {
 JFrame frame;
 JPanel contentPane;
 JComboBox plantNames;
 JLabel plantListPrompt, latinName;

 public LatinPlantNames(){
 /* Create and set up the frame */
 frame = new JFrame("LatinPlantNames");
 frame.setDefaultCloseOperation(JFrame.EXIT _ ON _ CLOSE);

 /* Create a content pane with a BoxLayout and
 empty borders */
 contentPane = new JPanel();
 contentPane.setLayout(new BoxLayout(contentPane,
 BoxLayout.PAGE _ AXIS));
 contentPane.setBorder(BorderFactory.createEmptyBorder
 (10, 10, 10, 10));

 /* Create a combo box and a descriptive label */
 plantListPrompt = new JLabel("Select a plant name: ");
 plantListPrompt.setAlignmentX(JLabel.LEFT _ ALIGNMENT);
 contentPane.add(plantListPrompt);

 String[] names = {"basil", "lavender", "parsley",
 "peppermint", "saffron", "sage"};
 plantNames = new JComboBox(names);
 plantNames.setAlignmentX(JComboBox.LEFT _ ALIGNMENT);
 plantNames.setSelectedIndex(0);
 plantNames.addActionListener(this);
 contentPane.add(plantNames);

 /* Create and add a label that will display the
 Latin names */
 latinName = new JLabel("Ocimum");
 latinName.setBorder(BorderFactory.createEmptyBorder
 (20, 0, 0, 0));
 contentPane.add(latinName);

 /* Add content pane to frame */
 frame.setContentPane(contentPane);

 /* Size and then display the frame. */
 frame.pack();
 frame.setVisible(true);
}

290 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 /**
 * Handle a selection from the combo box
 * pre: none
 * post: The Latin name for the selected plant
 * has been displayed.
 */
 public void actionPerformed(ActionEvent event) {
 JComboBox comboBox = (JComboBox)event.getSource();
 String plantName = (String)comboBox.getSelectedItem();

 if (plantName == "basil") {
 latinName.setText("Ocimum");
 } else if (plantName == "lavender") {
 latinName.setText("Lavandula spica");
 } else if (plantName == "parsley") {
 latinName.setText("Apium");
 } else if (plantName == "perppermint") {
 latinName.setText("Mentha piperita");
 } else if (plantName == "saffron") {
 latinName.setText("Crocus");
 } else if (plantName == "sage") {
 latinName.setText("Salvia");
 }
 }

 …runGUI() and main() method of LatinPlantNames code

 The LatinPlantNames application displays the following output after
sage has been selected:

 Review: MetricConversion
Create a MetricConversion application that allows the user to select a type of conversion from a combo box
and then the corresponding formula is displayed in a label. To convert from the length measurement inches
to centimeters, the formula is 1 inch = 2.54 centimeters. The formula 1 foot = 0.3048 meters converts the dis-
tance measurement feet to meters. The volume measurement gallon is converted to liters with the fomula
1 gallon = 4.5461 liters. The formula 1 pound = 0.4536 kilograms converts the mass measurement pound to
kilograms. The application interface should look similar to the following after the user has selected feet to
meters:

Chapter 11 GUIs and Event-Driven Programming 291

sa
mp
le

 Changing Colors
 Swing components have methods for changing their colors. For example,
the content pane can be green, buttons can be magenta, combo boxes can
display text in pink. When making color choices, keep the end user in
mind because colors can give an application a fun and exciting look or
completely turn users away.

 The java.awt package includes the Color class with numerous color
constant members. The following methods, in the Swing component
classes, can be used to change the background and foreground colors of
the components:

setBackground(Color.constant)

 sets the background color of a component to
constant from the Color class.

setForeground(Color.constant)

 sets the foreground color of a component to
constant from the Color class.

How the color change affects the component varies. For a JLabel, the
foreground color refers to the color of the text. For a JComboBox, the fore-
ground color refers to the color of the text in the list.

 The ColorDemo application demonstrates the color possibilities for
components. The application GUI and the code, except for the runGUI()
and main() methods, follow:

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class ColorDemo implements ActionListener {
 JFrame frame;
 JPanel contentPane;
 JTextField name;
 JButton displayMessage;
 JLabel textFieldPrompt, hello;

 public ColorDemo(){
 /* Create and set up the frame */
 frame = new JFrame("ColorDemo");
 frame.setDefaultCloseOperation(JFrame.EXIT _ ON _ CLOSE);

 /* Create a content pane with a BoxLayout
 and empty borders */
 contentPane = new JPanel();
 contentPane.setBorder(BorderFactory.createEmptyBorder
 (10, 10, 10, 10));
 contentPane.setBackground(Color.white);
 contentPane.setLayout(new GridLayout(0, 2, 5, 10));

Color class

292 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 /* Create a text field and a descriptive label */
 textFieldPrompt = new JLabel("Type your name: ");
 textFieldPrompt.setForeground(Color.red);
 contentPane.add(textFieldPrompt);

 name = new JTextField(10);
 name.setBackground(Color.pink);
 name.setForeground(Color.darkGray);
 contentPane.add(name);

 /* Create a Display Message button */
 displayMessage = new JButton("Display Message");
 displayMessage.setBackground(Color.yellow);
 displayMessage.setForeground(Color.blue);
 displayMessage.addActionListener(this);
 contentPane.add(displayMessage);

 /* Create a label that will display a message */
 hello = new JLabel(" ");
 hello.setForeground(Color.green);
 contentPane.add(hello);

 /* Add content pane to frame */
 frame.setContentPane(contentPane);

 /* Size and then display the frame. */
 frame.pack();
 frame.setVisible(true);
 }

 /**
 * Handle a the button click
 * pre: none
 * post: A message has been displayed.
 */
 public void actionPerformed(ActionEvent event) {
 String text = name.getText();

 hello.setText("Hello " + text);
 }

 …runGUI() and main() method of ColorDemo code

 Adding Images
 Images can make an application more informative, easier to to use, and
fun. Labels and buttons are often used to display an image, but many
Swing components support images. Images that are GIF and JPG format
work best. Unless a different path is specified in the application code, the
image files must be in the same location as the compiled code.

 The JLabel class includes a constructor and a method for displaying
images in a label:

Class JLabel (javax.swing.JLabel)

Constructor/Method
JLabel(ImageIcon pic)

 creates a JLabel object containing pic.
setIcon(ImageIcon pic)

 sets the JLabel to contain pic.

GIF, JPG

Chapter 11 GUIs and Event-Driven Programming 293

sa
mp
le

 The JButton class includes a constructor and a method for displaying
images in a button:

Class JButton (javax.swing.JButton)

Constructor/Method
JButton(String str, ImageIcon pic)
 creates a JButton object containing the text str

and the image pic.
JButton(ImageIcon pic)

 creates a JButton object containing the image
pic.

setIcon(ImageIcon pic)

 sets the JButton to contain pic.

 The Roll application displays a die face. The user can click Roll Die to
“roll the die” and display the outcome of the roll. The application GUI and
the code, except for the runGUI() and main() methods, follow:

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.util.Random;

public class Roll implements ActionListener {
 JFrame frame;
 JPanel contentPane;
 JButton rollDie;
 JLabel dieFace;

 public Roll(){
 /* Create and set up the frame */
 frame = new JFrame("Roll");
 frame.setDefaultCloseOperation(JFrame.EXIT _ ON _ CLOSE);

 /* Create a content pane with a BoxLayout and
 empty borders */
 contentPane = new JPanel();
 contentPane.setBorder(BorderFactory.createEmptyBorder
 (10, 10, 10, 10));
 contentPane.setBackground(Color.white);
 contentPane.setLayout(new BoxLayout(contentPane,
 BoxLayout.PAGE _ AXIS));

 /* Create a label that shows a die face */
 dieFace = new JLabel(new ImageIcon("die3.gif"));
 dieFace.setAlignmentX(JLabel.CENTER _ ALIGNMENT);
 dieFace.setBorder(BorderFactory.createEmptyBorder
 (0, 0, 10, 0));
 contentPane.add(dieFace);

294 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 /* Create a Roll Die button */
 rollDie = new JButton("Roll Die");
 rollDie.setAlignmentX(JButton.CENTER _ ALIGNMENT);
 rollDie.addActionListener(this);
 contentPane.add(rollDie);

 /* Add content pane to frame */
 frame.setContentPane(contentPane);

 /* Size and then display the frame. */
 frame.pack();
 frame.setVisible(true);
 }

 /**
 * Handle a button click
 * pre: none
 * post: A die has been rolled. Matching image shown.
 */
 public void actionPerformed(ActionEvent event) {
 Random rand = new Random();
 int newRoll;

 newRoll = rand.nextInt(6) + 1;
 if (newRoll == 1) {
 dieFace.setIcon(new ImageIcon("die1.gif"));
 } else if (newRoll == 2) {
 dieFace.setIcon(new ImageIcon("die2.gif"));
 } else if (newRoll == 3) {
 dieFace.setIcon(new ImageIcon("die3.gif"));
 } else if (newRoll == 4) {
 dieFace.setIcon(new ImageIcon("die4.gif"));
 } else if (newRoll == 5) {
 dieFace.setIcon(new ImageIcon("die5.gif"));
 } else if (newRoll== 6) {
 dieFace.setIcon(new ImageIcon("die6.gif"));
 }
 }

 An image must be an object of the ImageIcon class for use in a Swing
GUI. The ImageIcon class, from the java.swing package, has a constructor
that accepts a file name as an argument and then converts that file to an
ImageIcon object.

 Review: Roll
Modify the Roll application to roll two dice. Include an image for each die. Change the colors of the com-
ponents to be more exciting, while still allowing the user to easily read the text on the button and to see the
die images. The die images are name die1.tif, die2.tif, die3.tif, die5.tif, and die6.tif and are supplied as data
files for this text.

Chapter 11 GUIs and Event-Driven Programming 295

sa
mp
le

 Using Nested Classes to Handle Events
 A GUI can quickly become complex, as a combination of buttons, text
fields, and other components that must handle events are added. When a
variety of components are on a single interface, separate actionPerformed()
methods should handle their events.

 Up to this point, an instance of the controlling class (this) implemented
an actionPerformed() method. This single method was used to handle
events for every component on the GUI. This was sufficient for a simple
GUI. However, a GUI with more than one type of component responding
to an event should have multiple listeners. One way to implement multiple
listeners in a single application is to create each listener from a nested
class.

 A nested class is a class within a class. A nested class is a member of the
class it is within. As a class member, it has access to all the other members
of the class, including private member variables and methods. A class
that contains a class member is called an outer class. The Semester Stats
application uses two nested classes to respond to events:

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class SemesterStats {
 JFrame frame;
 JPanel contentPane;
 JLabel prompt1, prompt2, prompt3, stat;
 JTextField grade1, grade2, grade3;
 JButton avgButton, minButton, maxButton;

 public SemesterStats(){
 /* Create and set up the frame */
 frame = new JFrame("Semester Stats");
 frame.setDefaultCloseOperation(JFrame.EXIT _ ON _ CLOSE);

 /* Create content pane with a GridLayout and empty borders */
 contentPane = new JPanel();
 contentPane.setLayout(new GridLayout(0, 2, 10, 5));
 contentPane.setBorder(BorderFactory.createEmptyBorder
 (10, 10, 10, 10));

 /* Create and add a prompt and then a text field */
 prompt1 = new JLabel("Enter the first grade: ");
 contentPane.add(prompt1);

 grade1 = new JTextField(10);
 contentPane.add(grade1);

 /* Create and add a second prompt and then a text field */
 prompt2 = new JLabel("Enter the second grade: ");
 contentPane.add(prompt2);

 grade2 = new JTextField(10);
 contentPane.add(grade2);

 /* Create and add a third prompt and then a text field */
 prompt3 = new JLabel("Enter the third grade: ");
 contentPane.add(prompt3);

 grade3 = new JTextField(10);
 contentPane.add(grade3);

TIP A nested class is also
called an inner class.

outer class

296 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 /* Create and add button that will display the average grade */
 avgButton = new JButton("Average");
 avgButton.addActionListener(new AvgListener());
 contentPane.add(avgButton);

 /* Create and add button that will display the min grade */
 minButton = new JButton("Min");
 minButton.setActionCommand("Min");
 minButton.addActionListener(new MinMaxListener());
 contentPane.add(minButton);

 /* Create and add button that will display the max grade */
 maxButton = new JButton("Max");
 maxButton.setActionCommand("Max");
 maxButton.addActionListener(new MinMaxListener());
 contentPane.add(maxButton);

 /* Create and add a label that will display stats */
 stat = new JLabel(" ");
 stat.setBorder(BorderFactory.createEmptyBorder(10, 0, 10, 0));
 contentPane.add(stat);

 /* Add content pane to frame */
 frame.setContentPane(contentPane);

 /* Size and then display the frame. */
 frame.pack();
 frame.setVisible(true);
 }

 class AvgListener implements ActionListener {

 /**
 * Handle Average button click event
 * pre: none
 * post: The grade average has been calculated and displayed.
 */
 public void actionPerformed(ActionEvent event) {
 double avgGrade;
 String g1 = grade1.getText();
 String g2 = grade2.getText();
 String g3 = grade3.getText();

 avgGrade = (Double.parseDouble(g1) + Double.parseDouble(g2) +
 Double.parseDouble(g3))/3;
 stat.setText(Double.toString(avgGrade));
 }
 }

Chapter 11 GUIs and Event-Driven Programming 297

sa
mp
le

 class MinMaxListener implements ActionListener {

 /**
 * Handles the Min and Max button click events
 * pre: none
 * post: The minimum or maximum grade has been
 * determined and displayed.
 */
 public void actionPerformed(ActionEvent event) {
 String eventName = event.getActionCommand();
 double minGrade = 999;
 double maxGrade = 0;
 double[] grades = new double[3];

 grades[0] = Double.parseDouble(grade1.getText());
 grades[1] = Double.parseDouble(grade2.getText());
 grades[2] = Double.parseDouble(grade3.getText());

 if (eventName.equals("Min")) {
 for (int i = 0; i < 3; i++) {
 if (minGrade > grades[i]) {
 minGrade = grades[i];
 }
 }
 stat.setText(Double.toString(minGrade));
 } else if (eventName.equals("Max")) {
 for (int i = 0; i < 3; i++) {
 if (maxGrade < grades[i]) {
 maxGrade = grades[i];
 }
 }
 stat.setText(Double.toString(maxGrade));
 }
 }
 }

 /**
 * Create and show the GUI.
 */
 private static void runGUI() {
 JFrame.setDefaultLookAndFeelDecorated(true);

 SemesterStats myGrades = new SemesterStats();
 }

 public static void main(String[] args) {
 /* Methods that create and show a GUI should be
 run from an event-dispatching thread */
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 runGUI();
 }
 });
 }
}

 One class (AvgListener) was used to implement a listener for the Average
button and a second class (MinMaxListener) implements a listener for
the Min and Max buttons. These buttons were combined into one listener
because their algorithms closely match.

298 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 The SemesterStats application displays output similar to:

 Chapter 11 Case Study
 In this case study, a Swing GUI will be created for an application that
plays a carnival game called Break-A-Plate. The Break-A-Plate game allows
a player to try to break all three plates. If all three plates are broken, a first
prize is awarded, otherwise, a consolation prize is awarded.

BreakAPlate Specification

 The BreakAPlate application displays three unbroken plates at the start.
Clicking Play plays the game, displays broken plates, and displays the prize
won. If all three plates are broken, a tiger plush first prize is awarded. If
less than three plates are broken, a sticker consolation prize is awarded.
At the end of a game the Play button changes to Play Again. Clicking Play
Again displays a set of unbroken plates and the button changes back to Play
allowing the user to play repeatedly. The application ends when the user
closes the window.

 The BreakAPlate game uses random numbers to determine if a player
has broken all three plates. When three 1s are generated by the random
number generator then the application displays three broken plates. If zero,
one, or two ones are generated, then the application displays two broken
plates indicating a loss.

 The BreakAPlate interface should be a GUI that includes a label for dis-
playing the image of the plates, a button for allowing the user to play or
play again, and a label for displaying the the prize won. The BreakAPlate
GUI should look similar to the following before a game is played, after
a losing game has been played, and after a winning game has been
played:

Chapter 11 GUIs and Event-Driven Programming 299

sa
mp
le

�����������

����

����������������

�����������

����������

��������������������

�����������

����������

 The BreakAPlate algorithm:

1. When a game is played, generate three random numbers between
0 and 1.

2. If three ones are generated, display three broken plates and the
names of the first prize. Otherwise, display two broken plates and
the name of the consolation prize.

BreakAPlate Code Design

 The BreakAPlate application simulates a game booth at a carnival. The
game can therefore be modeled with a GameBooth object. The GameBooth
class was created in Chapter 8 and contains the following methods:

Class GameBooth (Lawrenceville Press)

Constructor/Methods
GameBooth(int cost, String p1, String p2)

 creates a GameBooth object that charges cost
amount to play, awards a first prize p1, and a
consolation prize p2. If there is no charge for
the game, or the charge is not a consideration,
then 0 should be the argument for cost.

start() simulates a a game that allows the player three
plays. If the player succeeds all three times,
then the name of the first prize is retuned.
Otherwise, the name of the consolation prize
is returned.

getCost() returns the cost of the game.

TIP Refer to Chapter 8 for the
GameBooth code.

300 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 The cost of the game is not a factor in this application, so 0 will be the
argument for the cost parameter in the constructor, and the getCost()
method will not be needed.

 Based on the algorithm and the GameBooth class, the BreakAPlate
actionPerformed() method pseudocode looks similar to:

String eventName = event.getActionCommand();
String prize;

if (Play) {
 prize = breakAPlate.start();
 if (prize is tiger plush) {
 display all broken plates;
 } else if (prize is sticker)) {
 display two broken plates
 }
 display prize won
 change button to Play Again
} else if (Play Again) {
 display unbroken plates
 clear prize won text
 change button to Play

BreakAPlate Implementation

 The BreakAPlate implementation involves creating the BreakAPlate java
file and adding the GameBooth java file to the project.

 The BreakAPlate application is implemented below:

/**
 * BreakAPlate.
 */
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class BreakAPlate implements ActionListener {
 static final String FIRST _ PRIZE = "tiger plush";
 static final String CONSOLATION _ PRIZE = "sticker";
 JFrame frame;
 JPanel contentPane;
 JButton play;
 JLabel plates, prizeWon;
 GameBooth breakAPlate;

 public BreakAPlate(){
 /* initialize game booth and player */
 breakAPlate = new GameBooth(0, FIRST _ PRIZE, CONSOLATION _ PRIZE);

 /* Create and set up the frame */
 frame = new JFrame("BreakAPlate");
 frame.setDefaultCloseOperation(JFrame.EXIT _ ON _ CLOSE);

 /* Create a content pane with a BoxLayout and empty borders */
 contentPane = new JPanel();
 contentPane.setBorder(BorderFactory.createEmptyBorder(20, 20, 20, 20));
 contentPane.setBackground(Color.white);
 contentPane.setLayout(new BoxLayout(contentPane, BoxLayout.PAGE _ AXIS));

Chapter 11 GUIs and Event-Driven Programming 301

sa
mp
le

 /* Create a label that shows the start of the game */
 plates = new JLabel(new ImageIcon("plates.gif"));
 plates.setAlignmentX(JLabel.CENTER _ ALIGNMENT);
 plates.setBorder(BorderFactory.createEmptyBorder(10, 10, 20, 10));
 contentPane.add(plates);

 /* Create a Play button */
 play = new JButton("Play");
 play.setActionCommand("Play");
 play.setAlignmentX(JButton.CENTER _ ALIGNMENT);
 play.addActionListener(this);
 contentPane.add(play);

 /* Create a label that will show prizes won */
 prizeWon = new JLabel(" ");
 prizeWon.setAlignmentX(JLabel.CENTER _ ALIGNMENT);
 prizeWon.setBorder(BorderFactory.createEmptyBorder(20, 0, 0, 0));
 contentPane.add(prizeWon);

 /* Add content pane to frame */
 frame.setContentPane(contentPane);

 /* Size and then display the frame. */
 frame.pack();
 frame.setVisible(true);
 }

 /**
 * Handle the button click
 * pre: none
 * post: The appropriate image and message are displayed.
 */
 public void actionPerformed(ActionEvent event) {
 String eventName = event.getActionCommand();
 String prize;

 if (eventName == "Play") {
 prize = breakAPlate.start();
 if (prize.equals(FIRST _ PRIZE)) {
 plates.setIcon(new ImageIcon("plates _ all _ broken.gif"));
 } else if (prize.equals(CONSOLATION _ PRIZE)) {
 plates.setIcon(new ImageIcon("plates _ two _ broken.gif"));
 }
 prizeWon.setText("You win: " + prize);
 play.setText("Play Again");
 play.setActionCommand("Play Again");
 } else if (eventName == "Play Again") {
 plates.setIcon(new ImageIcon("plates.gif"));
 prizeWon.setText(" ");
 play.setText("Play");
 play.setActionCommand("Play");
 }
 }

302 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 /**
 * Create and show the GUI.
 */
 private static void runGUI() {
 JFrame.setDefaultLookAndFeelDecorated(true);

 BreakAPlate carnivalGame = new BreakAPlate();
 }

 public static void main(String[] args) {
 /* Methods that create and show a GUI should be
 run from an event-dispatching thread */
 javax.swing.SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 runGUI();
 }
 });
 }
}

 Running the BreakAPlate application displays a GUI similar to:

 When Play is clicked, the user either wins or loses. The output below
shows a losing game:

Chapter 11 GUIs and Event-Driven Programming 303

sa
mp
le

 The application GUI below shows a winning game:

BreakAPlate Testing and Debugging

 The application should be tested by playing several games, making sure
that the correct prize is named and that the buttons and images change
appropriately.

