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Abstract: The Poisson-Boltzmann equation is an important tool in modeling solvent in biomolecular systems. In this
article, we focus on numerical approximations to the electrostatic potential expressed in the regularized linear Poisson-
Boltzmann equation. We expose the flux directly through a first-order system form of the equation. Using this formulation,
we propose a system that yields a tractable least-squares finite element formulation and establish theory to support this
approach. The least-squares finite element approximation naturally provides an a posteriori error estimator and we present
numerical evidence in support of the method. The computational results highlight optimality in the case of adaptive mesh
refinement for a variety of molecular configurations. In particular, we show promising performance for the Born ion,
Fasciculin 1, methanol, and a dipole, which highlights robustness of our approach.
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Introduction

Solvent plays a critical role in determining the structure and func-
tion of biomolecular systems. However, the explicit representation
of solvent at a molecular level is often intractable because of
the range of scales required. Moreover, properly modeling sol-
vent interactions with molecules are computationally expensive
because of the complexity of the atomistic interactions that must
be sampled over multiple configurations. As such, implicit solvent
models, such as the Poisson-Boltzmann model! and Generalized
Born model,” confront this difficulty by treating the solvent as a bulk
continuum.

The focus of this work is on numerical solutions to the Poisson-
Boltzmann equation (PBE), which approximates the mean solvent
forces by assuming the ions are distributed according to the Boltz-
mann distribution. This results in a unique electrostatic potential
described by this implicit solvent model.? In particular, we seek
a numerical solution of the linearization of the regularized PBE
(RPBE). The use of a regularized formulation® is required because
the original statement of the PBE yields singularities in the electro-
static potential. Regularization overcomes this issue by analytically
subtracting the singularities from the electrostatic potential yield-
ing a modified version of the original PDE. To further simplify the
problem and focus on the efficacy of our discretization, we linearize
the RPBE. The linearized version has many of the same challenges
as the RPBE; however, it features reduced computation cost* when
remaining as a physically accurate perturbation to the fully nonlinear
problem.’

A number of different directions for numerically solving the
Poisson-Boltzmann equation have been pursued. Approaches such
as finite difference and finite volume methods,®"!> finite elements
methods,> %22 boundary element methods,?>* and integral equa-
tions3>3% have been developed for this problem. Yet, as the com-
plexity of applications increases so do the demands on the numerical
approximation, and we are motivated to investigate additional com-
putational tools that provide a medium for more robust and efficient
simulation.

In this article, we focus on a variational setting for the PBE
because of the underlying theoretical support for numerical meth-
ods and the established analysis of the equation. In particular, we
propose a least-squares finite element formulation of the linear reg-
ularized Poisson-Boltzmann equation. Least-squares finite element
methods offer a viable approach to efficient and accurate approxima-
tion. The least-squares method that we follow begins by reforming
the partial differential equation as a first-order system. A functional
is then constructed based on the residual equations of the first-
order system and is minimized. A first-order system least-squares
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(FOSLS) approach to finite elements has shown to be effective
for numerous problems. In particular, elliptic problems>”-3% with
discontinuous coefficients’®**! are theoretically competitive and
numerically plausible.

The existing FOSLS theory motivates our treatment of the PBE;
yet, the theoretical properties for the FOSLS form we pose in
“FOSLS formulation of PBE” Section are not fully developed. We
establish these results and confirm the existence of a unique solu-
tion for our problem. We propose a first-order system for the PBE in
“FOSLS formulation of PBE” Section that correctly addresses the
jump discontinuity inherent in the problem. The PBE is described
through a dielectric coefficient, € (x), and Debye-Hiickel parameter,
K (x), that are discontinuous across an interface. Proper treatment of
the flux term across this interface is critical to the variational formu-
lation. To this end, we propose a unique form of the flux that both
captures the underlying physics and yields a system amenable to a
least-squares minimization.

The goal of this article is to outline a least-squares finite ele-
ment method for use with existing computational tools, such as the
Finite Element Toolkit (FETk),*> which uses piecewise linear ele-
ments over tetrahedral tessellations of single domains. The resultis a
competitive and straightforward finite element method for the PBE
using adaptive mesh refinement. Adaptive refinement using finite
elements has been studied for the Poisson-Boltzmann equation in
a Galerkin formulation.'® ! These approaches focus on resolution
of the singularities in the original PDE. Here, we use the functional
provided by the least-squares formulation to guide refinement with
similar success. Treatment of the interface condition is automatic
in our formulation of the problem, naturally capturing the physics
around the interface when still being amenable to approximation by
standard finite elements.

The remainder of the article is organized as follows. In Section
on Poisson Boltzmann Equation, we summarize the PBE, its reg-
ularization and linearization, and the general problem domain. We
outline the FOSLS terminology in Section on FOSLS formulation
of PBE and introduce our formulation of the method. Moreover, we
establish theoretically the use our formulation and discuss impli-
cations and techniques for computational simulation. In Section on
Numerical Experiments, we provide numerical evidence of effec-
tiveness of the FOSLS approach for a number of molecular systems.
The method is shown to be effective for problems with known solu-
tions (Born ion), for more complicated structures (Fasciculin 1 and
methanol), and for a problem with low regularity (dipoles).

Poisson Boltzmann Equation

The Poisson-Boltzmann equation models the electrostatic activity
between molecules in an ionic solvent. In this model, it is assumed
that the ions in the solvent are distributed according to the Boltzmann
distribution and that the potential of the mean force on a particle is
simply the charge of the ion times the electrostatic potential. This
yields the general Poisson-Boltzmann equation,’

—V - (€VPW) = dmpr(n) + 4T Y SO ()
j=1

—1 ]
X exp [mQj¢(x)], (1a)
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lim ¢(x) = 0. (1b)

Ix[]—o00

Here, ¢ is the unknown electrostatic potential, € is the dielec-
tric coefficient, pf is the fixed charge distribution in the solute
(biomolecule), kp is the Boltzmann constant, and 7 is the tempera-
ture. It is assumed that the solvent is composed of n, species of ions,
each with charge Qj and concentration c}. The accessibility of the
Jjthion-species to a point, x, in space is described by A;(x).

For a solute in a 1:1 electrolyte solvent (e.g., NaCl), the charge
of each ion species is £1 unit charge, and the general Poisson-
Boltzmann equation simplifies' to

— V- (e(x)Vo () + i2(x) (kBT) sinh (
e,

C

ec¢>(X)>
kgT

=4 Z Qid(x —x;), (2a)

i=1

lim ¢(x) =0. (2b)

[lx]| =00

Here, we have further assumed that solute contains a total of m
fixed point charges, with the ith charge, Q;, centered at position x;.
The resulting distribution, pg, is a linear combination of Dirac delta
functions, §(x — x;).

The domain for the problem, R, is subdivided into a molecu-
lar region, €2, a solvent region, 2:°, and an interface between the
two, denoted by I'. The solute is surrounded by solvent, which is
represented as a continuum over the subdomain Q% = R3\Qy,.
In some Poisson-Boltzmann models, an additional ion exclusion or
Stern layer is present between 25 and 2,,. The Stern layer pro-
vides separation between the solute and the ions of the solvent. As
a result, the dielectric matches the dielectric in the solvent region
and the ionic strength is zero (k = 0). In this article, we focus on
the more challenging issue of the jump in the dielectric, and neglect
the Stern layer. The subdomains for a typical biomolecular solute
are shown in Figure 1. The dielectric coefficient, € (x), and modified

Solvent +
2, = +

+
+
| ,
lons ——— +
| / . Solute
nterface (Explicit Charges)
¥ Qu

Figure 1. Subdomains for the Poisson-Boltzmann equation. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Debye-Hiickel parameter, i (x), describe the accessibility of the sol-
vent to the solute and are defined on 2, U Q2 by the piecewise
constant functions

eQ
e(x) = €m . I; and
€ x € Qg
0 x e
=2 m
K°(x) =1 _ P . 3)
{ oML xeay

Here, €, and € are positive constants, N4 is Avogadro’s number,
and e, is the charge of a proton. The ionic strength, /s, is a physical
parameter which varies depending on the solvent.

For computational reasons, the unbounded solvent domain, £5°,
is typically truncated at a finite radius from the “center” of the
molecule, which gives rise to a bounded solvent domain, 2. Dirich-
let boundary conditions are imposed to capture the asymptotic
behavior of the solution on an unbounded domain. Combining this
with the change of variables, u(x) = ec.¢(x)/kgT, results in a
dimensionless Poisson-Boltzmann equation on the spherical domain
QL=QuUQUT:

—V - (e(®)Vii(x)) + &% (x) sinh fi(x)