 Review: BreakAPlate
Modify the BreakAPlate application to display a picture of the prize won rather than text naming the prize.
The tiger_plush.gif, sticker.gif, and placeholder.gif are supplied as data files for this text. The placeholder.gif
file is a white square that is the same size as the tiger_plush and sticker images. The placeholder.gif file
should be displayed in the label at the start of each game. The modified BreakAPlate interface should look
similar to the following after the user has played a winning game:

304 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 Chapter Summary
 This chapter introduced graphical user interfaces that use the Swing
API. The Java swing package contains many component classes, including
JFrames, JPanels, JLabels, JButtons, JComboBoxes, and JTextFields.

 Applications with a GUI are event-driven. The GUI must be run from
an event-dispatching thread. A GUI application responds to interactions
from the user called events. An event executes a method called an event
handler. A Swing event handler is also called an action event handler.

 A frame is a container for content panels. A commonly used content
panel is the JPanel component. A JPanel can contain other components
such as labels and buttons. A label is a component that does not receive
events. A button is a commonly used component for accepting input from
the user.

 Only components with a listener object can execute an event handler.
A listener executes the actionPerformed() event handler, passing it the
an ActionEvent object that contains the action command describing the
event.

 The layout of components in a JPanel can be controlled with layout man-
ager and the use of borders and alignment. The FlowLayout, BoxLayout,
and GridLayout are the three managers covered in this chapter. The place-
ment of components within a layout can be controlled further with empty
borders for padding and using alignment.

 The text field component allows a user to type information into the
interface. The information typed into a text field is a string. The Integer
and Double classes include class methods for converting information to
numeric data. The label component requires a string when setting the
text. The Integer and Double classes also provide the toString() method
for converting numeric data to a String.

 Combo boxes allow the user to select from a limited set of choices. A
combo box does not take up much space and displays a list of choices when
its arrow button is clicked.

 Most of the components include methods for setting the background
and foreground colors. Color can make an application easier to use and
more interesting, but should be selected with the user in mind.

 GIF and JPG images can be included in an application GUI. A label or
a button is commonly used to display an image.

 Nested classes are used to implement multiple event handlers. Nested
classes, like any other member of a class, have access to other members of
the class, including private variables and method members. A class that
contain a class member is called an outer class.

Chapter 11 GUIs and Event-Driven Programming 305

sa
mp
le

 Vocabulary

Action command A string describing an event.

Alignment The placement of components within
a layout.

BoxLayout manager A layout manager that places
components one after the other in a column.

Button A GUI component that the user can click.

Combo box A GUI component that offers a user a
way to select from a limited set of choices.

Container A component that holds and displays
all the other components of a GUI.

Content frame A top-level container.

Event A user interaction with an application’s
GUI.

Event-driven application An application that
responds to events.

Event handler A method that executes in response
to an event.

FlowLayout manager A layout manager that places
components one next to the other in a row.

Frame A GUI window that contains a border, title,
and maximize, minimize, and close buttons.

GridLayout manager A layout manager that places
components in a grid of rows and columns.

Label A GUI component that displays text or an
image and does not interact with the user.

Layout The arrangement of components.

Layout manager Used to specify the order of com-
ponents on a content pane.

Listener An object that listens for action events.

Nested class A class that is a member of another
class. A class within a class.

Outer class A class that contains a class member.

Text field A GUI component that allows a user to
enter information at run time.

Thread A process that runs sequentially from start
to finish.

306 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 Java

ActionListener The java.awt.event interface that
contains the actionListener() method.

actionPerformed() A method that is implemented
to respond to events. This method is the only method
in the ActionListener interface.

BorderFactory The java.lang class with class meth-
ods for creating a border object.

BoxLayout A javax.swing class for setting the layout
of a content pane.

Color The java.awt class that contains constants
for changing component colors.

Double A java.lang class for converting numbers
between numeric and text data.

GridLayout A java.awt class for setting the layout
of a content pane.

ImageIcon A java.swing class for converting
an image, such as a GIF or JPG, to an ImageIcon
object.

Integer A java.lang class for converting numbers
between numeric and text data.

java.awt The package containing the GridLayout
class and Color class constants.

java.awt.event The package containing the
ActionListener interface.

java.swing The package containing the Swing
API classes.

JButton A java.swing class for creating a button in
a GUI. The class includes methods for adding text
or images to the label.

JComboBox A java.swing class for creating a combo
box in a GUI.

JFrame A java.swing class for creating a window,
also called a frame, in a GUI.

JLabel The java.swing class for creating a label in
a GUI. The class includes methods for adding text
or images to the label.

JPanel The java.swing class for creating a content
panel for a frame. The class includes methods for
adding and removing components.

JTextField The java.swing class for creating a text
field.

FlowLayout A javax.swing class for setting the
layout of a content pane.

Swing API A part of the Java Foundation Classes
that contains numerous components for creating
GUIs.

this The keyword for indicating an object itself.

Chapter 11 GUIs and Event-Driven Programming 307

sa
mp
le

 Critical Thinking

1. Explain the difference between an event-driven
application and a console-based application.

2. Explain how code is executed in an event-driven
application.

3. Can components be added directly to a frame?
Explain.

4. Can a label respond to events? Explain.

5. Why do you think a GUI needs to be run from
an event-dispatching thread?

6. What is the difference between a label and a
button?

7. a) What does this indicate when used as the
argument for the the addActionListener()
method?

 b) What must the object listening for an event
contain?

8. List three ways to control the layout of a content
pane.

9. What type of borders are used to add padding
around components?

10. List three layout managers and explain how
each arranges the components on a content
pane.

11. Which class is used to return an object for the
setBorder() method?

12. Are borders for padding necessary when the
GridLayout manager is used? Explain.

13. What must first be done with numeric data
typed in a text field before it can be used in a
calculation?

14. What is the value of num1 in the last statement
below?

 double num1;
 Double num2 = new Double(3);
 String num3 = "5";
 num1 = num2.doubleValue() +
 Double.valueOf(num3).doubleValue();

15. An application prompts a user to select a name
from a list of six names. Which is a better
component choice: a text field or a combo box?
Explain.

16. Would white text on a pink background be a
good color combination for a GUI? Why or why
not?

17. What image types are supported in a Swing
GUI?

18. Which components are often used to display an
image?

19. What must an image be converted to in order
to be displayed by a Swing component?

True/False

20. Determine if each of the following are true or
false. If false, explain why.

 a) JFrame is a class in the javax.swing
package.

 b) A button click is an event handler.
 c) Labels can be changed by the user.
 d) A JFrame object uses a content pane to hold

GUI components.
 e) The index value for the first component on

a content pane is 1.
 f) The JLabel class constant LEADING indicates

right alignment.
 g) A thread is a sequential process that runs

from start to finish.
 h) Swing components use listeners to determine

if an event has occurred.
 i) A class that uses a listener must implement

an ActionListener class.
 j) An empty border indicates that there is no

space around a component.
 k) The FlowLayout manager places components

one after the other in a column, with one
column per line.

 l) All components on a GUI must have the
same alignment.

 m) The class content PAGE_AXIS specifies that
components should be arranged in a vertical
line.

 n) The JLabel setAlignmentX() method is used
to specify the horizontal alignment of the
components within the layout.

308 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

 o) Code using the BoxLayout manager requires
an import java.awt.* statement.

 p) Information is entered into a text field at run
time.

 q) A text field can only accept numeric data.
 r) The JLabel foreground color refers to the text

color.
 s) A Swing GUI can have only one listener.
 t) A nested class has access to the private vari-

able members of the outer class.

Chapter 11 GUIs and Event-Driven Programming 309

sa
mp
le

 Exercises

Exercise 1 ——————————————————— LocalBankGUI
Create LocalBankGUI application that implements a GUI for the Local Bank case study in Chapter 9.

Exercise 2 ——————————————————— TicTacToeGUI
Create a TicTacToeGUI application that allows two players to play a computerized tic-tac-toe game.
Refer to the TicTacToe application presented in Chapter 9. The TTT class code will need to be modified
for the GUI version of the application. Use a button for each “box” in the tic-tac-toe board.

Exercise 3 ———————————————————— PhotoAlbum
Create a PhotoAlbum application that displays a new picture each time Next is clicked. Use the
grayangel.jpg, scorpionfish.jpg, sponges.jpg, and starfish.jpg files supplied as data files for this text.
The application should allow the user to continously cycle through the images.

Exercise 4 —————————————————————— Clacker
In the game Clacker, the numbers 1 through 12 are initially displayed. The player throws two dice and
may cover the number representing the total or the two numbers on the dice. For example, for a throw
of 3 and 5, the player may cover the 3 and the 5 or just the 8. Play continues until all the numbers are
covered. The goal is to cover all the numbers in the fewest rolls.

Create a Clacker application that displays 12 buttons numbered 1 through 12. Each of these buttons
can be clicked to ”cover” it. A covered button displays nothing. Another button labeled Roll can be
clicked to roll the dice. Include labels to display the appropriate die images for each roll. Another label
displays the number of rolls taken. A New Game button can be clicked to clear the labels and uncover
the buttons for a new game.

Exercise 5 ö ————————————————————— LifeGUI
Create a LifeGUI application that is based on the Life application created in Chapter 10, Exercise 14.
The 20 x 20 grid should be buttons that initially display all 0s. To select the live cells for the first day,
the user clicks the buttons in the positions of live cells. When clicked, a button changes from display-
ing a 0 to displaying a X. A Next button below the grid can be clicked repeatedly to display the next
generations until the user quits or there are no more live cells.

310 Chapter 11 GUIs and Event-Driven Programming

sa
mp
le

Chapter 12 Files and Exception Handling 311

sa
mp
le

Files are used by many applications for storing and retrieving data. In
this chapter, sequential file access, including object serialization will be
discussed. Exception handling will also be explained.

 What is a File?
 Up to this point, the applications created in this text have stored data
in the computer’s memory. However, storage in memory is available only
when the computer is on and an application is running. A file is a collec-
tion of related data stored on a persistent medium such as a hard disk or
a CD. Persistent simply means lasting.

 Files often store data used by an application. Files are also used to store
the data generated by an application. In either case, a file is separate from
the application accessing it and can be read from and written to by more
than one application. Most applications require access to one or more files
on disk.

 The File Classes
 The File class, part of the java.io package, is used for creating an object
that represents a file. A File object can be used to create a new file, test
for the existence of a file, and delete a file. Some of the File class methods
include:

Class File (java.io)

Constructor/Methods
File(String f) creates a File object that refers to the file f.
createNewFile()

 creates a new file using the file name specified
in the constructor if the file does not already
exist. Returns true if the file is created, false
otherwise. This method throws an IOException
exception if the file cannot be created.

delete() permanently deletes the file represented by the
File object. Returns true if the file is deleted,
false otherwise.

exists() Returns true if the file represented by the File
object exists, false otherwise.

Chapter 12
Files and Exception Handling

persistent

java.io

312 Chapter 12 Files and Exception Handling

sa
mp
le

 The application below checks for the existence of a file:

 import java.io.*;

 public class TestFiles {

 public static void main(String[] args) {
 File textFile = new File("c:\\temp\\supplies.txt");
 if (textFile.exists()) {
 System.out.println("File already exists.");
 } else {
 System.out.println("File does not exist.");
 }
 }
 }

 The name of a file is specified as a String. If a path is included in the
file name, escape sequences (\\) must be used to separate the drive, folder,
and file names.

 Review: MyFile – part 1 of 2
Create a MyFile application that prompts the user for the name of a file and then displays a message that
indicates whether the files exists or not. Note that if the user types in a full path, any single backslashes (\)
will need to be replaced with an escape sequence(\\) in order to create a new File object.

 Handling Exceptions
 An exception is an error affecting program execution. If an exception is
not taken care of, or handled, the application abruptly terminates. Although
many types of exceptions may still require program termination, an excep-
tion handler can allow an application to terminate gracefully by providing
the user with an informative error message.

 An exception handler is a block of code that performs an action when an
exception occurs. The try-catch-finally statement can be used to write
an exception handler. It takes the form:

try {
 <statements>
} catch (exception err _ code) {
 <statements>
} …additional catch clauses
} finally (exception err _ code) {
 <statements>

 The try statements are the statements that could possibly generate an
exception. The catch clause waits for the exception matching the exception
parameter and then executes its code. If more than one type of exception is
possible from the statements in the try clause, then a separate catch should
be written for each type of exception. The finally clause is optional and
executes its statements regardless of what happens in the try-catch por-
tion of the error handler.

exception

exception handler

try-catch-finally

Chapter 12 Files and Exception Handling 313

sa
mp
le

 An exception handler is required when calling certain methods.
For example, the createNewFile() method in the File class generates an
IOException exception when the specified file name cannot be used to cre-
ate a file. The createNewFile() method includes code to throw, or generate,
an exception object if it cannot complete its task.

 The modified TestFiles application checks for the existence of a file
before creating a new one:

import java.io.*;

 public class TestFiles {

 public static void main(String[] args) {
 File textFile = new File("c:\\supplies.txt");
 if (textFile.exists()) {
 System.out.println("File already exists.");
 } else {
 try {
 textFile.createNewFile();
 System.out.println("New file created.");
 } catch (IOException e) {
 System.out.println("File could not be created.");
 System.err.println("IOException: " + e.getMessage());
 }
 }
 }
}

 An exception, such as IOException, is an object of the Throwable class.
Throwable objects have a getMessage() member that returns a String
containing information about the exception. The err stream is used for
displaying error messages on the screen.

 Review: MyFile – part 2 of 2
Create a MyFile application that creates a file named zzz.txt and then displays a message indicating that the
file has been created. The application should prompt the user to either keep or delete the file. If the file is
deleted, a message should notify the user when the file has been successfully deleted.

 The File Streams
 A file must be associated with a stream in order to perform operations
such as reading the contents, writing over existing contents, and adding to
the existing contents. A stream processes characters, and in Java, streams
are implemented with classes.

 The file stream keeps track of the file position, which is the point where
reading or writing last occurred. File streams are used to perform sequential
file access, with all the reading and writing performed one character after
another or one line after another.

The Exception Stack
When an exception is thrown,
the current block of code is
first checked for an exception
handler. Next, the calling
method is checked for a
handler, and so on until the
Java interpreter is reached.

sequential file access

file position

throw

err stream

TIP The Scanner class requires
an input stream.

IOException

314 Chapter 12 Files and Exception Handling

sa
mp
le

 A stream can be thought of as a sequence of characters. For example,
a file containing a list of names and scores may look like the following
when viewed in a word processor:

Drew 84
Tia 92

However, when thinking about file operations, the file should be visual-
ized as a stream of data:

� � � � � � �� �� �� ��� � � � � ��

The carriage return character (Cr) followed by a line feed character (Lf) is
called a line terminator. A –1 is the end of file.

 The FileReader and BufferedReader
 Classes
 The FileReader and BufferedReader classes, both from the java.io pack-
age, are used together to read the contents of an existing file. The FileReader
class is used to create an input file stream. Next, the BufferedReader class
is used to read text from the stream. The following is a summary of the
FileReader and BufferedReader classes:

Class FileReader (java.io)

Constructor/Method
FileReader(File fileName)

 creates an input file stream for the File object. This
constructor throws a FileNotFoundException
exception if the file does not exist.

close() closes the input file stream. This method throws
an IOException exception if the file cannot be
closed.

Class BufferedReader (java.io)

Constructor/Methods
BufferedReader(Reader stream)

 creates a buffered-input stream from stream.
Reader is the FileReader superclass.

read() reads a single character from the input stream.
This method throws an IOException exception
if the stream cannot be read.

readLine() reads a line of text from the input stream. This
method throws an IOException exception if the
stream cannot be read.

close() closes the input file stream. This method throws
an IOException exception if the stream cannot
be closed.

 The application on the next page reads an existing file line-by-line to
show the contents of the file:

Reading Characters
The read() method returns an
int, which corresponds to a
Unicode value. In Unicode, a
space corresponds to 32, a tab
to 9, carriage return to 13, and
line feed to 10.

Data Streams
A stream applies to data input/
output in general. For example,
memory, information sent to
a printer, and data sent and
received from an Internet site
can all be streamed.

input file stream

line terminator, end of file

TIP A buffer stores a large
number of characters from
the stream so that more than
one character at a time can be
read, such as in a readLine().

FileNotFoundException

Chapter 12 Files and Exception Handling 315

sa
mp
le

 import java.util.Scanner;
 import java.io.*;

 public class ReadFile {

 public static void main(String[] args) {
 File textFile = new File("wonder.txt");
 FileReader in;
 BufferedReader readFile;
 String lineOfText;

 try {
 in = new FileReader(textFile);
 readFile = new BufferedReader(in);
 while ((lineOfText = readFile.readLine()) != null) {
 System.out.println(lineOfText);
 }
 readFile.close();
 in.close();
 } catch (FileNotFoundException e) {
 System.out.println("File does not exist or could
 not be found.");
 System.err.println("FileNotFoundException: "
 + e.getMessage());
 } catch (IOException e) {
 System.out.println("Problem reading file.");
 System.err.println("IOException: " + e.getMessage());
 }
 }

 The ReadFile application reads and displays the file contents within
a try-catch statement because both the FileReader and BufferedReader
constructors and methods throw exceptions if there is a problem reading
the file. A try can have multiple catch statements. The catch statements are
in the order that they may occur. For example, the FileNotFoundException
is handled first because the FileReader object is created first in the try
statement.

 The close() methods are used to close the FileReader and BufferedReader
streams. It is important that the streams be closed in the reverse order that
they were opened.

 The ReadFile application displays the following output when run:

 Review: Assignment
Create a Assignment application that reads and then displays the contents of a file containing instructions for
this assignment. Use Notepad or some other word processor to create the file. Be sure that the file is saved as
a Text file (TXT). The Assignment application will need to include the correct path to the location of the file.
If a path is not specified, the file must be placed in the same folder as the Assignment executable file.

316 Chapter 12 Files and Exception Handling

sa
mp
le

 Processing Numeric Data
 A file on disk is a set of characters, even when the file contains numeric
data, such as test scores. An application written to process numeric data
from a file must convert the data after it is read. The Double and Integer
classes include class methods for converting a string to a primitive data
type:

Class Double (java.lang.Double)

Method
parseDouble(String text)

 returns the double value in the String text.

Class Integer (java.lang.Integer)

Method
parseInteger(String text)

 returns the int value in the String text.

 The AvgScore application reads tests scores that are stored one score
per line in a text file and then reports the average:

 import java.io.*;

 public class AvgScore {

 public static void main(String[] args) {
 File dataFile = new File("scores.dat");
 FileReader in;
 BufferedReader readFile;
 String score;
 double avgScore;
 double totalScores = 0;
 int numScores = 0;

 try {
 in = new FileReader(dataFile);
 readFile = new BufferedReader(in);
 while ((score = readFile.readLine()) != null) {
 numScores += 1;
 System.out.println(score);
 totalScores += Double.parseDouble(score);
 }
 avgScore = totalScores / numScores;
 System.out.println("Average = " + avgScore);
 readFile.close();
 in.close();
 } catch (FileNotFoundException e) {
 System.out.println("File does not exist or could
 not be found.");
 System.err.println("FileNotFoundException: "
 + e.getMessage());
 } catch (IOException e) {
 System.out.println("Problem reading file.");
 System.err.println("IOException: " + e.getMessage());
 }
 }
 }

DAT Files
Text files that contain numeric
data often have the file name
extension .dat, also referred
to as a DAT file.

Chapter 12 Files and Exception Handling 317

sa
mp
le

The application produces the output:

 Review: Stats – part 1 of 2
Create a Stats application that reads names and scores from a data file named test1.dat, supplied with this
text. The file contains a student name on one line followed by the student’s test score on the next line. The
Stats application should read and display each name and score. After all the scores have been displayed, the
lowest score, highest score, and average score should be displayed.

 The FileWriter and BufferedWriter
 Classes
 The FileWriter and BufferedWriter classes, both from the java.io pack-
age, are used together to write data to a file. The FileWriter class is used
to create an output file stream. A BufferedWriter class object is then used to
send text to the stream. Some of the FileWriter and BufferedWriter classes
methods include:

Class FileWriter (java.io)

Constructor/Method
FileWriter(File fileName, boolean append)

 creates an input file stream for the File object. If
append is true, then data written to the file will
be added after existing data, otherwise the file
will be overwritten. This constructor throws
an IOException exception if the file cannot be
created or opened.

close() closes the output file stream. This method
throws an IOException exception if the file
cannot be closed.