4 m
= N 08— x), xE QUK (4a)

kT i=1
u(x) = g(x), x € 0K2, (4b)
9
[[e(x) ) ﬂ =0, xel. (40)
on |
where the jump at the interface is defined as
aut o
|:|:e(x) ulx) ]] = lim e(x + an)M
on || w0t on
ou(x —an)
—€e(x—an)———,
on

with n as the unit normal to the interface I".
The boundary conditions are prescribed using a linear combina-
tion of Helmholtz Green’s functions,

g O exp(—ks|x—x,-\> 5
kgT = €lx — x;l €

1

In contrast to (2a), the principal equation is defined over each subdo-
main and an interface condition is introduced on I". This restatement
makes explicit the normal continuity implied by the strong form
divergence of €(x) V¢ across the interface I" in the original PBE.
We denote the standard Sobolev spaces as L%(2) and H* (), for
k > 0. H*(Q) consists of functions over 2 having square integrable
(weak) derivatives of order up to k. The norms on L?(£2) and H* ()
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are expressed as || - [lo,q and || - [|x.q, with the L?*() inner product
written (-, -)o.q. In addition, we define the Hilbert spaces

H(div; Q) :={q € L>(Q)? : V- q € L} ()},
Hy(div; Q) := {q € H(div; ) : n x q = 0 on 02},
Hy(Q) :={ue H (Q):u=00n3Q},

with norms

lalge = lallge + 1V - dlg e Q)

lullfq = lulgg + I Vulfq- )

One difficulty with (2a) is regularity. The right-hand side
4m ", Qi8(x — x;) is not in H™'(), i.e., the dual space of H(% ().
Practically, the right-hand side induces singularities in i at the solute
atom centers x;. These singularities are the familiar consequence of
solute—solute electrostatic interactions satisfying Coulomb’s law.
However, finite element and finite difference methods often require
more smoothness to guarantee convergence. Following ref. 3, we
overcome this issue by decomposing # into

i =u-+uUe, €))

where u is an unknown smooth function and u, is a known singular
function. The Coulomb function, u, satisfies the Poisson equation

dme, -
—€mV - Vuc(x) = iS(x — x;), 9
€ U (x) kT ;:1 0id(x —x;) )

and absorbs the singularities in &z. Combining (8) with (4), we obtain
the regularized PBE or RPBE

—V .- e(x)Vu(x) + Ez(x) sinh(u(x) + uc(x))

=V .(e(x) —em)Vuc(x), xe€Q3UQn,
u(x) = gx) — uc(x), xe€dQ, (10
|:|:e(x) ag(x) ]] = (em — €) Jue(x) s xerl.
n r on

As k(x) and €(x) — €, are zero inside 2, we avoid evaluating
the Coulomb potential, u., near the singularities present at each
point charge, x; € Qp,. This yields a right-hand side in (10) that is
a well-defined distribution in H~' () and, as a result, eq. (10) is a
well-defined nonlinear second-order elliptic equation with a unique
weak solution u in H'(€2).3

A simplified version of (10) is the linear regularized Poisson-
Boltzmann equation, which is obtained by linearizing the hyperbolic
sine:
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— V- e(x)Vul) + 2 (@)ux)
=V (e(x) —em)Vuc(x) — Ez(x)uc(x), x € QU Qn,

(11a)

u(x) = gx) — uc(x), x €9, (11b)

[[e(x)au(x)H = (e — ) e e (11¢)
on ||p on

Physically, the linearization reduces the ionic response of the solvent
to the solute. This approximation is acceptable unless the solute
is highly charged.* In this case, the magnitude of the electrostatic
potential is large and the approximation sinh(u) ~ uis not accurate.!

FOSLS Formulation of PBE

The First-Order System Least Squares (FOSLS) finite element
method is an alternative to standard and mixed Galerkin finite ele-
ment methods.*> FOSLS begins by converting the PDE to a first
order system. Using the new set of equations, a functional is then
defined whose minimizer solves the original PDE.

FOSLS offers a number of potential advantages over traditional
methods. The functional is minimized using a variational principle,
giving rise to a symmetric bilinear form. A discretization based
on this form leads to a symmetric positive-definite linear system,
which is ideal for solvers such as preconditioned conjugate gradient.
Also, the bilinear form is often elliptic with respect to a practical
norm, and as a result the finite element spaces do not need to satisfy
the discrete inf-sup condition of Ladyzhenskaya-Babuska-Brezzi,**
unlike mixed methods. A practical consequence is that basic finite
element spaces, e.g., continuous piecewise linear polynomials, may
be used for all variables.