 When a FileWriter object is created, the file referenced by the File object
is automatically overwritten unless the FileWriter object is set to append. In
either case, if the file does not yet exist, a new one will be created. Caution
must be used so that a file is not inadvertently overwritten.

output file stream

318 Chapter 12 Files and Exception Handling

sa
mp
le

Class BufferedWriter (java.io)

Constructor/Methods
BufferedWriter(Writer stream)

 creates a buffered-writer stream from stream.
Writer is the FileWriter superclass.

newLine() writes a newline character to the output stream.
This method throws an IOException exception
if the stream cannot be written to.

write(String str)
 writes the string str to the output stream. This

method throws an IOException exception if the
stream cannot be written to.

write(char c) writes the character c to the output stream. This
method throws an IOException exception if the
stream cannot be written to.

close() closes the output file stream. This method
throws an IOException exception if the stream
cannot be closed.

 The CreateDataFile application prompts the user for names and scores
and then writes them to a new file:

 import java.io.*;
 import java.util.Scanner;

 public class CreateDataFile {

 public static void main(String[] args) {
 File dataFile = new File("StuScores.dat");
 FileWriter out;
 BufferedWriter writeFile;
 Scanner input = new Scanner(System.in);
 double score;
 String name;

 try {
 out = new FileWriter(dataFile);
 writeFile = new BufferedWriter(out);
 for (int i = 0; i < 5; i++) {
 System.out.print(:Enter student name: ");
 name = input.next();
 System.out.print("Enter test score: ");
 score = input.nextDouble();
 writeFile.write(name);
 writeFile.newLine();
 writeFile.write(String.valueOf(score));
 writeFile.newLine();
 }
 writeFile.close();
 out.close();
 System.out.println("Data written to file.");
 } catch (IOException e) {
 System.out.println("Problem writing to file.");
 System.err.println("IOException: " + e.getMessage());
 }
 }
 }

 Note that the application will overwrite the StuScores.dat file each time
that it is run. The CreateDataFile application displays output similar to
that shown on the next page:

Chapter 12 Files and Exception Handling 319

sa
mp
le

 Review: Stats – part 2 of 2
Modify the Stats application to allow the user to enter the names and grades of the students. The user should
be prompted for the name of the file to create and for the number of student grades that will be entered.
After the data has been entered and the written to a file, the file should be read and the lowest, highest, and
average score displayed.

 Object Serialization
 A file can also be used to store object data. Writing objects to a file is
called object serialization. In this process, class information about an object
is written out to a stream. If a class uses another class, this information is
also written out, and so on. When information about an object is retrieved
from a file, it is called object deserialization.

 Object serialization and deserialization is performed with object out-
put and input streams. The FileOutputStream and ObjectOutputStream
classes, both from the java.io package, are used together to write objects
to a file. The FileInputStream and ObjectInputStream classes, also from
the java.io package, are used together to read objects from a file. Some of
the methods from the classes for writing and reading objects include:

Class FileOutputStream (java.io)

Constructor/Method
FileOutputStream(File fileName, boolean append)

 creates an output file stream for the File object.
If append is true, then data written to the file
will be added after existing data, otherwise
the file will be overwritten or created if the
file does not exist. This method throws a
FileNotFoundException exception if the file
cannot be opened or created.

close() closes the output file stream. This method
throws an IOException exception if the file
cannot be closed.

320 Chapter 12 Files and Exception Handling

sa
mp
le

 In addition to methods for writing objects to the output stream, the
ObjectOutputStream class also contains method for writing primitive
data types.

Class ObjectOutputStream (java.io)

Constructor/Method
ObjectOutputStream(FileOutputStream stream)

 creates an object stream from stream.
writeObject(Object obj)

 writes object information to the output stream.
This method throws an IOException exception
if there are problems with the class or if the
stream cannot be written to.

writeInt(int num)

 writes an int to the output stream. This method
throws an IOException exception if the stream
cannot be written to.

writeDouble(double num)

 writes a double to the output stream. This
method throws an IOException exception if
the stream cannot be written to.

close() closes the output stream. This method throws
an IOException exception if the stream cannot
be closed.

 Objects are read from a FileInputStream stream object:

Class FileInputStream (java.io)

Constructor/Method
FileInputStream(File fileName)

 creates an input file stream for the File object.
This method throws a FileNotFoundException
exception if the file cannot be read.

close() closes the input file stream. This method throws
an IOException exception if the file cannot be
closed.

 The ObjectInputStream class contains method for reading both objects
and primitive data types.

Class ObjectInputStream (java.io)

Constructor/Method
ObjectInputStream(FileInputStream stream)

 creates an object stream from stream. This con-
structor throws an IOException exception if the
stream cannot be read.

readObject() reads an object from the input stream. This
method throws exceptions IOException and
ClassNotFoundException if the the stream can-
not be read or a class cannot be deserialized.

readInt() reads an int from the input stream. This method
throws an IOException exception if the file can-
not be read.

Chapter 12 Files and Exception Handling 321

sa
mp
le

readDouble() reads a double from the input stream. This
method throws an IOException exception if the
file cannot be read.

close() closes the input stream. This method throws
an IOException exception if the file cannot be
closed.

 The ObjectWriteRead application demonstrates writing and reading
objects from a file:

 import java.io.*;

 public class ObjectWriteRead {

 public static void main(String[] args) {
 File stuFile = new File("students.dat");

 try {
 /* write objects */
 FileOutputStream out = new FileOutputStream(stuFile);
 ObjectOutputStream writeStu = new ObjectOutputStream(out);
 writeStu.writeObject(new Student("Drew", 87));
 writeStu.writeObject(new Student("Tia", 92));
 writeStu.close();
 System.out.println("Data written to file.");

 /* read objects */
 FileInputStream in = new FileInputStream(stuFile);
 ObjectInputStream readStu = new ObjectInputStream(in);
 Student stu1 = (Student)readStu.readObject();
 Student stu2 = (Student)readStu.readObject();
 readStu.close();

 System.out.println(stu1);
 System.out.println (stu2);

 } catch (FileNotFoundException e) {
 System.out.println("File could not be found.");
 System.err.println("FileNotFoundException: "
 + e.getMessage());
 } catch (IOException e) {
 System.out.println("Problem with input/output.");
 System.err.println("IOException: " + e.getMessage());
 } catch (ClassNotFoundException e) {
 System.out.println("Class could not be used to
 cast object.");
 System.err.println("ClassNotFoundException: "
 + e.getMessage());
 }
 }
}

 The ObjectWriteRead application writes two Student objects to the
students.dat file. The Student class is shown on the next page:

322 Chapter 12 Files and Exception Handling

sa
mp
le

import java.io.*;

public class Student implements Serializable {
 private String stuName;
 private double stuGrade;

 /**
 * constructor
 * pre: none
 * post: A Student object has been created.
 * Student data has been initialized with parameters.
 */
 public Student(String name, double grade) {
 stuName = name;
 stuGrade = grade;
 }

 /**
 * Creates a string representing the student object
 * pre: none
 * post: A string representing the student object
 * has been returned.
 */
 public String toString() {
 String stuString;

 stuString = stuName + " grade: " + stuGrade;
 return(stuString);
 }
}

 If the objects of a class are to be written to a file, the class must imple-
ment the Serializable interface. This interface is part of the java.io package
and contains no methods to implement. It simply allows information about
an instance of the class to be written out.

 Note that reading an object from a file requires casting. The readObject()
method reads Object data from the file. It is up to the programmer to cast
the object to the appropriate type.

 The ObjectWriteRead application catches several exceptions. First, a
FileNotFoundException occurs when there is a problem creating a File
object. IOException is a more general exception and occurs for various
input/output problems. If IOException were first in the catch clauses,
the other more specific exceptions would not be caught and the user
would not be able to read their descriptive error messages. Finally, the
ClassNotFoundException occurs if the class for an object written to the
file cannot be found.

 Review: Roster
Create a Roster application that prompts the user for the name of the file to store student names and then
prompts the user for the number of students in a class. The application should then prompt the user for
the first and last name of each student and write this data to a file. After all the data is written to a file, the
application display the class roster with one name after the other in a list. Create a StuName class that has
member variables firstName and lastName and a toString() member method.

Serializable interface

Chapter 12 Files and Exception Handling 323

sa
mp
le

 Chapter 12 Case Study
 In this case study, a LocalBank2 application will be created. LocalBank2
is the Chapter 10 case study modified to read and write account informa-
tion from a file.

LocalBank2 Specification

 The LocalBank2 application has the same specification as LocalBank.
It allows accounts to be opened, modified, and closed. Each account
has a unique account number, which is required for all transactions.
Transactions include deposits and withdrawals. An account balance can
also be checked.

 The LocalBank2 interface will not change from LocalBank. It will pro-
vide a menu of options:

��������������������������������
��������������������������������
����
���������������
�������������������
��������������
����������������������
������������������������������������
��������������������������������
��������������������������������
����
���������������
����������������������
������������������
����
�����������
�����������������������
��������������������������������
��������������������������������
����
�������������

 The LocalBank2 algorithm will not change from the LocalBank applica-
tion algorithm.

324 Chapter 12 Files and Exception Handling

sa
mp
le

LocalBank2 Code Design

 The LocalBank2 application will be modeled with a Bank object, Account
objects, and Customer objects, just as LocalBank. However, the Bank object
will store and retrieve accounts from a file. To do this, the Bank construc-
tor should create a file stream for the File object specified when the Bank
object is instantiated. The constructor should also load accounts from the
file stream into an ArrayList. An updateAccounts() method will need to
be added to the Bank class so that any account changes can be written
back to the file.

 Because account objects will be read from and written to a file, the
Account class and any classes it uses must implement the Serializable
interface. This includes the Customer class.

 The LocalBank2 client code must be modified to create a File object that
stores the account information. Before ending the LocalBank application,
the updateAccounts() method is called to write account information back
to the file. The pseudocode for the LocalBank2 client code follows:

File accountsFile = new File("LBAccounts.dat");
Bank easySave = new Bank(accountsFile);

do {
 prompt user for transaction type

 if (add account) {
 easySave.addAccount();
 } else if (not Quit) {
 prompt user for account ID;
 if (deposit) {
 prompt user for deposit amount
 easySave.transaction(make deposit, acctID, amt);
 } else if (withdrawal) {
 prompt user for withdrawal amount
 easySave.transaction(make withdrawal, acctID, amt);
 } else if (check balance) {
 easySave.checkBalance(acctID);
 } else if (remove account) {
 easySave.deleteAccount(acctID);
 }
 }
} while (not quit);
easySave.updateAccounts(accountsFile);

LocalBank Implementation

 The LocaBank2 application is shown below:

/**
 * LocalBank2 client code.
 */

 import java.io.*;
 import java.util.Scanner;

 public class LocalBank {

 public static void main(String[] args) {
 File accountsFile = new File("LBAccounts.dat");
 Bank easySave = new Bank(accountsFile);

Chapter 12 Files and Exception Handling 325

sa
mp
le

 Scanner input = new Scanner(System.in);
 String action, acctID;
 Double amt;

 /* display menu of choices */
 do {
 System.out.println("\nDeposit\\Withdrawal\\Check balance");
 System.out.println("Add an account\\Remove an account");
 System.out.println("Quit\n");
 System.out.print("Enter choice: ");
 action = input.next();

 if (action.equalsIgnoreCase("A")) {
 easySave.addAccount();
 } else if (!action.equalsIgnoreCase("Q")) {
 System.out.print("Enter account ID: ");
 acctID = input.next();
 if (action.equalsIgnoreCase("D")) {
 System.out.print("Enter deposit amount: ");
 amt = input.nextDouble();
 easySave.transaction(1, acctID, amt);
 } else if (action.equalsIgnoreCase("W")) {
 System.out.print("Enter withdrawal amount: ");
 amt = input.nextDouble();
 easySave.transaction(2, acctID, amt);
 } else if (action.equalsIgnoreCase("C")) {
 easySave.checkBalance(acctID);
 } else if (action.equalsIgnoreCase("R")) {
 easySave.deleteAccount(acctID);
 }
 }
 } while (!action.equalsIgnoreCase("Q"));

 easySave.updateAccounts(accountsFile); //write accounts to file
 }
}

 The Bank class is shown below. The accounts are expected to be loaded
from a file. Additionally, the number of accounts is also kept in the file.
This number is the first data item in the file. It is read first and then used
to determine how many accounts to read from the file. Throughout the
class, the number of accounts is updated when a new account is added and
when an account is deleted. When updateAccounts() is called, the number
of accounts is written to the file first, followed by the accounts:

/**
 * Bank class.
 */

import java.util.ArrayList;
import java.io.*;
import java.util.Scanner;

public class Bank {
 private ArrayList accounts;
 private int numAccts;

326 Chapter 12 Files and Exception Handling

sa
mp
le

 /**
 * constructor
 * pre: none
 * post: accounts have been loaded from acctFile.
 */
 public Bank(File acctsFile) {
 accounts = new ArrayList();
 Account acct;

 /* Create a new file for accounts if one does not exist */
 if (!acctsFile.exists()) {
 try {
 acctsFile.createNewFile();
 System.out.println("There are no existing accounts.");
 } catch (IOException e) {
 System.out.println("File could not be created.");
 System.err.println("IOException: " + e.getMessage());
 }
 numAccts = 0;
 } else { /* load existing accounts */
 try {
 FileInputStream in = new FileInputStream(acctsFile);
 ObjectInputStream readAccts = new ObjectInputStream(in);
 numAccts = (int)readAccts.readInt();
 if (numAccts == 0) {
 System.out.println("There are no existing accounts.");
 } else {
 for (int i = 0; i < numAccts; i++) {
 acct = (Account)readAccts.readObject();
 accounts.add(acct);
 }
 }
 readAccts.close();
 } catch (FileNotFoundException e) {
 System.out.println("File could not be found.");
 System.err.println("FileNotFoundException: " + e.getMessage());
 } catch (IOException e) {
 System.out.println("Problem with input/output.");
 System.err.println("IOException: " + e.getMessage());
 } catch (ClassNotFoundException e) {
 System.out.println("Class could not be used to cast object.");
 System.err.println("ClassNotFoundException: " + e.getMessage());
 }
 }
 }

 /**
 * Adds a new account to the bank accounts.
 * pre: none
 * post: An account has been added to the bank's accounts.
 */
 public void addAccount() {
 Account newAcct;
 double bal;
 String fName, lName;
 Scanner input = new Scanner(System.in);

 System.out.print("First name: ");
 fName = input.nextLine();
 System.out.print("Last name: ");
 lName = input.nextLine();
 System.out.print("Beginning balance: ");
 bal = input.nextDouble();

Chapter 12 Files and Exception Handling 327

sa
mp
le

 newAcct = new Account(bal, fName, lName); //create account object
 accounts.add(newAcct); //add account to bank accounts
 numAccts += 1; //increment number of accounts

 System.out.println("Account created. Account ID is: " + newAcct.getID());
 }

 /**
 * Deletes an existing account.
 * pre: none
 * post: An existing account has been deleted.
 */
 public void deleteAccount(String acctID) {
 int acctIndex;
 Account acctToMatch;

 acctToMatch = new Account(acctID);
 acctIndex = accounts.indexOf(acctToMatch); //retrieve location of account
 if (acctIndex > -1) {
 accounts.remove(acctIndex); //remove account
 System.out.println("Account removed.");
 numAccts -= 1; //decrement number of accounts
 } else {
 System.out.println("Account does not exist.");
 }
 }

 The Account class need only be modified to implement the Serializable
class:

/**
 * Account class.
 */

import java.io.*;
import java.text.NumberFormat;

public class Account implements Serializable {

…rest of Account class (refer to Chapter 10 case study)

 The Customer class need only be modified to implement the Serializable
class:

/**
 * Customer class.
 */

import java.io.*;

public class Customer implements Serializable {

…rest of Customer class (refer to Chapter 10 case study)

328 Chapter 12 Files and Exception Handling

sa
mp
le

 Running the LocalBank2 application displays the same output as the
LocalBank application:

LocalBank2 Testing and Debugging

 The LocalBank2 application should be tested to be sure that it works
appropriately when no file exists, when a file with no accounts exists, and
when a file with accounts exists.

 Review: LocalBank2
Modify the Bank class to keep track of accounts with low balances. A low balance is an account with less
than $20.00. The number of low balance accounts should be stored after the number of accounts, but before
the account objects in the account file. Have the number of low balance accounts displayed when a Bank
object is created and again when the updateAccounts() method is called.

Chapter 12 Files and Exception Handling 329

sa
mp
le

 Chapter Summary
 This chapter discussed files and exception handling. A file is a data
stored on a persistent medium such as a hard disk or CD. In Java, a File
object is associated with a file name. A File object can be used to create or
delete a file.

 An exception is an error affecting program execution. An exception
handler is a block of code that performs an action when an exception
occurs. This chapter introduced the try-catch-finally statement for writ-
ing exception handlers.

 A file must be associated with a stream in order to read and write to the
file. A file stream processes characters and is used to perform sequential
file access. The FileReader, BufferedReader, FileWriter, and BufferWriter
classes are used to read and write to a file.

 An application written to process numeric data from a file must convert
the file data from a strings to numerics. The Double and Integer classes
contain methods for converting numeric characters in a string to an int
or a double.

 Objects can be written to a file in a process called object serialization.
Reading objects from a file is called object deserialization. Serialization and
deserialization are performed with an object stream. The FileOutputStream,
ObjectOutputStream, FileInputStream, and ObjectInputStream classes are
used to write and read objects to a file. The ObjectOutputStream and
ObjectInputStream classes can also be used to write and read primitve
data to a file.

330 Chapter 12 Files and Exception Handling

sa
mp
le

 Vocabulary

ClassNotFoundException An exception thrown
if a stream cannot be read or a class cannot be
deserialized.

End of file A –1 in the file stream.

err stream The stream used for displaying error
messages to the user.

Exception An error affecting program execution.

Exception handler A block of code that performs
an action when an exception occurs.

File A collection of related data stored on a per-
sistent medium.

FileNotFoundException An exception thrown
when a file does not exist.

File position The point at which reading or writing
in the stream last occurred.

Handle Take care of.

Input file stream A file stream for reading a file.

IOException An exception thrown when a file
cannot be created, or when there is a general input/
output problem.

Line terminator A carriage return followed by a
line feed in the file stream.

Object deserialization The process used to read
objects from a file.

Object serialization The process used to write
objects to a file.

Output file stream A file stream for writing to a
file.

Persistent Lasting.

Sequential file access Reading and writing one
character after another.

Stream The construct used for processing
characters.

Throw Generate.

 Java

BufferedReader A java.io class used for creating
a buffered file stream for reading a file.

BufferedWriter A java.io class used for creating a
buffered file stream for writing to a file.

Double A java.lang class for converting numeric
text in a string to a double.

File The java.io class used for creating an object
that refers to a file.

FileInputStream A java.io class used for creating
an object input stream.

FileOutputStream A java.io class used for creating
an object output stream.

FileReader The java.io class used for creating a file
stream for reading a file.

FileWriter The java.io class used for creating a file
stream for writing to a file.

Integer A java.lang class for converting numeric
text in a string to an int.

try-catch-finally Statement used to write an excep-
tion handler.

ObjectInputStream A java.io class used for creating
an object for reading objects from a file.

ObjectOutputStream A java.io class used for creat-
ing an object for writing objects to a file.

Chapter 12 Files and Exception Handling 331

sa
mp
le

 Critical Thinking

1. Can data in memory be called a file? Explain.

2. Write the import statement required to access
the File Class in an application.

3. Identify the error in the following statement:
 File textFile = new File("c:\inventory.txt");

4. a) Which statement is used to write an excep-
tion handler?

 b) Write an exception handler to handle an
IOException if a specified file name cannot
be used to create a file. The exception han-
dler should display appropriate messages to
the user.

5. a) What is the name of the stream for display-
ing error messages.

 b) Where are these messages displayed?

6. a) What does the file stream keep track of?
 b) What characters together make up a line

terminator?

7. What two classes are used together to write data
to a file?

8. Write a statement to convert account balances
that have been read from a text file to a double
value and add them to totalBalance.

9. Explain the difference between object serializa-
tion and object deserialization.

10. What interface must be implemented if objects
of a class are to be written to a file?

11. Describe two situations where an IOException
exception could be thrown, and write an exam-
ple exception handler for each situation to out-
put an appropriate message if the exception
occurs.

True/False

12. Determine if each of the following are true or
false. If false, explain why.

 a) An exception always results in program
termination.

 b) Sequential file access reads and writes data
one character after another or one line after
another.

 c) Z-1 is the end of file.
 d) A file on disk is a set of numbers ranging

from 0 to 9.
 e) Numeric data in a file must be converted to

a primitive data type before it can be pro-
cessed numerically.

 f) A FileNotFoundException exception is
thrown if a file cannot be closed.

 g) The output file stream is a file stream for
writing to the screen.

 h) Reading an object from a file requires
casting.

332 Chapter 12 Files and Exception Handling

sa
mp
le

 Exercises

Exercise 1 ———————————————————— WordCount
Create a WordCount application that displays the number of words and the average word length in a
text file named source.txt. Consider a word to be any sequence of letters terminated by nonletters. For
example, forty-nine is two words.

Exercise 2 ————————————————————— WordStats
a) Create a WordStats application that lists all the unique words in a file and how many

times they occurred. WordStats should ignore capitalization. The application should
provide a listing similar to:

WORD OCCURENCES
the 57
and 12
zoo 3

b) Modify the WordStats application to list the words in alphabetical order. This can be
done by either using the sorting algorithm presented in Chapter 10, Exercise 11 or by
keeping the words in order as they are read.

Exercise 3 ——————————————————— TestProcessor
Test results for a multiple choice test can be stored in a text file as follows:

Line 1: The correct answers, one character per answer
Line 2: Name of the first student (length <= 30 chars)
Line 3: Answers for the student in line 2
The remaining lines: student names and answers on separate lines

 For example:

BADED
Smithgall
BADDD
DeSalvo
CAEED
Darji
BADED

Create a TestProcessor application that processes the test results file for any number of students. The
application should provide statistics similar to:

Smithgall 80%
DeSalvo 60%
Darji 100%

Chapter 12 Files and Exception Handling 333

sa
mp
le

Exercise 4 —————————————————————— MadLib
A Mad-Lib story is a story where nouns and verbs in a paragraph are randomly replaced with other
nouns and verbs, usually with humorous results. Create a MadLib application that displays a Mad-Lib
story. The application will require three files:

• story.txt which contains a story with # signs as noun placeholders, and % signs as
verb placeholders. For example:

 Bugsy Kludge is a # with our company.
 His job is to % all of the #s.

• verbs.txt which contains verbs, one per line. For example:

 run
 display
 eat

• nouns.txt which contains nouns, one per line. For example:

 banana
 soprano
 elephant
 vegetable

Application output should display the story with apporpriate replacements made. A possible output
would produce a MadLib similar to:

Bugsy Kludge is a vegetable with our company.
His job is to display all of the elephants.

Exercise 5 ———————————————————— MergeFiles
The idea of merging two or more files is an important one in programming. One approach is to merge
the ordered data of two files into a third file, keeping the data in order.

Create a MergeFiles application that merges the integers ordered from low to high in two files into a
third file, keeping the order from low to high. For example, two files of integers could contain:

File 1: 12 23 34 45 56 67 69 123 133
File 2: 4 5 10 20 35 44 100 130 150 160 180

The application should not use an array to temporarily store the numbers, but should merge the two
files by taking one element at a time from each. After MergeFiles has been run, the third file should
contain:

4 5 10 12 20 23 34 35 44 45 56 67 69 100 123 130 133 150 160 180

Exercise 6 ö ——————————————————— MergeLarge
The algorithm used implemented in Exercise 5 is sometimes used as part of a sorting algorithm with
data that is too large to be stored in memory at once. For example, to sort a large file large.dat that is
twice as large as will fit in memory, half can be read into an array, the array sorted, and then written
to a file numbers1.dat. Next, the second half of large.dat can be read into the array, sorted, and then
written to numbers2.dat. Finally, the two files can be merged in order back into large.dat. Create a
MergeLarge application that implements this algorithm. Test the application with a file that contains
30 integers sorted from low to high.

334 Chapter 12 Files and Exception Handling

sa
mp
le

Exercise 7 ————————————————————HTMLViewer
The early success of the Web is largely due to the simplicity of HTML (HyperText Markup Language),
for designing a Web page. HTML documents are text documents containing content and tags that
describe the format of the content. An HTML document could look similar to:

JUNE BUGS<p>June bugs RAM in megabytes of fleshy fruit,
downsize fine fat
figs
chip away at melon bits.
They monitor windows for open screens,
seeking
felicity in electricity.
Built-in memory warns of websites
hiding spiders
with sly designs.
Scrolling the scene of leaves and trees,
they network the
neighborhood in flashy green jackets,
each bug a browser, scanner, looter-

not even knowing the word "computer."<p>by Avis Harley<p><hr>

Tags are enclosed in angle brackets, < >. The tag
 means to start a new line. The tag <p> means to
start a new paragraph (a blank line). The tag <hr> means to draw a horizontal rule. When these tags
are interpreted, the HTML document above is displayed as:

JUNE BUGS

June bugs RAM in megabytes of fleshy fruit,
downsize fine fat figs
chip away at melon bits.
They monitor windows for open screens,
seeking felicity in electricity.
Built-in memory warns of websites
hiding spiders with sly designs.
Scrolling the scene of leaves and trees,
they network the neighborhood in flashy green jackets,
each bug a browser, scanner, looter-
not even knowing the word "computer."

by Avis Harley

--

a) HTML documents are interpreted by browser software. Create an HTMLViewer appli-
cation that interprets an HTML file to display the Web content as intended, similar to
the way a browser decides how to display an HTML document.

b) Modify the HTMLViewer application to allow the user to specify the display line width.
For example, a width of 35 should display the HTML document as:

JUNE BUGS

June bugs RAM in megabytes of
fleshy fruit,
downsize fine fat figs
chip away at melon bits.
They monitor windows for open
screens,
seeking felicity in electricity.
Built-in memory warns of websites
hiding spiders with sly designs.
Scrolling the scene of leaves and
trees,
they network the neighborhood in
flashy green jackets,
each bug a browser, scanner,
looter-
not even knowing the word
"computer."

by Avis Harley

 ...

Chapter 12 Files and Exception Handling 335

sa
mp
le

Exercise 8 ö ———————————————————— CarRecall
Modify the CarRecall application created in Chapter 6, Exercise 4 to load the defective car model
numbers from a file.

Exercise 9 ö ——————————————————— WordGuess
Modify the WordGuess case study from Chapter 6 to use a word from a file as the secret word. The file
should contain a list of words, with one word per line. The WordGuess application should determine
which word to use, by generating a random number that corresponds to one of the words in the file.

Exercise 10 —————————————————— FindAndReplace
Create a FindAndReplace application that prompts the user for a file name, a search word or phrase,
and a replacement word or phrase. After entering the replacement word or phrase, FindAndReplace
finds all occurrences of the search word or phrase in a file and replaces them with the specified replace-
ment word or phrase.

Exercise 11 —————————————————— ApplicationDoc
Create an ApplicationDoc application that prompts the user for the file name of a Java source code file
(the file name extension should be java) and then copies all the documentation comments (/** */) to
a separate file.

Exercise 12 ö ————————————————————MySavings
Modify the MySavings application from Chapter 8, Exercise 1 to store and load the PiggyBank object
from a file.

Exercise 13 ö —————————————————————— Adder
Modify the Adder application from Chapter 8, Exercise 8 to keep track of player scores in a file. The
application should prompt the player for his or her name and then create a file based on the player
name. For example, if the player’s name is Jo, then a file named JoScores.txt should be created. The
application should write the player’s score to their file at the end of the game and then display the
player’s previous scores.

Exercise 14 ö ———————————————————CountVowels
Modify the CountVowels application created in Chapter 6, Exercise 20 to count the number of vowels
in a text file. The application should prompt the user for the file name.

336 Chapter 12 Files and Exception Handling

sa
mp
le

Exercise 15 ö —————————————————————— Coder
Modify the Coder application created in Chapter 10, Exercise 10 to encode the text in one file and write
it to a new file.

Exercise 16 ö —————————————————— CourseGrades
Modify the CourseGrades application created in Chapter 10, Exercise 12 to write the GradeBook object
to a file.

Exercise 17 ö ——————————————————————— Life
Modify the Life application created in Chapter 10, Exercise 14 to retrieve the initial life grid from a
file.

Exercise 18 ö ———————————————————— Inventory
Modify the Inventory application created in Chapter 10, Exercise 16 to write the inventory items to a
file.

Chapter 13 Recursion and Advanced Algorithms 337

sa
mp
le

Algorithms for searching and sorting data will be covered in this
chapter. Recursion will be used in the implementation of some of these
algorithms.

 Selection Sort
 Sorting is the process of putting items in a designated order, either from
low to high or high to low. The selection sort algorithm starts by finding
the lowest item in a list and swapping it with the first. Next, the lowest
item among items 2 through the last is found and swapped with item 2,
and then the lowest item among items 3 through the last is swapped with
item 3. This process is continued until the last item is reached, at which
point all the items are sorted.

 The selection sort algorithm compares an element to the items in the
array after the element. This algorithm can be implemented with nested
for loops. The outer loop controls which element to compare and the inner
for loop iterates through the array after the element (the subarray). The
selection sort pseudocode for sorting an array of items from low to high
appears like:

for (arrayIndex = 0 to numItems-1)
 for (subarrayIndex = arrayIndex to numItems-1)
 if (items[subarrayIndex] < items[arrayIndex]) {
 swap items[arrayIndex] and items[arrayIndex]
 }
 }
}

 The Sorts class on the next page implements a selectionSort() method:

Chapter 13
Recursion and Advanced Algorithms

338 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

public class Sorts {

 /**
 * Sorts an array of data from low to high
 * pre: none
 * post: items has been sorted from low to high
 */
 public static void selectionSort(int[] items) {

 for (int index=0; index<items.length; index++) {
 for (int subIndex=index; subIndex<items.length; subIndex++) {
 if (items[subIndex] < items[index]) {
 int temp = items[index];
 items[index] = items[subIndex];
 items[subIndex] = temp;
 }
 }
 }
 }
}

 The TestSorts application generates an array of integers and then calls
selectionSort() to sort the array elements:

 import java.util.Scanner;
 import java.util.Random;

 public class TestSorts {

 public static void displayArray(int[] array) {
 for (int i = 0; i < array.length; i++) {
 System.out.print(array[i] + " ");
 }
 System.out.println("\n");
 }

 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 int numItems;
 int[] test;
 Random rand = new Random();

 System.out.print("Enter number of elements: ");
 numItems = input.nextInt();

 /* populate array with random integers */
 test = new int[numItems];
 for (int i = 0; i < test.length; i++) {
 test[i] = rand.nextInt(100);
 }
 System.out.println("Unsorted:");
 displayArray(test);

 Sorts.selectionSort(test);

 System.out.println("Sorted:");
 displayArray(test);
 }
}

Chapter 13 Recursion and Advanced Algorithms 339

sa
mp
le

 The TestSorts application produces output similar to:

 Sorting Objects
 Relational operators, such as > and <, cannot be used to compare objects.
Objects use methods of their class to determine if one object is greater
than, less than, or equal to another. The equals() method in a class is used
to determine equality. For determining order, the compareTo() method is
used.

 Objects that are to be sorted must have a class that implements the
Comparable interface. The String, Double, and Integer clases implement
the Comparable interface. The Circle class in Chapter 9 also implements
the Comparable interface.

 An interface cannot be used to instantiate a class. However, an interface
can be used as a data type. An interface data type can reference any class
that implements it. This polymorphic behavior makes it possible to imple-
ment a generic sort that works with any list of objects that implement the
Comparable interface.

 The Sorts class has been modified to include an overloaded SelectionSort()
method, which has a Comparable array parameter:

/**
 * Sorts an array of objects from low to high
 * pre: none
 * post: Objects have been sorted from low to high
 */
public static void selectionSort(Comparable[] items) {

 for (int index = 0; index < items.length; index++) {
 for (int subIndex=index; subIndex<items.length; subIndex++) {
 if (items[subIndex].compareTo(items[index]) < 0) {
 Comparable temp = items[index];
 items[index] = items[subIndex];
 items[subIndex] = temp;
 }
 }
 }
}

 The TestSorts application, on the next page, has been modified to sort
an array of Circle objects:

polymorphism

Comparable interface

equals(), compareTo()

340 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

 import java.util.Scanner;
 import java.util.Random;

 public class TestSorts {

 public static void displayArray(Circle[] array) {
 for (int i = 0; i < array.length; i++) {
 System.out.println(array[i] + " ");
 }
 System.out.println("\n");
 }

 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 int numObjects;
 Circle[] test;
 Random rand = new Random();

 System.out.print("Enter number of objects: ");
 numObjects = input.nextInt();
 input.close();

 /* populate array with Circle objects of varying radii */
 test = new Circle[numObjects];
 for (int i = 0; i < test.length; i++) {
 test[i] = new Circle(rand.nextInt(10));
 }
 System.out.println("Unsorted:");
 displayArray(test);

 Sorts.selectionSort(test);

 System.out.println("Sorted:");
 displayArray(test);
 }
}

 The TestSorts application produces output similar to:

Chapter 13 Recursion and Advanced Algorithms 341

sa
mp
le

 Review: ArrayListSort
Create an ArrayListSort application that implements a selection sort on an ArrayList object. Test the sort with
an ArrayList containing Double objects.

 Insertion Sort
 More efficient than the selection sort algorithm is the insertion sort
algorithm. An insertion sort starts by sorting the first two items in a list.
This sort is performed by shifting the first item into the second spot if
the second item belongs in the first spot. Next, the third item is properly
inserted within the first three items by again shifting items into their
appropriate position to make room for the moved item. This process is
repeated for the remaining elements.

 The insertion sort is illustrated below with an array containing four
elements. Step 1 shows the original list, which contains items 40, 10, 30,
and 20. Step 2 shows that 40 is shifted to make room for the second item,
10. Next, 30 compared to the value in the previous position (40), 40 is
shifted into position 3, 30 is then compared to the value in the previous
position (10), and then 30 is placed at position 2. This process repeats for
the remaining items.

 Based on the algorithm, the insertion sort pseudocode for an array of
integers is:

for (index = 1 To array.length - 1) {
 temp = array[index]
 previousIndex = index - 1
 while (array[previousIndex] > temp && previousIndex > 0) {
 shift array[previousIndex] up one element
 previousIndex = previousIndex - 1
 }
 if (array[previousIndex] > temp) {
 swap the two elements
 } else {
 insert element at appropriate location
 }
}

342 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

 The Sorts class has been modified to include an insertionSort()
method:

/**
 * Sorts an array of integer from low to high
 * pre: none
 * post: Integers have been sorted from low to high
 */
public static void insertionSort(int[] items) {
 int temp, previousIndex;

 for (int index = 1; index < items.length; index++) {
 temp = items[index];
 previousIndex = index - 1;
 while ((items[previousIndex] > temp) && (previousIndex > 0)) {
 items[previousIndex + 1] = items[previousIndex];
 previousIndex -= 1; //decrease index to compare current
 } //item with next previous item
 if (items[previousIndex] > temp) {
 /* shift item in first element up into next element */
 items[previousIndex + 1] = items[previousIndex];
 /* place current item at index 0 (first element) */
 items[previousIndex] = temp;
 } else {
 /* place current item at index ahead of previous item */
 items[previousIndex + 1] = temp;
 }
 }
}

 The TestSorts application has been modified to use the insertionSort()
method to sort an array of integers:

 import java.util.Scanner;
 import java.util.Random;

 public class TestSorts {

 public static void displayArray(int[] array) {
 for (int i = 0; i < array.length; i++) {
 System.out.print(array[i] + " ");
 }
 System.out.println("\n");
 }

 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 int numItems;
 int[] test;
 Random rand = new Random();

 System.out.print("Enter number of elements: ");
 numItems = input.nextInt();

 /* populate array with random integers */
 test = new int[numItems];
 for (int i = 0; i < test.length; i++) {
 test[i] = rand.nextInt(100);
 }
 System.out.println("Unsorted:");
 displayArray(test);

 Sorts.insertionSort(test);

Chapter 13 Recursion and Advanced Algorithms 343

sa
mp
le

 System.out.println("Sorted:");
 displayArray(test);
 }
}

 The TestSorts application produces output similar to:

 Review: ObjectsInsertionSort
Create an ObjectsInsertionSort application that implements an insertion sort on an array of objects. Test the
sort on an array of String objects.

 Recursion
 A method can call itself. This process is called recursion and the calls
are referred to as recursive calls. The RecursiveDemo application contains
a method that calls itself:

public class RecursiveDemo {

 public static void showRecursion(int num) {
 System.out.println("Entering method. num = " + num);
 if (num > 1) {
 showRecursion(num - 1);
 }
 System.out.println("Leaving method. num = " + num);
 }

 public static void main(String[] args) {
 showRecursion(2);
 }
}

 The call showRecursion(2) from the main() method is the initial call. In
the showRecursion() method, a call is made to itself passing num - 1. When
showRecursion is called with num equal to 1, the if is skipped and the
remaining statement in the method is executed. At this point the stack of
calls made before num was 1 are executed in the reverse order they were
made, with each call executing the statement in the method after the
recursive call (after the if).

 The RecursiveDemo produces the output shown on the next page:

recursive call

344 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

 Recursion is a programming technique that can be used whenever a
problem can be solved by solving one or more smaller versions of the same
problem and combining the results. The recursive calls solve the smaller
problems.

 One problem that has a recursive solution is raising a number to a power.
For example, 24 can be thought of as:

 24 = 2 * 23 which can be thought of as
 23 = 2 * 22 which can be thought of as
 22 = 2 * 21 which can be thought of as
 21 = 2 * 20 which can be thought of as
 1

In each case, the power problem is reduced to a smaller power problem.
A more general solution is:

 xn = x * xn–1

However, carefully analyzing this solution shows that there is no stopping
point. For example, 23 would be 2 * 22, which would return 2 * 21, which
returns 2 * 20, which returns 2 * 2–1, and so on. This solution would cause
infinite recursion. To prevent this, a recursive solution must have a base
case that requires no recursion. For this solution, when the power is 0, 1
should be returned.

 The intPower() method in the Power application implements a recursive
solution for calculating an int raised to an int power to return an int (as
opposed to Math.pow(), which returns a double):

public class Power {

 /**
 * Returns num to the power power.
 * pre: num and power are not 0.
 * post: num to the power power has been returned.
 */
 public static int intPower(int num, int power) {
 int result;
 if (power == 0) {
 result = 1;
 } else {
 result = num * intPower(num, power-1);
 }
 return(result);
 }

 public static void main(String[] args) {
 int x = intPower(2, 5);
 System.out.println(x);
 }
}

The Power application produces the output:

infinite recursion
base case

Chapter 13 Recursion and Advanced Algorithms 345

sa
mp
le

 Review: RecursiveFactorial
Create a RecursiveFactorial application that returns the factorial of an integer. The factorial of a number is
the product of all positive integers from 1 to the number. For example, 5! = 5*4*3*2*1. Computing 5! could be
thought of as 5*4! or more generally, n*(n–1)!. By definition, 0! is equal to 1. Compare your recursive solution
to the nonrecursive solution created in the Factorial Review completed in Chapter 6.

 Mergesort
 The selection sort is simple, but inefficient, especially for large arrays.
Imagine using the selection sort process by hand for a pile of 1000 index
cards. Searching through the cards for the lowest item would take a long
time, but more importantly, after each search the remaining cards must
be searched again! Each card ends up being examined about 500 times.

 The mergesort algorithm takes a “divide-and-conquer” approach to sort-
ing. Imagine the 1000 cards being divided into two piles of 500. Each pile
could then be sorted (a simpler problem) and the two sorted piles could
be combined (merged) into a single ordered pile. To further simplify the
sorting, each subpile could be divided and sorted, and so on. This algo-
rithm is best implemented recursively.

 The mergesort pseudocode is:

if there are items remaining {
 mergesort the left half of the items
 mergesort the right half of the items
 merge the two halves into a completely sorted list
}

 The mergesort subtasks are recursive calls to mergeSort() and a call to
merge(). The mergesort() method will need arguments indicating which
portion of the array is to be sorted. Similarly, merge() implements the
merging of two halves and needs arguments indicating which portion of
the array is to be merged.

 The mergesort() method is defined as:

/**
 * Sorts items[start..end]
 * pre: start > 0, end > 0
 * post: items[start..end] is sorted low to high
 */
public static void mergesort(int[] items, int start, int end) {
 if (start < end) {
 int mid = (start + end) / 2;
 mergesort(items, start, mid);
 mergesort(items, mid + 1, end);
 merge(items, start, mid, end);
 }
}

 The stopping condition for the recursive function is determined by
comparing start and end. The middle of the array is calculated using
integer division, which automatically truncates the decimal portion of the
quotient.

TIP Measuring an algorithm’s
efficiency is discussed later in
this chapter.

346 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

 The merge() method uses a temporary array to store items moved from
two sorted portions of the items array. The elements are moved so that the
temporary array is sorted. To illustrate the merge() algorithm, suppose at
entry to merge() the array looks like:

The array is sorted from start to mid and from mid+1 to end. The merge()
method starts by examining the first element of each sorted portion, start
and mid+1, as indicated by pos1 and pos2:

Since items[pos1] < items[pos2], the element items[pos1] is moved to the
new array, and pos1 is incremented:

���� �������

In this case, items[pos1] > items[pos2], so the the element items[pos2] is
moved to the new array and pos2 incremented:

This process is repeated until all items have been moved. Since it is likely
that one array portion will be exhausted before the other, merge() tests for
this case and just moves items from the remaining list. Finally, merge()
copies the merged items in the temporary array to the original array.

 The Sorts class has been modified to include a mergesort() method.
Note that the merge() method is private because it is a helper method:

Chapter 13 Recursion and Advanced Algorithms 347

sa
mp
le

/**
 * Merges two sorted portion of items array
 * pre: items[start..mid] is sorted. items[mid+1..end] sorted.
 * start <= mid <= end
 * post: items[start..end] is sorted.
 */
private static void merge(int[] items, int start,
 int mid, int end) {
 int[] temp = new int[items.length];
 int pos1 = start;
 int pos2 = mid + 1;
 int spot = start;

 while (!(pos1 > mid && pos2 > end)) {
 if ((pos1 > mid) ||
 ((pos2 <= end) && (items[pos2] < items[pos1]))) {
 temp[spot] = items[pos2];
 pos2 += 1;
 } else {
 temp[spot] = items[pos1];
 pos1 += 1;
 }
 spot += 1;
 }
 /* copy values from temp back to items */
 for (int i = start; i <= end; i++) {
 items[i] = temp[i];
 }

}

/**
 * Sorts items[start..end]
 * pre: start > 0, end > 0
 * post: items[start..end] is sorted low to high
 */
public static void mergesort(int[] items, int start, int end) {
 if (start < end) {
 int mid = (start + end) / 2;
 mergesort(items, start, mid);
 mergesort(items, mid + 1, end);
 merge(items, start, mid, end);
 }
}

 The if in the merge() method says that if the pos1 (left) subarray is
exhausted, or if the pos2 (right) subarray is not exhausted and the pos2
element is less than the pos1 element, then move an item from the pos2
subarray to the temp array, otherwise move an item from the pos1 subar-
ray. This process continues until both subarrays are exhausted.

348 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

 The TestSorts application has been modified to use the mergesort()
method to sort an array of integers:

 import java.util.Scanner;
 import java.util.Random;

 public class TestSorts {

 public static void displayArray(int[] array) {
 for (int i = 0; i < array.length; i++) {
 System.out.print(array[i] + " ");
 }
 System.out.println("\n");
 }

 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 int numItems;
 int[] test;
 Random rand = new Random();

 System.out.print("Enter number of elements: ");
 numItems = input.nextInt();

 /* populate array with random integers */
 test = new int[numItems];
 for (int i = 0; i < test.length; i++) {
 test[i] = rand.nextInt(100);
 }
 System.out.println("Unsorted:");
 displayArray(test);

 Sorts.mergesort(test, 0, test.length - 1);

 System.out.println("Sorted:");
 displayArray(test);
 }
}

 The TestSorts application produces output similar to:

 Review: ObjectsMergesort
Create an ObjectsMergesort application that implements a mergesort on an array of objects. Test the sort on
an array of String objects.

Chapter 13 Recursion and Advanced Algorithms 349

sa
mp
le

 Binary Search
 Arrays are sorted in order to perform a more efficient search. A binary
search is used with a sorted list of items to quickly find the location of
a value. Like the mergesort algorithm, the binary search algorithm also
takes a divide-and-conquer approach. It works by examining the middle
item of an array sorted from low to high, and determining if this is the
item sought, or if the item sought is above or below this middle item. If
the item sought is below the middle item, then a binary search is applied
to the lower half of the array; if above the middle item, a binary search is
applied to the upper half of the array, and so on.

 For example, a binary search for the value 5 in a list of items 1, 2, 3, 4, 5,
6, and 7 could be visualized as:

 The binary search algorithm is very efficient. For example, an array of
100 elements checks no more than 8 elements in a search, and in an array
of one million items no more than 20 items are checked. If a list of the
entire world’s population were to be searched using this algorithm, less
than 40 checks are made to find any one person.

 The binary search algorithm can be implemented recursively. The
pseudocode for a recursive solution appears like:

if (goal == items[mid]) {
 return(mid)
} else if (goal < items[mid]) {
 return(binarySearch(lowerhalf)
} else {
 return(binarySearch(upperhalf)
}

 The Searches class on the next page implements a binary search:

TIP The linear search algorithm
was introduced in Chapter 10.
A linear search, also called a
sequential search, is much less
efficient than a binary search.
However, a linear search does
not require a sorted list.

350 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

public class Searches{

 /**
 * Searches items array for goal
 * pre: items is sorted from low to high
 * post: Position of goal has been returned,
 * or -1 has been returned if goal not found.
 */
 public static int binarySearch(int[] items, int start,
 int end, int goal) {

 if (start > end) {
 return(-1);
 } else {
 int mid = (start + end) / 2;
 if (goal == items[mid]) {
 return(mid);
 } else if (goal < items[mid]) {
 return(binarySearch(items, start, mid-1, goal));
 } else {
 return(binarySearch(items, mid+1, end, goal));
 }
 }
 }
}

 The TestSorts application has been modified to sort an array of integers
and then prompt the user for a number to search for:

 import java.util.Scanner;
 import java.util.Random;

 public class TestSorts {

 public static void displayArray(int[] array) {
 for (int i = 0; i < array.length; i++) {
 System.out.print(array[i] + " ");
 }
 System.out.println("\n");
 }

 public static void sortIntArray() {
 Scanner input = new Scanner(System.in);
 int numItems, searchNum, location;
 int[] test;
 Random rand = new Random();

 System.out.print("Enter number of elements: ");
 numItems = input.nextInt();

 /* populate and sort array */
 test = new int[numItems];
 for (int i = 0; i < test.length; i++) {
 test[i] = rand.nextInt(100);
 }
 Sorts.mergesort(test, 0, test.length - 1);
 System.out.println("Sorted:");
 displayArray(test);

Chapter 13 Recursion and Advanced Algorithms 351

sa
mp
le

 /* search for number in sorted array */
 System.out.print("Enter a number to search for: ");
 searchNum = input.nextInt();
 while (searchNum != -1){
 location = Searches.binarySearch(test, 0,
 test.length-1, searchNum);
 System.out.println("Number at position: " + location);
 System.out.print("Enter a number to search for: ");
 searchNum = input.nextInt();
 }
 }

 public static void main(String[] args) {
 sortIntArray();
 }
}

 The modified TestSorts application displays output similar to:

 Review: SearchLocations
Create a SearchLocations application that displays the positions examined during a binary search. The
application output should look similar to:

352 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

 Review: ObjectsBinarySearch
Create an ObjectsBinarySearch application that implements a binary search on an array of objects. Test the
search on an array of String objects.

 Review: BinarySearch2
Create a BinarySearch2 application that implements a nonrecursive binary search. The binary search algo-
rithm can be implemented without recursion by doing the following:

• Enclose the method body with a do-while loop

• Replace the recursive calls with appropriate assignments to the values of start or
end.

 Depth-First Searching
 Many programs generate and search through a series of possibilities,
such as:

• different paths through a maze

• different possible ways of making change

• different possible plays in a game

• different schedules for a student in a school

• different pixels reachable from an initial pixel

All these tasks can be solved through the recursive technique called depth-
first searching. The depth-first searching algorithm works by searching from
a given starting position, processing that position, and then (recursively)
searching from all adjacent positions.

 Depth-first searching can be illustrated in a DetectColonies application
that allows a researcher to determine the number and size of distinct
colonies of bacteria on a microscope slide. The slide has been converted to
digital format, where a * represents a cell that is part of a colony, and a -
represents the background color of the slide. A slide file has the format:

 First line: length of slide
 Second line: width of slide
 Remaining lines: slide data.

 For example, a slide file could look similar to:

7
9

---*--*--
--***-**-
***---*--

---****--
---*--*--

Chapter 13 Recursion and Advanced Algorithms 353

sa
mp
le

 Cells are considered to be part of the same colony if they touch hori-
zontally or vertically. The example slide contains three colonies. Counting
rows and columns starting from zero, one colony has a cell at (1, 3) and
contains 9 elements. Another colony has four elements with a cell at (1,
6), and the third has eight elements with a cell at (4, 3). Note that the first
and third colonies are considered separate because they touch across a
diagonal but not horizontally or vertically.

 The DetectColonies application analyzes the slide and displays the fol-
lowing output:

 A depth-first search is appropriate here because once a colony cell is
detected, all the possible directions for connected cells must be searched.
If a connected cell is a colony cell, then all the possible directions for that
cell must be searched, and so on. The basic idea is that, given a starting
cell at (row, col) in a colony, the total number of connected cells in that
colony can be found as:

 1 for the starting cell

 + count of connected cells starting with (row+1, col)

 + count of connected cells starting with (row–1, col)

 + count of connected cells starting with (row, col+1)

 + count of connected cells starting with (row, col–1)

The latter four lines are recursive calls. To find the starting cells, each cell
in the slide is tested with a nested for loop.

 When implementing a depth-first search algorithm, code must be
included to avoid infinite recursion. For example, a starting cell of (1, 3)
generates a recursive call with cell (2, 3), which generates a call with (1, 3)
again, which generates a call with (2, 3), and so on. For this application, a
cell will be changed to the background color once it has been examined.
This makes counting colonies a destructive algorithm.

 The DetectColonies application can be modeled with a Slide class. The
constructor will load the slide data into variable member slideData, which
is a two-dimensional array appropriate for modeling the slide. Method
members displaySlide() and displayColonies() will display the slide and
determine the colonies. Member constants COLONY and NON _ COLONY will
represent * and -.

 The displayColonies() method checks each cell of the entire slide, and
whenever a colony cell is encountered, displayColonies() determines the
colony size and displays data about the colony. To determine the size,
displayColonies() calls a private member method collectCells(), which
changes a cell to the background once it is counted.

 The Slide class is implemented on the next page:

354 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

import java.io.*;

public class Slide {
 private char COLONY = '*', NON _ COLONY = '-';
 private char[][] slideData;

 /**
 * constructor
 * pre: Slide file contains valid slide data in the format:
 * first line: lenght of slide
 * second line: width of slide
 * remaining lines: slide data
 * post: Slide data has been loaded from slide file.
 */
 public Slide(String s) {

 try {
 File slideFile = new File(s);
 FileReader in = new FileReader(slideFile);
 BufferedReader readSlide = new BufferedReader(in);
 int length = Integer.parseInt(readSlide.readLine());
 int width = Integer.parseInt(readSlide.readLine());
 slideData = new char[length][width];
 for (int row = 0; row < length; row++) {
 for (int col = 0; col < width; col++) {
 slideData[row][col] = (char)readSlide.read();
 }
 readSlide.readLine(); //read past end-of-line
 }
 readSlide.close();
 in.close();
 } catch (FileNotFoundException e) {
 System.out.println("File does not exist or could not
 be found.");
 System.err.println("FileNotFoundException: "
 + e.getMessage());
 } catch (IOException e) {
 System.out.println("Problem reading file.");
 System.err.println("IOException: " + e.getMessage());
 }
 }

 /**
 * Determines a colony size
 * pre: none
 * post: All colony cells adjoining and including
 * cell (Row, Col) have been changed to NON _ COLONY,
 * and count of these cells is returned.
 */
 private int collectCells(int row, int col) {

 if ((row < 0) || (row >= slideData.length) ||
 (col < 0) || (col >= slideData[0].length)
 || (slideData[row][col] != COLONY)) {
 return(0);
 } else {
 slideData[row][col] = NON _ COLONY;
 return(1+
 collectCells(row+1, col)+
 collectCells(row-1, col)+
 collectCells(row, col+1)+
 collectCells(row, col-1));
 }
 }

Chapter 13 Recursion and Advanced Algorithms 355

sa
mp
le

 /**
 * Analyzes a slide for colonies and displays colony data
 * pre: none
 * post: Colony data has been displayed.
 */
 public void displayColonies() {
 char[][] temp;
 int count;

 for (int row = 0; row < slideData.length - 1; row++) {
 for (int col = 0; col < slideData[0].length; col++) {
 if (slideData[row][col] == COLONY) {
 count = collectCells(row, col);
 System.out.println("Colony at (" + row + "," + col
 + ") with size " + count);
 }
 }
 }
 }

 /**
 * Displays a slide.
 * pre: none
 * post: Slide data has been displayed.
 */
 public void displaySlide() {

 for (int row = 0; row < slideData.length; row++) {
 for (int col = 0; col < slideData[0].length; col++) {
 System.out.print(slideData[row][col]);
 }
 System.out.println();
 }
 }
}

 The depth-first search algorithm is implemented in the helper method
collectCells(). The first if statement checks to see that the current posi-
tion is on the slide and contains a colony cell. This eliminates the need to
check before each recursive call. As good programming style, it is better
to check data at the start of the recursive function rather than before each
call.

 The DetectColonies application is relatively simple:

public class DetectColonies {

 public static void main(String[] args) {

 Slide culture = new Slide("slide.dat");
 culture.displaySlide();
 culture.displayColonies();
 }
}

356 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

 The DetectColonies application displays output similar to:

 Review: DetectColonies – part 1 of 3
How must the DetectColonies application be modified if the definition of a colony allowed the colony to be
connected across diagonals? What colonies would be reported by DetectColonies for the sample slide?

 Review: DetectColonies – part 2 of 3
Modify the DetectColonies application to display the slide colonies from largest to smallest.

 Review: DetectColonies – part 3 of 3
What slide will be output by the second culture.displaySlide() statement if DetectColonies contained the
statements below? Explain.

public static void main(String[] args) {

 Slide culture = new Slide("slide.dat");
 culture.displaySlide();
 culture.displayColonies();
 culture.displaySlide();
}

 Algorithm Analysis
 Algorithm analysis includes measuring how efficiently an algorithm
performs its task. A more efficient algorithm has a shorter running time.
Running time is related to the number of statements executed to implement
an algorithm. It can be estimated by calculating statement executions.
Running time estimations are usually based on a worst-case set of data.
For example, an array that is already sorted or nearly sorted may require
fewer statement executions than an array of data that is in reverse sorted
order. Since the original state of the data is usually unknown, the worst
case should be assumed.

 As a first analysis, consider the selection sort algorithm, which uses
nested for loops to sort items. If the sort is thought of in simplified terms,
with each for statement containing a single statement, for an array of n
items, n * n statements are executed. The selection sort is therefore said
to have a running time of n2.

TIP Theoretical running times
can be writ ten in Big Oh
notation, which is a theoretical
measure of an algorithm’s
efficiency.

Chapter 13 Recursion and Advanced Algorithms 357

sa
mp
le

 The insertion sort algorithm seems more efficient because a while loop
is used within a for loop. This could allow for a faster sort in some cases,
but in the worst case, the insertion sort algorithm executes n statements *
n–1 statements for a running time of about n2.

 The mergesort is a more complicated algorithm, but a divide and conquer
approach can be much more efficient than a linear approach. Because this
algorithm divides the array and each subarray in half until the base case
of one element is reached, there are Log2n calls to mergesort() and then n
calls to merge. The mergesort algorithm is said to have running time of
n Log2n.

 The binary search also implements a divide and conquer approach.
However, the elements are already ordered. The algorithm is simply
performing a search. Because this algorithm divides the array and each
subarray in half until the base case of one element is reached, there are
Log2n calls to binarySearch(). Therefore, the algorithm is said to have a
running time of Log2n.

 Chapter Summary
 Sorting is the process of putting items in a designated order, either from
low to high or high to low. The selection sort, insertion sort, and mergesort
algorithms were presented in this chapter. The merge sort algorithm takes
a divide-and-conquer approach to sorting. It is implemented recursively
and is much faster than the selection and insertion sorts.

 Objects cannot be compared with relational operators. Therefore, lists of
objects are sorted by implementing an algorithm that uses the Comparable
interface. Interfaces can be used as data types, which allows a generic
implementation of an algorithm that sorts objects. Objects that are to be
sorted must have a class that implements the Comparable interface.

 A method can call itself in a process called recursion. Recursion is a
programming technique that can be used whenever a problem can be
solved by solving one or more smaller versions of the same problem and
combining the results. To prevent infinite recursion, a base case that
requires no recursion must be part of the recursive solution.

 A binary search algorithm can be used to find an element in a sorted
array. Binary search is implemented recursively and is very efficient. The
depth-first searching algorithm can be used to search through a series
of possibilities. When implementing depth-first searching, code must be
included to avoid infinite recursion.

 Algorithm analysis includes how efficiently an algorithm performs its
task. A more efficient algorithm has a shorter running time.

358 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

 Vocabulary

Binary search A searching algorithm that recursively
checks the middle of a sorted list for the item being
searched for.

Base case The part of a recursive solution that
requires no recursion.

Depth-first search A searching algorithm that
recursively checks a starting position, processes that
position, and then searches adjacent positions.

Infinite recursion A recursive solution which has
no base case.

Mergesort A sorting algorithm that recursively
divides a list into halves, sorting those halves,
and then merging the lists so that the items are in
order.

Insertion sort A sorting algorithm that repeat-
edly inserts an item into the appropriate position
of a subarray until the subarray has no items left
to insert.

Recursion The process in which a method calls
itself. A programming technique that can be used
whenever a problem can be solved by solving one
or more smaller versions of the same problem and
combining the results.

Recursive call A call to a method from within the
same method.

Selection sort A sorting algorithm that repeatedly
selects the lowest item in a subarray of an array and
moves it to the position just before the subarray until
the subarray has no items left to search.

 Java

Comparable A java.lang interface that is required
to be implemented by a class if their objects are to
be sorted. Comparable can also be used as a data
type.

Chapter 13 Recursion and Advanced Algorithms 359

sa
mp
le

 Critical Thinking

1. For the list 4, 6, 2, 10, 9, show how the numbers
are ordered after each loop iteration of the
algorithms:

 a) selection sort
 b) insertion sort

2. What must be done to a list of items in order to
use a binary search to find a specific item?

3. Use the recursive method below to answer the
questions:

 public void ct(int n) {
 System.out.println("Starting " + n);
 if (n > 0) {
 ct(n/3);
 System.out.println("Middle " + n);
 }
 }

 a) What output is generated when ct(13) is
called?

 b) What output is generated when ct(3) is
called?

 c) What output is generated when ct(0) is
called?

4. Use the recursive method below to answer the
questions:

 public void ct(int n) {
 System.out.println(n);
 if (n > 0) {
 if (n % 2 == 1) {
 ct(n/3);
 } else {
 ct(n/2);
 }
 }
 }

 a) What output is generated when ct (13) is
called?

 b) What output is generated when ct(14) is
called?

 c) What output is generated when ct(15) is
called?

5. Use the recursive method below to answer the
questions:

 public void ct(int n) {
 if (n > 0) {
 ct(n/10);
 System.out.println(n % 10);
 }
 }

 a) What output is generated when ct (13) is
called?

 b) What output is generated when ct(124) is
called?

 c) What output is generated when ct(21785) is
called?

 d) What in general does this method do?

6. Use the recursive method below to answer the
questions:

 public void whatzItDo() {
 Scanner input = new Scanner(System.in);
 String letter = input.next();
 if (!letter.equals(".")) {
 whatzItDo();
 System.out.print(letter);
 }
 }

 a) What output is generated when the user
enters T, E, S, T, . ?

 b) What in general does this method do?

7. A sorting algorithm is said to be “stable” if two
items in the original array that have the same
“key value” (the value to be sorted on) maintain
their relative position in the sorted version. For
example, assume an array with the following
data:
 Ann Jon Mel Tom Kim
 20 19 18 19 22

 When the array is sorted by age, a stable sort
would guarantee that Jon would stay ahead of
Tom in the sorted array, as in:
 Kim Ann Jon Tom Mel
 22 20 19 19 18

 and not:
 Kim Ann Tom Jon Mel
 22 20 19 19 18

 Which of the sorts presented in this chapter
(selection, mergesort) is stable? For each which
is not stable, give an example of data to illustrate
this.

360 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

True/False

8. Determine if each of the following are true or
false. If false, explain why.

 a) Sorting always puts items in order from low
to high.

 b) One measure of the efficiency of a sorting
algorithm is the speed at which it can com-
plete a sort.

 c) The selection sort algorithm is more efficient
than the insertion sort.

 d) A method can call itself.
 e) The merge sort algorithm is more efficient

than the selection sort algorithm for large
arrays.

 f) A binary search is used to sort a list of
items.

 g) A binary search starts by examining the last
item in an array.

 h) The more statements required to complete a
task, the more efficient the algorithm.

 i) An interface can be used as a data type.
 j) A recursive solution that has no base case

results in infinite recursion.
 k) An insertion sort recursively divides a list

into halves, sorting those halves, and then
merging the lists in order.

Chapter 13 Recursion and Advanced Algorithms 361

sa
mp
le

 Exercises

Exercise 1 —————————————————————— Friends
Create a Friends database application that maintains a file of Friend objects that contain names, tele-
phone numbers, and email addresses. The Friends application should load Friend records from a file
and then allow the user to add new friends, delete friends, display a list of all friends by either first
name or last name, and search for a friend. The application should display a menu similar to:

Exercise 2 ——————————————————— TernarySearch
Modify the Searches class to include a ternarySearch() method. A ternary search, similar to a binary
search, divides an array into three pieces rather than two. A ternary search finds the points that divide
the array into three roughly equal pieces, and then uses these points to determine where the goal
should be searched for.

Exercise 3 ———————————————— InterpolationSearch
Modify the Searches class to include an interpolationSearch() method. An interpolation search is a
variation of the binary search. The idea is to look in a likely spot, not necessarily the middle of the
array. For example, if the value sought is 967 in an array that holds items ranging from 3 to 1022, it
would be intelligent to look nearly at the end of the array. Mathematically, because 967 is about 95% of
the way from 3 to 1022, the position to start searching at is a position 95% of the way down the array.
For example, if the array holds 500 elements, the first position to examined is 475 (95% of the way from
1 to 500). The search then proceeds to a portion of the array (either 1..474 or 476..500) depending upon
whether 967 is greater or less than the 475th element.

Exercise 4 ————————————————————— NumDigits
Create a NumDigits application that includes a recursive method numDigits() that returns the number
of digits in its integer parameter. Numbers –9 through 9 have one digit; numbers –99 to –10 and 10 to
99 have two digits, and so on. (Hint: the number of digits of a number n is one more than the number
of digits in n/10.)

362 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

Exercise 5 —————————————————— DetectColonies2
Create a DetectColonies2 application that is based on DetectColonies presented in this chapter. This
application gives improved colony results because slides are now digitized to report color. For example,
a slide file could look similar to:

6
8
00550000
00050000
00005500
01200000
01111000
00000030

The digits 1 through 9 represent various colors. The digit 0 represents black (background color).

The DetectColonies2 application should display a listing of the size, location, and color value of each
colony on the slide. A colony is defined as a connected (horizontally or vertically) sequence of cells
holding the same color value. For the above slide, the application should report:

 Color Size Location
 5 3 1, 3
 5 2 3, 5
 1 5 4, 2
 2 1 4, 3
 3 1 6, 7

Exercise 6 ————————————————————— Knapsack
A well-known problem in computer science is called the knapsack problem. A variation is as follows:

 Given a collection of weights of (possibly) different integral values, is it possible to
place some of the weights in a knapsack so as to fill it to some exact total weight?

 For example, if the weights are 3, 5, 6, and 9, then it is possible for such totals as 3, 8,
11, 14, 17, etc. to be made exactly, but 2, 4, 22, etc. are not possible.

Create a Knapsack application that solves this problem. The fillKnapsack() method handles the first
weight, and then recursively handles the remaining weights with an isPossible() helper method.
fillKnapsack() and isPossible() have the following declarations:

/* Returns true if there exists a subset of the items in
 * weights[start..weights.length] that sum to goal.
 * pre: items in weights[start..weights.length] > 0
 * post: true has been returned if there exists a subset
 * of items in weights[start..weights.length] that sum to goal.
 */
fillKnapsack(int[] weights, int goal, int start)

Chapter 13 Recursion and Advanced Algorithms 363

sa
mp
le

/* Returns true if there exists a subset of the items in
 * weights that sum to goal.
 * pre: items in weights > 0
 * post: true has been returned if there exists a subset
 * of items in weight that sum to goal.
 */
isPossible(int[] weights, int goal)

The fillKnapsack algorithm determines if the goal can be found in all of the items not including the
first, or if it can be found by including the first in the subset. The pseudocode is:

if (simple case) {
 handle simple cases
} else {
 if (fillKnapsack(weights, goal, start+1)) {
 return(true);
 } else if (fillKnapsack(weights, goal-weights[start], start+1)) {
 return(true);
 } else {
 return(false);
 }
}

Note that the simple cases will need to be determined and handled properly.

Exercise 7 ——————————————————————— Maze
A maze can be defined in a file using X characters to represent walls, space characters to represent paths,
and a $ character to represent the goal. For example, a file containing a maze could look similar to:

8
10
XXXXXXXXXX
X X
XX XXX XXX
XX X X
XXXX X X X
X X XXX
X XXXX $X
XXXXXXXXXX

The starting point is assumed to be location (1, 1) and the maze is assumed to have a border. Create a
Maze application that displays the sequence of positions in a path from the start to the goal, or indicate
if no path is available. For example, for the maze above, the application should report:

Path: (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,6) (3,6) (4,6) (5,6) (6,6) (6,7) (6,8)

364 Chapter 13 Recursion and Advanced Algorithms

sa
mp
le

Exercise 8 ————————————————————— MyBoggle
The game of Boggle is played on a square board with random letters. The object is to find words
formed on the board by contiguous sequences of letters. Letters are considered to be touching if they
are horizontally, vertically, or diagonally adjacent. For example, the board:

 Q W E R T
 A S D F G
 Z X C V B
 Y U A O P
 G H J K L

contains the words WAS, WAXY, JOB, and others, but not the word BOX. Words can contain duplicate
letters, but a single letter on the board may not appear twice in a single word, for example POP is not
contained on this board.

Create a MyBoggle application that displays a board of random letters, and allows the user to enter
words found on the board. The application should report if the word entered by the user is indeed on
the board.

Hint: Search the board for the first letter of the word entered, and then recursively search around the
found letter for the remaining letters of the word.

Chapter 14 Data Structures 365

sa
mp
le

Data structures are discussed in this chapter. Stacks, queues, and
linked lists are covered.

 The Stack Data Structure
 A data structure organizes data. The stack data structure can contain
many data items just as an array can. Additionally, it has a set of operations
that can be performed on the data.

 A stack structure has a top. For example, the stack shown below holds
three integers. The value 11 is the top item in the stack:

 There are two standard operations that can be performed on the items
in a stack, and only the top item of a stack can be processed. The pop
operation removes the top item. For example, when a pop is executed on
the stack above, the top value, 11, is removed:

The next item, 34, is now at the top of the stack, and is the only item that
can be accessed.

 Another operation is the push operation, which adds an item to the top
of the stack. For example, if the value 27 is pushed onto the stack, the stack
becomes:

Chapter 14
Data Structures

top

pop

push

366 Chapter 14 Data Structures

sa
mp
le

 Other stack operations include the isEmpty query, which returns true
when there are no items in the stack, and false otherwise. The size opera-
tion determines the number of items in a stack. A stack can be emptied
with the makeEmpty operation.

 Since the stack is designed so that the last item pushed on is the first
item to be popped, it is sometimes referred to as a last-in-first-out (LIFO)
data structure. There are a number of applications of stacks, particularly in
writing compiler software. For example, each of the following is generally
performed using a stack:

• Matching of braces, { and }. In Java, a close brace, }, always goes
with the last open brace, {.

• Matching else with if: An else always goes with the last if.

• Matching of parentheses in an expression: A closing parenthesis
always goes with the last open parenthesis.

• Recursion: After completion of a recursive call, control returns
to the last call that was executed. In fact, recursion is sometimes
replaced with a stack.

 The Stack Class
 A data structure has a specific set of operations that can be performed
on the data it stores. Therefore, a class is often used to implement the data
structure.

 The StackDemo application uses a stack:

public class StackDemo {

 public static void main(String[] args) {
 Stack s = new Stack(10);

 System.out.println("Adding 10 and 13 to stack.");
 s.push(10);
 s.push(13);
 System.out.println("Top of stack: " + s.top());
 System.out.println("Items in stack: " + s.size());
 System.out.println("Removing top item.");
 s.pop();
 System.out.println("Top of stack: " + s.top());
 System.out.println("Items in stack: " + s.size());
 System.out.println("Adding a new item.");
 s.push(40);
 System.out.println("Top of stack: " + s.top());
 System.out.println("Items in stack: " + s.size());
 }
}

LIFO

isEmpty
size

makeEmpty

Chapter 14 Data Structures 367

sa
mp
le

 The StackDemo produces the output:

 The Stack class below is a very simple stack implementation that stores
data in an array:

public class Stack {
 private int[] data;
 private int top;

 /**
 * constructor
 * pre: none
 * post: An empty stack that can hold up to maxItems
 * has been created.
 */
 public Stack(int maxItems) {
 data = new int[maxItems];
 top = -1; //no items in the array
 }

 /**
 * Returns the top item without removing it from the stack.
 * pre: Stack contains at least one item.
 * post: The top item has been returned while leaving it
 * on the stack.
 */
 public int top() {
 return(data[top]);
 }

 /**
 * Removes the top item from the stack and returns it.
 * pre: Stack contains at least one item.
 * post: The top item of the stack has been removed
 * and returned.
 */
 public int pop() {
 top -= 1;
 return(data[top + 1]);
 }

368 Chapter 14 Data Structures

sa
mp
le

 /**
 * Adds an item to the top of the stack if there is room.
 * pre: none
 * post: A new item has been added to the top of the stack.
 */
 public void push(int num) {
 if (top < data.length - 1) {
 top += 1;
 data[top] = num;
 }
 }

 /**
 * Determines if there are items on the stack.
 * pre: none
 * post: true returned if there are items on the stack,
 * false returned otherwise.
 */
 public boolean isEmpty() {
 if (top == -1) {
 return(true);
 } else {
 return(false);
 }
 }

 /**
 * Returns the number of items in the stack.
 * pre: none
 * post: The number of items in the stack is returned.
 */
 public int size() {
 if (isEmpty()) {
 return(0);
 } else {
 return(top + 1);
 }
 }

 /**
 * Empties the stack.
 * pre: none
 * post: There are no items in the stack.
 */
 public void makeEmpty() {
 top = -1;
 }
}

 The Stack class implements a stack for int values. A generic implemen-
tation would use objects. This implementation is completed in the Stack2
review.

 Review: Stack2
Create a Stack2 class that implements a stack data structure for data type Object. Since Object is the super-
class of other objects, a Stack2 object can store objects from any class. Write appropriate client code to test
the Stack2 class.

Chapter 14 Data Structures 369

sa
mp
le

 Review: Stack3
The Stack class is limited because the stack size cannot change from its initial size. Create a Stack3 class
that implements a stack data structure using an ArrayList. Write appropriate client code to test the Stack3
class.

 The Queue Data Structure
 A queue is a data structure similar to a stack in that it holds a number
of data items. However, one end of the queue is referred to as the rear and
the other end the front. For example, the queue shown below holds three
items:

All insertions are made at the rear and all removals are made at the
front.

 There are two standard operations that can be performed on a queue.
The dequeue operation removes an item from the front. For example, when
a dequeue is executed on the queue above, the value at the front, 12, is
removed from the queue:

 The enqueue operation adds an item to the rear of the queue. For example,
if the value 27 is enqueued, the queue becomes:

 Other queue operations include the front operation, which returns the
front item without removing it from the queue. The isEmpty query returns
true when there are no items in the queue, and false otherwise. The size
operation determines the number of items in a queue. A queue can be
emptied with the makeEmpty operation.

 A queue is analogous to a line at a ticket counter where “first come,
first served,” and is sometimes referred to as a first in first out (FIFO) data
structure. There are a number of real-world situations that can be repre-
sented as a queue structure. For example:

rear, front

dequeue

enqueue

FIFO

370 Chapter 14 Data Structures

sa
mp
le

• Lines at a toll booth or bank teller

• Waiting lists for tickets on planes

• Pages of data queued up for a printer

• Performing breadth-first-searching where all items near the start-
ing position are examined before looking at those farther away.

 The Queue Class
 The QueueDemo application uses a queue:

 public class QueueDemo {

 public static void main(String[] args) {
 Queue q = new Queue(10);

 System.out.println("Adding 10 and 13 to queue.");
 q.enqueue(10);
 q.enqueue(13);
 System.out.println("Front of queue: " + q.front());
 System.out.println("Items in queue: " + q.size());
 System.out.println("Dequeueing front item.");
 q.dequeue();
 System.out.println("Front of queue: " + q.front());
 System.out.println("Items in queue: " + q.size());
 System.out.println("Queueing a new item.");
 q.enqueue(40);
 System.out.println("Front of queue: " + q.front());
 System.out.println("Items in queue: " + q.size());
 }
}

 The QueueDemo produces the output:

 The Queue class below is a very simple queue implementation that
stores data in an array:

public class Queue {
 private int[] data;
 private int front, rear, maxSize;

Chapter 14 Data Structures 371

sa
mp
le

 /**
 * constructor
 * pre: none
 * post: An empty queue that can hold up to maxItems
 * has been created.
 */
 public Queue(int maxItems) {
 data = new int[maxItems];
 front = -1; //no items in the array
 rear = -1;
 maxSize = maxItems;
 }

 /**
 * Returns the front item without removing it from
 * the queue.
 * pre: Queue contains at least one item.
 * post: The front item has been returned while leaving
 * it in the queue.
 */
 public int front() {
 return(data[front]);
 }

 /**
 * Removes the front item from the queue and returns it.
 * pre: Queue contains at least one item.
 * post: The front item of the queue has been removed
 * and returned.
 */
 public int dequeue() {
 front = (front + 1) % maxSize;
 return(data[front - 1]);
 }

 /**
 * Adds an item to the queue if there is room.
 * pre: none
 * post: A new item has been added to the queue.
 */
 public void enqueue(int num) {
 if (isEmpty()) { //first item queued
 rear = 0;
 front = 0;
 data[rear] = num;
 } else {
 rear = (rear + 1) % maxSize;
 data[rear] = num;
 }
 }

372 Chapter 14 Data Structures

sa
mp
le

 /**
 * Determines if there are items on the queue.
 * pre: none
 * post: true returned if there are items on the queue,
 * false returned otherwise.
 */
 public boolean isEmpty() {
 if (front == -1 && rear == -1) {
 return(true);
 } else {
 return(false);
 }
 }

 /**
 * Returns the number of items in the queue.
 * pre: none
 * post: The number of items in the queue is returned.
 */
 public int size() {
 if (isEmpty()) {
 return(0);
 } else {
 return(rear - front + 1);
 }
 }

 /**
 * Empties the queue.
 * pre: none
 * post: There are no items in the queue.
 */
 public void makeEmpty() {
 front = -1;
 rear = -1;
 }
}

 Because the queue is limited to the number of items it can store, the
front and rear pointers must cycle through the spots available in the
array. Therefore, the front and rear values are calculated using modular
arithmetic (%).

 The Queue class implements a queue for int values. A generic imple-
mentation would use objects. This implementation is left as a review.

 Review: Queue2
Create a Queue2 class that implements a queue data structure for data type Object. Since Object is the super-
class of other objects, a Queue2 object can store objects from any class. Write appropriate client code to test
the Object2 class.

 Review: Queue3
The Queue class is limited because the queue size cannot change from its initial size. Create a Queue3 class
that implements a queue data structure using an ArrayList. Write appropriate client code to test the class.

Chapter 14 Data Structures 373

sa
mp
le

 The Linked List Data Structure
 Another way of storing lists of data in memory requires each item to
store information that indicates where the next item is stored. The addi-
tional information is a reference, or pointer, to a data location. This kind
of list data structure is called a linked list, and can be illustrated like:

 The first item in a linked list is called the head. The last item points to
null and is called the tail. Each element of a linked list is called a node.
There are three nodes in the list above.

 Because each item in a linked list must contain data and a pointer, an
item is best modeled with a class. Therefore, a linked list is a list of objects.
The objects in a linked list are organized because they point to each other.
There is no need to place them in a structure, such as an array, for orga-
nization. This mean that linked links are not restricted by the size of an
array.

 There are two standard operations that can be performed on a linked
list. The addAtFront operation adds a new node to the front of the list. When
a new node is added to the front of a linked list, it is simply designated
the head and its pointer is set to the current head. For example, if Raj was
the head, adding a new item means that the new object is now the head
and its pointer points to the Raj object:

 The remove operation removes an item from the linked list. Removing
an item from a linked list means that the pointer of the previous item is
changed to point to the item after the one to be removed. For example,
removing Raj from the list below means that the object is no longer refer-
enced by another object in the list:

 Linked lists are useful for maintaining dynamic lists because the num-
ber of items in a linked list can shrink and grow as needed.

TIP Objects stored in memory
are stored in dynamic memory.
Dynamic memory is allocated
from an area called the heap,
which is used during program
execution.

head, tail
node

addAtFront

remove

374 Chapter 14 Data Structures

sa
mp
le

 The LinkedList Class
 The LinkedListDemo application uses a linked link:

public class LinkedListDemo {

 public static void main(String[] args) {
 LinkedList list = new LinkedList();

 list.addAtFront("Sachar");
 list.addAtFront("Osborne");
 list.addAtFront("Suess");
 System.out.println(list);

 list.remove("Suess");
 list.remove("Sachar");
 list.remove("Osborne");
 System.out.println(list);
 }
}

 The LinkedListDemo produces the output:

 The LinkedList class below contains a nested class. A nested class is a
class within a class. A nested class is a member of the class it is within. As
a class member, it has access to all the other members of the class, includ-
ing private member variables and methods. A class that contains a class
member is called an outer class. The Node class is a nested class because
its members should only be accessed by a LinkedList object:

public class LinkedList {
 private Node head;

 /**
 * constructor
 * pre: none
 * post: A linked list with a null item has been created.
 */
 public LinkedList() {
 head = null;
 }

 /**
 * Adds a node to the linked list.
 * pre: none
 * post: The linked list has a new node at the head.
 */
 public void addAtFront(String str) {
 Node newNode = new Node(str);
 newNode.setNext(head);
 head = newNode;
 }

outer class

nested class

Chapter 14 Data Structures 375

sa
mp
le

 /**
 * Deletes a node in the linked list.
 * pre: none
 * post: The first node containing str has been deleted.
 */
 public void remove(String str) {
 Node current = head;
 Node previous = head;

 if (current.getData().equals(str)) {
 head = current.getNext();
 } else {
 while (current.getNext() != null) {
 previous = current;
 current = current.getNext();
 if (current.getData().equals(str)) {
 previous.setNext(current.getNext());
 }
 }
 }
 }

 /**
 * Creates a string that lists the nodes of the
 * linked list.
 * pre: none
 * post: The linked list has been written to a string.
 */
 public String toString() {
 Node current = head;
 String listString;

 if (current != null) {
 listString = current.getData() + "\n";
 while (current.getNext() != null) {
 current = current.getNext();
 listString += current.getData() + "\n";
 }
 return(listString);
 } else {
 return("There are no items in list.");
 }
 }

 private class Node {
 private String data;
 private Node next;

 /**
 * constructor
 * pre: none
 * post: A node has been created.
 */
 public Node(String newData) {
 data = newData;
 next = null;
 }

TIP Nested classes were also
introduced in Chapter 11.

376 Chapter 14 Data Structures

sa
mp
le

 /**
 * The node pointed to by next is returned
 * pre: none
 * post: A node has been returned.
 */
 public Node getNext() {
 return(next);
 }

 /**
 * The node pointed to by next is changed to newNode
 * pre: none
 * post: next points to newNode.
 */
 public void setNext(Node newNode) {
 next = newNode;
 }

 /**
 * The node pointed to by next is returned
 * pre: none
 * post: A node has been returned.
 */
 public String getData() {
 return(data);
 }
 }
}

 Review: LinkedList – part 1 of 3
Modify the LinkedList class to include a member function size() that returns the number of items in the
list.

 Review: LinkedList – part 2 of 3
Modify the LinkedList class to include a member function addAtEnd() that adds a new item to the end of
the linked list.

 Review: LinkedList – part 3 of 3
Modify the LinkedList class to include a member function makeEmpty() that removes all the items in the
list

Chapter 14 Data Structures 377

sa
mp
le

 Chapter Summary
 The stack, queue, and linked list data structures were introduced in this
chapter. Each data structure organizes data and can be used to perform a
set of operations on that data.

 The stack data structure is also called a LIFO structure because the
last item in the first item out. A stack has a top. Operations that can be
performed on a stack include pop, push, isEmpty, size, and makeEmpty.

 The queue data structure is also called a FIFO structure because the
first item in is the first item out. A queue has a front and rear. Operations
that can be performed on a queue include enqueue, dequeue, isEmpty,
size, and makeEmpty.

 The linked list data structure is a list of objects that point to each other.
The linked list does not have the size limitations of a data structure imple-
mented using an array. A linked list has a head and a tail. Each item in a
linked list is called a node. Operations that can be performed on a linked
list include addAtFront and remove.

 Vocabulary

addAtFront A linked list operation where an item
is added to the front of the list.

Dequeue A queue operation that removes the item
at the front of the queue.

Enqueue A queue operation that adds an item to
the rear of the queue.

FIFO First In First Out. A queue data structure.

Front The start of a queue.

Head The first node in a linked list.

isEmpty A stack or queue operation that returns
true when there are no items in the data structure
and false otherwise.

LIFO Last In First Out. A stack data structure.

Linked list A data structure that has a head and
tail and contains nodes that point to each other.

Nested class A class that is a member of another
class. A class within a class.

Node A linked list element. A node contains the
item and a pointer to the next node.

Outer class A class that contains a class member.

Pop A stack operation where the top item is
removed.

Push A stack operation where a new item is
added.

Queue A data structure that has a front and rear
and organizes data so that the first item in is the
first item out.

Rear The end of a queue.

Remove A linked list operation where an item is
removed from the list.

Size A stack or queue operation that returns the
number of items in the data structure.

Stack A data structure that has a top and organizes
data so that the last item in is the first item out.

Tail The last node in a linked list. The tail points
to null.

Top The last item pushed onto a stack.

378 Chapter 14 Data Structures

sa
mp
le

 Critical Thinking

1. Explain the similarities between an array and
a stack.

2. Describe how a programmer might use a stack
when writing compiler software.

3. What output is generated by the following state-
ments if s is a Stack object?

 Stack s = new Stack(10);
 s.push(5);
 s.push(8);
 int x = s.pop();
 s.push(x);
 s.push(12);
 s.push(13);
 int y = s.pop();
 System.out.println(x + " " + y);
 y = s.pop();
 x = s.top();
 System.out.println(x + " " + y);

4. Consider the “hot plate” problem: In a busy res-
taurant, fresh salad plates are brought out and
added to the existing pile of plates. This means
that, even though there may be plates that were
washed long ago, the customer is frequently
stuck with a warm plate for salad. Explain how
this is analogous to a stack.

5. What output is generated by the following state-
ments if q is a Queue object?

 Queue q = new Queue(10);
 q.enqueue(5);
 q.enqueue(8);
 int x = q.dequeue();
 q.enqueue(x);
 q.enqueue(12);
 q.enqueue(13);
 int y = q.dequeue();
 System.out.println(x + " " + y);
 y = q.dequeue();
 x = q.front();
 System.out.println(x + " " + y);

6. Explain the difference between a FIFO and a
LIFO data structure.

7. List two real-world situations that could be rep-
resented as a queue structure other than those
listed in the chapter.

True/False

8. Determine if each of the following are true or
false. If false, explain why.

 a) A stack data structure has a front and a
rear.

 b) A stack can be emptied.
 c) In a stack, top refers to the first item pushed

onto a stack.
 d) The isEmpty operation returns an int

value.
 e) A queue can hold more than one data item.
 f) In a queue, all removals are made at the

rear.
 g) The enqueue operation adds an item to the

front of the queue.
 h) The first item in a linked list is called the

head.
 i) A node refers to an item in a stack.
 j) The number of items in a stack or queue can

be determined with the length operation.
 k) In a linked list, the tail points to null.

Chapter 14 Data Structures 379

sa
mp
le

 Exercises

Exercise 1 ——————————————————————StackList
The Stack class implemented a stack using an array. A stack can also be implemented using a linked
list. Create a StackList class that implements a stack using a linked list that can store Object data. The
StackList class should implement the standard stack operations. Note that the standard linked list opera-
tions will not be implemented when the linked list is implementing a stack. What are the advantages
or disadvantages of using a linked list rather than an array?

Exercise 2 ———————————————————— ReverseList
Create a ReverseList application that uses a stack to reverse a set of integers entered by the user. The
user should be prompted to enter up to 10 numbers or to terminate the list of numbers by entering 999.
Application output should look similar to:

Exercise 3 ——————————————————— ParenChecker
To analyze an expression with parentheses, the computer must be able to determine which left paren-
thesis any given right parenthesis matches.

a) Create a ParenChecker application that prompts the user to enter an expression with
parentheses, and then displays a list of the positions of pairs of parentheses. The
application should store the positions of the left parentheses on a stack when they are
found. Application output should look similar to:

b) Modify the ParenChecker application to detect the two errors below and display
appropriate error messages:

 1. Attempt to pop an empty stack.

 2. Stack not empty at the end of the program.

380 Chapter 14 Data Structures

sa
mp
le

Exercise 4 ————————————————————— QueueList
The Queue class implemented a queue using an array. A queue can also be implemented using a linked
list. Create a QueueList class that implements a queue using a linked list that can store Object data.
The QueueList class should implement the standard queue operations. Note that the standard linked
list operations will not be implemented when the linked list is implementing a queue. What are the
advantages or disadvantages of using a linked list rather than an array?

Exercise 5 ———————————————————————— Stats
a) Create a Stats interface that declares methods sum(), min(), and max(). The member

methods should return an int value that represents the sum of the items in a list, the
minimum value in a list, and the maximum value in a list.

b) Create a LinkedList class that implements the Stats interface and stores int values.
Write client code that tests the modified class.

Exercise 6 ————————————————— DoublyLinkedList
The nodes in a doubly-linked list point to the next and previous nodes, and can be thought of as:

 The node of the doubly-linked list may be represented as:

 private class Node {
 private String data;
 private Node next;
 private Node prev;
 …rest of class

 The previous field of the head is set to null.

a) What advantages does this structure offer? What disadvantages?

b) Compare the doubly-linked list with the singly linked list implemented in this chapter.
When would you choose to use one rather than the other?

c) Create a DoublyLinkedList class. Include member methods addAtFront(), addAtEnd(),
remove(), and displayList() and displayReverseList().

Appendix A Unicode 381

sa
mp
le

Appendix A
Unicode

Every letter of an alphabet (Latin, Japanese, Cherokee, and so on) and
symbols of every culture (=, @, ½, and so on) have been given a repre-
sentation in a digital code called Unicode. Unicode uses a set of sixteen
1s and 0s to form a 16-bit binary code for each symbol. For example, the
uppercase letter V is Unicode 00000000 01010110, which can be thought
of as the base 10 number 86 (8610). Lowercase v has a separate code of
00000000 01110110, or 11810. Below is a table of some Unicode symbols and
their corresponding decimal and binary equivalents.

382 Appendix A Unicode

sa
mp
le

Index 383

Index

Symbols
! 112
!= 105
“ 63
% 83
%= 86
&& 112
* 78, 81, 83
*= 86
+ 83, 138

toString() 187
++ 135
+= 86
-- 135
. 80, 81
.class extension 62
.java extension 62
/ 83
/** */ 62, 164
/* */ 62
// 62
/= 86
< 105
<!--comment--> 46
<= 105
<a> 48
<applet> 44
<body> 37

 46, 334
<h1> 46
<h2> 46
<h3> 46
<h4> 46
<h5> 46
<h6> 46
<head> 37
<hr> 46, 334
<html> 37
 48
 46
<object> 44
 47
<p> 46, 334
<script> 38
<table> 48
<title> 37

 46
= 78, 86
== 105

comparing objects 186
> 105
>= 105
[] 239, 248
\ 63
\” 63
\\ 63, 312
\n 63
\t 63
{ } 61
|| 112
– 83
–= 86
3GL 5
4GL 5
802.11 network 8

A
abs(), Math class 113
abstract class 222
abstract data type 80
abstract keyword 222
abstract method 222
Abstract Windows Toolkit 280
accessibility 44
accessor method 182
access level, method 159
access modifier 159
acos(), Math class 130
ActionListener interface 280
action command 279
ActiveX 44
add(), ArrayList class 252
add(), JPanel class 276
addActionListener(), JButton 278
addActionListener(), JComboBox

288
addActionListener(), JTextField 285
addAtFront, linked list 373
addition 83
address 10
address bus 2

algorithm 66
design 66
stable 359

algorithm analysis 356
algortihm analysis 246
alignment, Swing API 282
ALU 2
Amaya 35
AMD 2
anchor tag 48
And 112

evaluation 113
antivirus software 21
appending data to a file 317
applets 41, 43

adding color 43
drawing shapes 43
parameters 44
placing in an HTML document
44

appletviewer 42
application, terminating gracefully

312
applications software 2
argument 63, 160

object 161
passed by value 161
primitive data type 161

ArithmeticException 89
Arithmetic Logic Unit 2
array 239

algorithm 242
characters 244
data structure 239
dynamic 252
element 239
initializing 240
length 240
offset indexes 243
parameter 241, 248
reference data type 242
traversing 240
two-dimensional 247

ArrayIndexOutOfBoundsException
240, 241

384 Index

ArrayList, data structure analysis
252

ArrayList class 252
array element 239

accessing 240
assigning a new value 240

artificial intelligence 5
ASCII 10
asin(), Math class 130
assembly language 5
assignment 78, 86

array element 240
constant 87
variable 78

atan(), Math class 130
attributes 46
auxiliary storage 12
awt 280

B
backslash character in a string 63
backslash for escape sequence 63
backup copy 21
backup tools 4
bahavior of an object 179
bandwidth 7
base 10 logarithm 128
base class 214
Basic 5
Big Oh notation 246, 252, 356
binary files 11
binary number system 9
binary search 152, 349
binary search algorithm analysis

357
BIOS 2
bit 9
blog 15
Bluetooth 4
boolean 79, 106
Boolean class 253
Boolean expression 105, 131

evaluation 113
Boolean logic 17
border, Swing API 281
boundary value 168
BoxLayout manager, Swing API 282
breadth-first-searching 370
breakpoint 136
break statement 109
broadcast radio 7
buffer 314
BufferedReader(), BufferedReader

class 314
BufferedReader class 314
BufferedWriter(), BufferedWriter

class 318
BufferedWriter class 317, 318
bug 136
built-in data types 79
bus 2, 7

bus topology 7
button, Swing API 278

for displaying an image 292
byte 9, 79
bytecode 62

converting to machine code 62
Byte class 253

C
C 5
C++ 6, 62
cable modem 14
cache 2
calling a method 159
carpal tunnel syndrome 19
carriage return character 314
case clause 109
case sensitivity, identifiers 88
casting, see type casting 85
CD-R 12
CD-RW/DVD drive 1
cellular radio 7
Central Processing Unit 2
chaos theory 154
char 79, 244

array 244
Character class 253
charAt(), String class 244
char array, initializing 245
Children’s Online Privacy

Protection Act of 1998 18
circuit boards 1
citations 18
class 59

abstract 222
base 214
body 180
constructor 182
declaration 180
derived 214
designing 180
extending 213
inner 188, 295
naming 181
nested 188, 295, 374
outer 295, 374
variables 180, 184
wrapper 253
writing 180

class, objects to be written to a file
322

ClassCastException 186
classes using classes 187
ClassNotFoundException 322
class method 159, 184
client/server network 7
client code 180
close() 81
close(), BufferedReader class 314
close(), BufferedWriter class 318
close(), FileInputStream class 320

close(), FileOutputStream class 319
close(), FileReader class 314
close(), FileWriter class 317
close(), ObjectInputStream class

321
close(), ObjectOutputStream class

320
coaxial cable 7
COBOL 5
code convention

variable identifier 77
code conventions 65
collection 252
collections framework 252
colors, Swing API 291
combo box, Swing API 288
comments 46, 61, 62

block 62
documentation 62, 164
for debugging 137
inline 108
method 164
multiline 62
postcondition documentation
164
precondition documentation
164
single line 62

Communications Privacy Act of
1986 22

communications satellites 7
Comparable interface 225, 339
compareTo(), Comparable interface

225
compareTo(), Double class 254
compareTo(), Integer class 253
compareTo(), String class 140
compareTo(), when sorting 339
compareToIgnoreCase(), String

class 140
compiler 5, 62

just-in-time 62
method overloading 162

compiling source code 62
compound interest 103
compression program 11
computers

desktop 1
handhelds 5
notebook 4
wearable 5
wrist-top 5

computer vision syndrome 19
concatenation 138

toString() 187
conditional control structure 105,

109
constant 87
constructor 180, 183

subclass 215
writing 183

Index 385

container, Swing 275
content frame, Swing 275
controlling class 61

Swing application 278
control bus 2
conventional modem 14
conversion, numeric 84
cookie 18
copyright 20
copyright infringement 21
cos(), Math class 130
counter 133
counting values 133
CPU 2
crackers 21
createNewFile(), File class 311
cross-platform connectivity 5

D
data

boundary values 168
passing to a method 160
processing 81
processing from a file 316
reading from a file 314
reading objects from a file 319
testing a method 168
writing objects to a file 319
writing to a file 317

data structure
array 239
ArrayList 252

data structures 365
linked list 373
queue 369
stack 365

data structure analysis
ArrayList 252

data type 77
abstract 80
interface 339
primitive 79

debugger 136
debugging 111, 136

commenting out statements 137
debugger 136
variable trace 136
with println() 137

Debug Window 136
decision structure 105, 109
declaration

array 239
class 180, 214
method 159
two-dimensional array 248
variable 77

decrement operator 135
Default package name 61
delete(), File class 311
depth-first searching 352

dequeue, queue 369
derived class 214
desktop computer 1
device driver 4
digital camera 1
digital signature 15
Digital Subscriber Line 14
disk defragmentation 4
disk drive 1
divide-and-conquer 152, 345, 349
division 83

integer 83
modulus 83
real 83
type casting 85

do-while 131
documentation

comments 62
external 62
package 80
postcondition comments 164
precondition comments 164

documentation comments 164
Double 254
double 79
doubleValue(), Double class 254
Double class 285
downloading 17
DSL 14
DVD drive 13
dynamic array 252
dynamic lists 373
dynamic memory 373

E
e, natural logarithm 128
E-FOIA 18
e-mail 15

address 15
attachments 21
composition 16
etiquette 16
protocol 16

EBCDIC 10
ECPA 18
Electronic Communications Privacy

Act of 1986 18, 21
Electronic Freedom of Information

Act of 1996 18
electronic mail 15
element

array 239
ArrayList 252
ArrayList, adding 252
ArrayList, finding 252
ArrayList, removing 252

employee monitoring 19
encapsulation 59, 179, 182
encryption 19
endsWith(), String class 140

end of file 314
enqueue, queue 369
environment 3

distributed 3
multiprocessing 3
multitasking 3
multiuser 3

environmental concerns 19
equals() 186
equals(), String class 140
equals(), use by ArrayList 252
equals() versus == 186
equalsIgnoreCase(), String class

140
equal sign 78
ergonomics 19
error 62, 89

exception handling 312
logic 89
roundoff 106
run time 89, 240
semantic 89
syntax 62, 88, 132

err stream 313
escape sequence 63, 312
Ethernet 7
ethical implications of computer

use 19
ethical responsibilities, IT

professional 22
ethical responsibilities of an IT

professional 22
Euclid’s Algorithm 153
Eudora 15
event 275
event-driven application 275
event handler 275
exabyte 13
exception 81, 89, 312

array 240
handling 89

exception handler 312
execution

program 62
exists(), File class 311
exp(), Math class 128
expansion boards 1
expectations vii
exponent 10
exponentiation 113
extends keyword 214
extension 11
extranet 13

F
factorial 136
Fair Credit Reporting Act of 1970

20
false 79
fiber optic cable 7

386 Index

file 11, 311
creating 317
HTML 37, 334
processing numeric data 316
reading 314
stream 313
writing to 317

File(), File class 311
FileInputStream(), FileInputStream

class 320
FileInputStream class 319, 320
FileNotFoundException 315, 322
FileOutputStream(),

FileOutputStream class 319
FileOutputStream class 319
FileReader(), FileReader class 314
FileReader class 314
files

organizing 181
FileWriter(), FileWriter class 317
FileWriter class 317
File class 311
file organization 61
file position 313
file size 11
final 87
Financial Privacy Act of 1978 20
Firefox 35
firewall 13
FireWire port 12
flag 134
float 79
floating point 79
floating point numbers 10

comparing 106
Float class 253
flowchart 66
flowchart symbols 67
FlowLayout manager, Swing API

281
folders 11
format() method 64
formatting output 64
Fortran 5
for statement 240

array iteration, traversing 241
nested 248

frame, Swing 275
front, queue 369
functional decomposition 180
Fundamental Theorem of

Arithmetic 150

G
game

Adder 212, 335
BirthdayGame 90
Bowling 211
Break-A-Plate 298
Carnival 191
DiceRolls 242

Dice Roll 210
Game of 21 211
GuessingGame 126, 151, 178
Life 271, 336
Mad-Lib story 333
Mankala 272
Mastermind 268
Maze 363
MyBoggle 364
Nim 210
Penny Pitch 270
Rock Paper Scissors 114, 196
TicTacToe 248
WordGuess 141, 335

generic collection classes 254
get(), ArrayList 252
getActionCommand(), JButton 278
getContentPane(), JFrame 276
getMessage(), Throwable class 313
getSelectedItem(), JComboBox 288
getText(), JTextField 285
GIF 48, 292
gigabytes 10
gigahertz 2
graphical user interface 3, 275
greatest common divisor 153
GridLayout manager, Swing API

282, 284
GUI 3, 275
Gutenburg, Johann 59
Gutenburg Press 59

H
hackers 21
hailstone numbers 154
HAN 6
handheld computers 5
handwriting recognition software

4
hard-coded data 243
hardware 1
has-a relationship 187
head, linked list 373
heading tags 46
heap 373
helper method 182
hexadecimal 9, 50
histogram 268
Home Area Network 6
horizontal rule tag 46
Hotmail 15
HTML 35, 334

alignment 51
attributes 46
background color 50
comments 46
documents 36, 37
document tags 37
elements 36
hyperlinks 47
images 47

lists 46
style sheets 49
tables 47
tags 36, 45
text color 50
validating 37

HTML 4 45
HTTP 16
hub 8
hyperlink 48
hypertext 35
HyperText Markup Language 35

I
identifier 77

choosing 88
identity theft 20
if-else if statement 108
if-else statement 106

nested 107
if statement 105
IllegalArgumentException 161
IMAP 16
immutable 139
import, package 60
import statement 81
increment operator 135
index 138
index, array element 239
indexOf(), ArrayList 252
indexOf(), String class 140
infinite loop 132
infinite recursion 344
information age 19
information hiding 179, 182
infrared signals 7
inherit 186
inheritance 59, 213
initializing an array 240
initializing an object 80
ink jet printer 1
inline comments 108
inner class 188, 295
input, getting from user 81
input, getting from user in a GUI

285
InputMismatchException 81, 89, 95
input devices 1
input file stream 314
input stream 81
input validation loop 149
insertion sort 341
insertion sort algorithm analysis

357
instance 179
instance methods 184
instance variables 184
instantiation 80
instant messaging 15
int 79
Integer 253

Index 387

Integer class 285
integrated circuits 2
Integrated Services Digital Network

14
Intel 2
interface 225

as data type 339
Comparable 339
console 275
graphical 275
implementing 225
implementing multiple 227
text-based 275

interface, as variable type 339
interface, object 181
Internet 13

history of 13
Internet Acceptable Use Policy 19
Internet Explorer 15, 35
Internet filtering software 19
Internet privacy issues 18
Internet services 15
Internet Service Provider 14
interpolation search 361
interpreter 6

Java VM 62
interpreting bytecode 62
intranet 13
intValue(), Integer class 253
IOException 322
IP address 18
is-a relationship 213
ISDN 14
isEmpty, queue 369
isEmpty, stack 366
IT 22
Itanium 2
iteration 131
IT Careers 22

J
Java 6

enabling 41
java.awt 284, 291
java.awt.event 280
java.io 311, 314, 317, 319
java.lang 63, 79, 80, 113, 225, 254
java.lang.Double 254, 285, 316
java.lang.Integer 253, 285, 316
java.lang.Math 113, 128
java.lang.Object 186
java.text 86
java.util 80
java.util.ArrayList 252
java.util.Random 110, 138
java.util.Scanner 81, 110, 138, 140,

244
JavaScript 38, 40
javax.swing 275
javax.swing.Frame 276, 277, 278, 292
javax.swing.JPanel 276

javax.swing.JTextField 285
Java applets 41

adding color 43
drawing shapes 43
parameters 44
placing in an HTML document
44

Java application 61
Java Foundation Classes 275
Java Runtime Environment 80
Java Virtual Machine 41, 62
Jaz drives 12
JButton(), JButton class 278, 293
JButton class 293
JComboBox(), JComboBox 288
JComboBox class 288
JCreator 41
JFrame class 276
JIT 62
JLabel(), JLabel class 277
JLabel class 276
JPanel class 276
JPG 48, 292
JRE 80, 191
JTextField 285
JTextField(), JTextField class 285
just-in-time compiler 62

K
K 11
Kbps 14
keyboard 1, 81
keyword 88
kilobytes 11
knapsack problem 362

L
label, Swing API 276

for displaying an image 292
LAN 6
laser printer 1
lastIndexOf(), String class 140
layout, Swing API 281
layout manager, Swing API 281
leased/dedicated lines 14
length(), String class 138
length, array 240
library 60
Life 271

with GUI 309
Linear Congruential Method 110
linear search 246, 349
linear search, algorithm analysis

246
line feed character 314
line terminator 314
link 48
linked list 373
Linux 2
list, linked 373
listener, Swing API 279
Listserv 16

Local-Area Network 6
local scope 160
log(), Math class 128
log10(), Math class 128
logical topology 8
logic error 89, 132
logistic equation 154
long 79
Long class 253
loop, controlling iterations 134
loop control variable 135
loop structure 131
lowercase, converting strings 138

M
machine code 62
machine language 5
MACS 1
Mac OSX Tiger 275
Mac OS X Tiger 2
magnetic technology 13
mailing list server 16
main() method 61, 62, 157
mainframe 3
main memory 2
Majordomo 16
makeEmpty, queue 369
malicious code 21
MAN 6
mantissa 10
Mastermind 268
Math class 113, 128, 130
maze 363
Mbps 14
median, determining 268
megabytes 10
megahertz 2
member, accessing 80
members, class 180
memory, dynamic 373
memory-resident 4
memory keys 1
mergesort 345
mergesort algorithm analysis 357
message, passing 193
method 157

abstract 222
accessor 182
array parameter 241
body 159
calling 159
class 159, 184
declaration 159, 162
documentation 164
helper 182
instance 184
modifier 182
naming 160
overloading 162
overriding 186
parameters 160

388 Index

returning a value 163
testing 167
test data 168
writing 159

methods
behavior of object 179

Metropolitan Area Network 6
microphone 1
Microsoft Internet Explorer 15
Microsoft Windows 275
microwaves 7
MLA 17
MLA Handbook for Writers of

Research Papers, Fourth
Edition 17

mobile computing devices 4
modem 14
modifier method 182
modular 193
modulus division 83
monitor 1
motherboard 1
mouse 1
MP3 players 5
multimedia 36
multiplication 83
multiprocessing 3
multitasking 3
multithreading 3
multiuser OS 3
Mylar 12

N
native format 11
natural logarithm 128
necklace problem 153
nested class 188, 295, 374
nested statements 107
netiquette 9
Netscape 35
networked environment 7
networks 6

benefits 6
size classifications 6

network architecture 7
network interface card 6
network operating system 7
NET Act 18
new 80, 239, 248
newLine(), BufferedWriter class 318
newline character 63
next(), Scanner class 81
nextBoolean(), Scanner class 81
nextDouble(), Random class 110
nextDouble(), Scanner class 81
nextInt(), Random class 110
nextInt(), Scanner class 81
node 7
node, linked list 373
Not 112

notebook computer 4
No Electronic Theft Act of 1997 20
null 139, 240
NullPointerException 139
number

converting type 84
whole 77

number systems 9
numeric expression 83

O
object 59, 80, 179

argument 161
object, to be written to a file 322
object-oriented development 191
object-oriented programming 6, 59
ObjectInputStream 319
ObjectInputStream(),

ObjectInputStream class 320
ObjectInputStream class 320
ObjectOutputStream 319
ObjectOutputStream(),

ObjectOutputStream class 320
ObjectOutputStream class 320
objects, sorting 339
Object class 185, 213
object deserialization 319
Object parameter 186
object serialization 319
offset array index 243
online profiling 18
OOP 6, 59
Opera 35
operand 83
operating systems 2
operations, order of 84
operator 83

relational 105
operators, built-in 83
operator precedence 84
Opteron™ 2
optical technology 12
Or 112

evaluation 113
order of operations 113
out 63
outer class 295, 374
Outlook 15
Outlook Express 15
output, formatting 64
output devices 1
output file stream 317
output stream 63
overflow 132
overflow error 10
overloading, methods 162
overriding

methods 214
overriding a method 186
overwriting a file 317

P
pack(), JFrame 276
package 60

documentation 80
naming 61, 81

package statement 61
paradigm

object-oriented 213
parallel processing 3
parameter

array, two-dimensional 248
Object 186

parameters 44
array 241
constructor 183
method 160
pass by value 161

parentheses 84
parseDouble(), Double class 285,

316
parseInteger(), Integer class 285,

316
Pascal 5
passing an array 242
passing data to a method 160
pass by value 161
PC 1
PDAs 5
peer-to-peer network 7
Pentium 2
peripheral devices 1
persistent data 311
persistent media 11
petabyte 13
phishing 22
PI, Math class 113
piracy 21
pixel 281
pixels 42
pixel tags 18
platform 3
platform-dependent languages 62
platform independence 59, 62
PNG 48
polymorphism 59, 217
polymorphism, interfaces 339
pop, stack 365
POP3 16
ports 1

Bluetooth 1
FireWire 1
parallel 1
serial 1
USB 1

post 164
postcondition, method

documentation 164
postfix 135
pow(), Math class 113
pre 164

Index 389

precondition, method
documentation 164

prefix 135
primary memory 2
prime factors 150
prime number 150
primitive data type 79

argument 161
primitve data type

array element 242
print() method 63
printer 1
println()

debugging 137
toString() 187

println() method 63
privacy 20
Privacy Act of 1974 20
privacy policy 18
private keyword 182, 215
procedural abstraction 157
programming language

first generation 5
second generation 5

program specification 59
modeling 213

program specification, modeling
191

prompt 82
prompt, in a GUI 285
pseudocode 66
pseudorandom 110
public 159
public keyword 159
public static void main(String[]

args) 61
push, stack 365

Q
queue 369
quotation mark 63

in a string 63
quotient 83

R
RAM 2
Random Access Memory 2
Random class 110
random numbers 110
random walk 155
range, determining 268
read(), BufferedReader class 314
readDouble(), ObjectInputStream

class 321
reading numeric and string data 82
reading objects 319
readInt(), ObjectInputStream class

320
readLine(), BufferedReader class

314
readObject(), ObjectInputStream

class 320

Read Only Memory 2
real-time clock 2
real-time OS 3
real numbers 10
rear, queue 369
recursion 343
recursive algorithm, binary search

349
recursive algorithm, depth-first

search 352
recursive algorithm, mergesort 345
recycling 19
reference data type

array 242
interface 339
object 80
object parameters 161
polymorphism 217
String 139

relational operator 105
remove(), ArrayList 252
remove(), JPanel 276
remove, linked list 373
replaceAll(), String class 138
replaceFirst(), String class 138
reserved words 88
return statement 163
reusability 60

code 191
ring topology 8
ROM 2
rounding 84
rounding double to int 85
roundoff error 11, 106
router 8, 14
run-time error 89

array 240
running a program 62
running time 356

S
Safari 35
Safety and Freedom through

Encryption Act of 1999 19
scanner 1
Scanner object, closing 82
scope 135
scope, local in a method 160
scripts 38, 40
SDK 42
search, binary 349
search, depth-first 352
search, interpolation 361
search, linear 349
search, sequential 349
search, ternary 361
searching an array 246
Search class 246
search engines 16
secondary memory 2
seed, for random numbers 111

selection sort 270, 337
selection sort algorithm analysis

356
semantic error 89
semicolon 62
sentinel 134
sequential file access 313
sequential search 349
Serializable interface 322
server 7
setActionCommand(), JButton 278
setBackground(), Swing API 291
setContentPane(), JFrame 276
setDefaultCloseOperation(), JFrame

276
setDefaultLookAndFeelDecorated()

, JFrame 276
setEditable(), JComboBox 288
setForeground(), Swing API 291
setIcon(), JButton class 293
setSelectedIndex(), JComboBox 288
setText(), JLabel 277
setVisible(), JFrame 276
short 79
short-circuit evaluation 113
Short class 253
simple interest 103
sin(), Math class 130
size(), ArrayList 252
size, queue 369
size, stack 366
smartphones 5
social implications of computer

use 19
software development 157, 191
solid state technology 13
sorting, numbers 337
sorting objects 339
sorts 337
sound cards 1
source code 62
spam 16
spec 59
spyware 18
SQL 5
sqrt(), Math class 113
square root 113
SRAM 2
stack 365
startsWith(), String class 140
star topology 8
statement 61
state of an object 179
static 159
static method 184
Static Random Access Memory 2
static variables 184
step-wise refinement 157
Step command 136
storage, file 311
storage devices 12

390 Index

storage media
care of 13

stream 313
input 81

string 63
formatting 64

strings 79
comparing 140
creating 138
joining 138

String class 79, 138
student expectations vii
style sheets 49

class 50
embedded 49
linked 50
rules 50

stylus 4
subclass 214, 217
subclasses 185
subject tree 17
substring(), String class 138
subtraction 83
summing values 133
Sun’s Java Software Development

Kit 42
superclass 185, 217

Object class 213
supercomputer 3
super keyword 215
Swing API 275
switch statement 109
syntax error 62, 88, 132
System.in 81
System class 63
system reliability 22
system restore 4

T
tablet PC 4
tab character 63
tail, linked list 373
tan(), Math class 130
TCP/IP 14
telecommunications 14
terabyte 13
ternary search 361
text field, GUI 285
this keyword 189, 279
thread 278
Throwable class 313
Tim Berners-Lee 36
toCharArray(), String class 244
toDegrees(), Math class 130
toLowerCase(), String class 138
top, stack 365
top-down design 157
top-down development 157
topology 7
toRadians(), Math class 130

toString() 186
toString(), Double 285
toString(), Integer 285
toUpperCase(), String class 138
transmission media 7
traversing

array 240
ArrayList 254

trim(), String class 138
Trojan horse 21
true 79
truncate

modulus division 83
toward 0 84

truth table 112
try-catch-finally statement 312
twisted-pair wiring 7
two-dimensional array 247

accessing elements 248
type casting 84, 245

generic collection classes 254
object 186
objects 254

U
ultra-portable devices 12
underscore (_) 87
Unicode 10, 79, 244, 314, 381
Unicode Standard 140
Unix 2
uppercase, converting strings 138
USB 12
utility program 4

V
variable 77

class 180, 184
initializing in a class 183
instance 184
in println() 78
member 181
state of object 179

variable trace 136
video adapters 1
virtual 62
Virtual Machine 62
virus 21
visibility 159, 182

subclasses 215
Visual Basic .NET 6, 62
visual organizer 66
VM 62
void 159

W
W3C 36
WAI 44
WAN 6
Watch window 136
wearable computers 5
Web 15

website 35
website citations 17
Web Accessibility Initiative 44
web beacons 18
web browser 15
web browsers 35
web bugs 18
web directory 17
while 131
whole number 77
Wi-Fi 8
Wide-Area Network 6
Windows 2
Windows media player 44
Windows XP environment 3
WinZip 11
wireless access point 8
Wireless Fidelity 8
wireless networks 8, 14
wireless transmission media 7
words 10
World Wide Web 15, 35
World Wide Web Consortium 36
worm 21
wrapper classes 253
wrist-top computers 5
write(), BufferedWriter class 318
writeDouble(), ObjectOutputStream

class 320
writeInt(), ObjectOutputStream

class 320
writeObject(), ObjectOutputStream

class 320
writing data to a file 319
WWW 35
www.sun.com 80

Y
Yahoo! 15

Z
Zip drives 12

A Guide to Programming in Java emphasizes the development of good problem-solving and programming
skills in a clear, easy-to-understand format, continuing the tradition of the Lawrenceville Press series of
programming texts. To date, more than two million students have learned computing using a Lawrenceville
Press text. A Guide to Programming in Java has been developed for the AP Computer Science curriculum
and is an excellent text for an introductory programming course.

Features of A Guide to Programming in Java:

 AP COMPUTER SCIENCE CURRICULUM Content matches the College Board’s AP Computer
Science topic outline and Java subset.

 JAVA 2 PLATFORM STANDARD EDITION 5 Supports the Java 2 Platform Standard Edition 5
and is backwards-compatible with previous editions.

 OBJECT-ORIENTED DEVELOPMENT APPROACH Object-oriented programming is introduced
from the very start of the text.

 PROGRAMMING CONCEPTS An emphasis is placed on fundamental concepts including
variables, conditional control structures, loops, strings, methods, classes, arrays, and files.

 PROGRAMMING TECHNIQUES Solutions are designed using algorithms and Java code
conventions are modelled throughout the text.

 DEMONSTRATION APPLICATIONS Each chapter includes many demonstration applications
that illustrate both the source code and generated output.

 REVIEWS AND EXERCISES After a new concept is discussed, review problems provide an
opportunity for students to apply the concepts to creating an application. At the end of each
chapter are numerous hands-on exercises of varying difficulty, appropriate for students with a
wide range of abilities.

 CASE STUDIES A case study is presented at the end of most chapters. The case study illustrates
a complex application using good programming methodology of specification, design, coding,
testing, and debugging.

 TEACHING APPROACH The text is written for a variety of Java compilers. It is also written
for different student learning styles and effectively uses screen shots of source code, generated
output, and finished projects to strengthen understanding.

 CRITICAL THINKING A variety of written-response questions that provoke critical thinking
are provided at the end of each chapter.

 GUI AND EVENT-DRIVEN PROGRAMMING The Swing Java package is introduced for creating
GUI event-driven applications.

 APPLETS AND WEB PROGRAMMING Applets and web programming are introduced.

This text is available in hardcover and softcover editions.

ISBN 1-58003-072-6

~<(sl&s!=adahce< Hardcover

	Chapter 1 - An Introduction to Computers
	 Desktop Computing	
	 Operating Systems and Environment	
	 Mobile Computing	
	 Programming Languages	
	 Networks	
	 Number Systems	
	 Storing Data in Memory	
	 What is a File? 	
	 Storage Devices	
	 Intranet, Extranet, Internet	
	 Telecommunications	
	 Internet Services: Web, E-mail, and Mailing Lists
	 Finding Information on the Web and Downloading Files
	 Internet Privacy Issues	
	 Internet Acceptable Use Policy	
	 The Social and Ethical Implications of Computer Use
	 Protecting Computer Software and Data
	 The Ethical Responsibilities of an IT Professional
	 Chapter Summary
	 Vocabulary
	 Review Questions
	 Exercises

	Chapter 2 - Applets and Web Programming
	 The World Wide Web	
	 HTML 	
	 Creating an HTML Document	
	 Review: hello_world.htm
	 Review: Computer Viruses Website – part 1 of 6
	 JavaScript	
	 Review: welcome.htm
	 Review: Computer Viruses Website – part 2 of 6
	 Using Scripts to Enhance a Website	
	 Review: Computer Viruses Website – part 3 of 6
	 Review: System Check – part 1 of 2
	 Java Applets	
	 Creating Java Applets	
	 Drawing Shapes and Adding Color	
	 Review: Hot Air Balloon
	 Placing an Applet in an HTML Document
	 Applet Parameters	
	 Review: System Check – part 2 of 2
	 HTML Tags	
	 Review: Computer Viruses Website – part 4 of 6
	 Hyperlinks, Tables, and Images	
	 Review: Computer Viruses Website – part 5 of 6
	 Style Sheets	
	 Review: Computer Viruses Website – part 6 of 6
		Chapter Summary
	 Vocabulary
	 HTML Tags
	 Critical Thinking
	 Exercises

	Chapter 3 - Introducing Java
		Why Program in Java?	
		Objects, Classes, and Packages	
		A Java Application	
		Executing a Java Application	
		Review: Greeting
		Displaying Output	
		Review: AboutMe – part 1 of 2
		Formatting Output	
		Review: AboutMe – part 2 of 2
		Code Conventions	
		Algorithm Design	
		Chapter Summary
		Vocabulary
		Java
		Critical Thinking
		Exercises

	Chapter 4 - Variables and Constants
		Declaring Variables	
		Using Variables	
		Review: RectanglePerimeter
		Primitive Data Types	
		Review: Distance – part 1 of 2
		Abstract Data Types	
		Java Packages	
		Obtaining a Value from the User	
		Review: Distance – part 2 of 2
		Numeric Expressions	
		Review: Digits
		Type Casting	
		Review: GradeAvg – part 1 of 2
		Review: TempConverter
		Formatting Numeric Output	
		Assignment Operators	
		Review: GradeAvg – part 2 of 2
		Using Named Constants	
		Identifiers and Keywords	
		Review: CircleCircumference – part 1 of 2
		Programming Errors	
		Chapter 4 Case Study	
		Chapter Summary
		Vocabulary
		Java
		Critical Thinking
		Exercises

	Chapter 5 - Conditional Control Structures
		The if Statement	
		Roundoff Error	
		Review: SurfsUp – part 1 of 3
		The if-else Statement	
		Review: SurfsUp – part 2 of 3
		Review: CircleCircumference – part 2 of 2
		Nested Statements	
		Review: Stages
		The if-else if Statement	
		Review: SurfsUp – part 3 of 3
		Review: Discriminant
		The switch Statement	
		Review: Hurricane
		Generating Random Numbers	
		Review: RandomNum
		Compound Boolean Expressions	
		Review: Delivery
		The Math Class	
		Review: PerfectSquare
		Chapter 5 Case Study	
		Review: RPS – part 1 of 2
		Review: RPS – part 2 of 2
		Chapter Summary
		Vocabulary
		Java
		Critical Thinking
		Exercises

	Chapter 6 - Loop Structures and Strings
		The while Statement	
		The do-while Statement	
		Infinite Loops	
		Review: Prompter
		Counters and Accumulators	
		Review: Evens
		Review: NumbersSum
		Review: PercentPassing
		The for Statement	
		Review: Factorial
		Review: OddSum
		Debugging Techniques	
		Review: Variable Trace
		The String Class	
		Review: AccountSetup
		Comparing Strings	
		Review: FormalGreeting
		Chapter 6 Case Study	
		Review: WordGuess
		Chapter Summary
		Vocabulary
		Java
		Critical Thinking
		Exercises

	Chapter 7 - Methods
		Program Development Using Methods	
		Writing Methods	
		Review: TimeConverter
		Method Parameters	
		Review: SpanishNumbers
		Review: DisplayBox – part 1 of 2
		Method Overloading	
		Review: DisplayBox – part 2 of 2
		The return Statement	
		Review: Exponentiation
		Documenting Methods	
		Review
		Chapter 7 Case Study
		Review: GradeConverter
		Chapter Summary
		Vocabulary
		Java
		Critical Thinking
		Exercises

	Chapter 8 - Classes and Object-Oriented Development
		What is an Object?	
		Designing and Writing a Class	
		Review: Circle ­– part 1 of 4
		Review: Coin ­– part 1 of 2
		Writing Constructors	
		Review: Circle ­– part 2 of 4
		Review: Rectangle – part 1 of 5
		Instance and Class Members	
		Review: Circle ­– part 3 of 4
		Review: Rectangle – part 2 of 5
		The Object Class	
		Review: Circle ­– part 4 of 4
		Review: Rectangle – part 3 of 5
		Review: Coin – part 2 of 2
		Classes Using Classes	
		Review: Bank
		Object-Oriented Development	
		Review: Carnival
		Chapter 8 Case Study	
		Review: RPS2 – part 1 of 2
		Review: RPS2 – part 2 of 2
		Chapter Summary
		Vocabulary
		Java
		Critical Thinking
		Exercises

	Chapter 9 - Inheritance and Polymorphism
		Extending a Class	
		Implementing a Subclass	
		Review: Puck – part 1 of 2
		Polymorphism	
		Review: Music – part 1 of 2
		Abstract Classes	
		Review: Music – part 2 of 2
		Interfaces	
		Review: Disk
		Review: Puck – part 2 of 2
		Review: Rectangle – part 4 of 4
		Review: Rectangle – part 4 of 5
		Chapter 9 Case Study
		Review: SalesCenter
		Chapter Summary
		Vocabulary
		Java
		Critical Thinking
		Exercises

	Chapter 10 - Arrays
		Declaring Arrays	
		Using Arrays	
		Review: StudentRoster
		Review: Squares
		Review: Reverse
		Array Parameters	
		Arrays with Meaningful Indexes	
		Review: DiceRolls – part 1 of 2
		Review: DiceRolls – part 2 of 2
		Review: NumberCounts
		Characters and Arrays	
		Review: CountLetters
		Review: NameBackwards
		Searching an Array	
		Review: FindName
		Two-Dimensional Arrays	
		The ArrayList Class	
		Wrapper Classes	
		Review: HighestGrade
		Chapter 10 Case Study	
		Review: LocalBank
		Chapter Summary
		Vocabulary
		Java
		Critical Thinking
		Exercises

	Chapter 11 - GUIs and Event-Driven Programming
		What is a GUI?	
		The Swing Package	
		Review: Name – part 1 of 2
		The JButton Class	
		Handling Events	
		Review: Name – part 2 of 2
		Review: NumClicks
		Controlling Layout	
		Review: Sunflower
		Review: Riddle
		Getting Input from the User	
		Review: DivisibleBy3
		Combo Boxes	
		Review: MetricConversion
		Changing Colors	
		Adding Images	
		Review: Roll
		Using Nested Classes to Handle Events	
		Chapter 11 Case Study
		Review: BreakAPlate
		Chapter Summary
		Vocabulary
		Java
		Critical Thinking
		Exercises

	Chapter 12 - Files and Exception Handling
		What is a File?	
		The File Classes	
		Review: MyFile – part 1 of 2
		Handling Exceptions	
		Review: MyFile – part 2 of 2
		The File Streams	
	 The FileReader and BufferedReader Classes
		Review: Assignment
		Processing Numeric Data	
		Review: Stats – part 1 of 2
	 The FileWriter and BufferedWriter Classes
		Review: Stats – part 2 of 2
		Object Serialization	
		Review: Roster
		Chapter 12 Case Study
		Review: LocalBank2
		Chapter Summary
		Vocabulary
		Java
		Critical Thinking
		Exercises

	Chapter 13 - Recursion and Advanced Algorithms
		Selection Sort	
		Sorting Objects	
		Review: ArrayListSort
		Insertion Sort	
		Review: ObjectsInsertionSort
		Recursion	
		Review: RecursiveFactorial
		Mergesort	
		Review: ObjectsMergesort
		Binary Search	
		Review: SearchLocations
		Review: ObjectsBinarySearch
		Review: BinarySearch2
		Depth-First Searching	
		Review: DetectColonies – part 1 of 3
		Review: DetectColonies – part 2 of 3
		Review: DetectColonies – part 3 of 3
		Algorithm Analysis	
		Chapter Summary
		Vocabulary
		Java
		Critical Thinking
		Exercises

	Chapter 14 - Data Structures
		The Stack Data Structure	
		The Stack Class	
		Review: Stack2
		Review: Stack3
		The Queue Data Structure	
		The Queue Class	
		Review: Queue2
		Review: Queue3
		The Linked List Data Structure	
		The LinkedList Class	
		Review: LinkedList – part 1 of 3
		Review: LinkedList – part 2 of 3
		Review: LinkedList – part 3 of 3
		Chapter Summary
		Vocabulary
		Critical Thinking
		Exercises

	Appendix A - Unicode
	Index