The FOSLS functional also provides a local a posteriori error
estimate. Such estimates are complicated for other methods, but the
FOSLS residual norm provides a straightforward and accurate esti-
mate for our problem. This local error estimate is used for adaptively
refining a mesh in our numerical experiments and we highlight the
effectiveness of this tool.

Least-squares finite element methods are not without limita-
tion; however, the introduction of new variables to formulate the
first-order system ultimately increases the degrees of freedom and
complexity in computing the solution. This is not necessarily a
disadvantage as the new variables are often physically meaning-
ful and are often needed elsewhere in the simulation. For example,
the FOSLS formulation of the PBE introduces a secondary “flux”
variable, which is used to effectively compute potential of the
mean force required in the solution of the Steady-State Smolu-
chowski Equation.*3 Another potential drawback is that FOSLS
requires more regularity than might be present in the problem to
ensure optimal error estimates. Optimal error estimates using a
Least-squares approach for PBE can be derived through a mul-
tidomain approach for such problems.*® In this article, we also
use adaptive refinement to overcome these issues of computational
complexity, yielding optimal convergence rates in our numerical
experiments.
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A typical approach to forming a first-order system of (11) over
a single domain € is to introduce a flux, @ = €(x)Vu (e.g., see
ref. 39). The resulting first-order system is

q—€Vu=0 in Q, (12a)
V- -q+iu=V-(e(x) — em)Vue — c2ue inQ, (12b)
ond2. (12¢)

U=g—1uc

An application of Green’s theorem on this system shows that across
any surface in € with normal n, n - q is continuous. In particular,
solution to system (12) satisfies,

[qmﬂr=0 xer.

However, as q = €Vu, eq. (11c) implies,

[[q . nﬂ = (€m — €)Vuc(x) -m xel.
r

This implies q - n is not continuous across the interface I', and
hence, a least squares approach based on system (12) is an incorrect
formulation for solving the RPBE.

For a well-posed FOSLS formulation to system (11), we need
to define a first-order variable q, whose normal component is not
only continuous across the interface but also satisfies the interface
condition required by RPBE. To ensure these conditions, we define
q = €x)Vu + (€(x) — €m)Vuc, which results in,

q/€(x) — Vu = ((e(x) — €m)/€(x))Vuc inQ, (13a)
—V.q+&*u=—i’u. inQ, (13b)
u=g—uc on 92, (13c¢)

nxq=nx (Vg+ (e(x) —en)Vue) onad2. (13d)

Now egs. (11c¢) and (13) imply,

quﬂr=o xel.

We now pose our problem in abstract form and establish a unique
solution. To simplify the analysis, we consider homogeneous Dirich-
let boundary conditions. Using a standard lifting argument, we
obtain

q/e(x) — Vu = ((e(x) — €m)/€(x))Vu, in L,

-V .q+iu=—ilu, in €, (14)
u=20 on 0€2,
nxq=0 on 92.
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The least-squares functional based on (13) is as follows. For
q € Ho(div; Q) and u € H} (), we define

G(q,u; uc) = ||q/e(x) — Vu — ((e(x) — Em)/é(x))vuc“(%,sz
1=V q+u+Cucldg.  (15)

The solution of (13) solves the minimization problem

G(q,u;ue) = min G(r,v;uc) (16)

(r.v)eHy (diviQ) x H} ()
and leads to the variational problem
F(q,u;r,v) = £(r,v), an

where the bilinear form F and linear functional ¢ are

F(q,u;r,v) = (q/€ — Vu,r/e — Vv)o0
+(=V-q+7%u, -V -r+ic*v)qe (18

er,v) = —=(K%ue, =V -+ £v)og

+ (((€ — €m)/€)Vue,r/e = Vv)oo. (19)

Ellipticity of FOSLS Functional

To show the variational problem (17) is well-posed, it is sufficient to
prove that G(q, u; 0) > defines a norm equivalent to the H (div) x H'
norm (Theorem 1). This result also ensures that our finite element
solution is the best approximation to the true solution under the
norm defined by G(q, u; 0). Before proving this norm equivalence,
we start by stating and proving a lemma, which will be used in the
proof of Theorem 1.

Lemma 1. Let h(x) and k(x) be two positive bounded functions on
Q,ie,0<c; <hx) <crand0 < c; < k(x) < ¢ forall x € L,
where ¢y and c; are constants. Then there exists positive constants
oy and ay such that

a1 F(q,u; q,u) < F(q,u;q,u) < o F(qu;q,u),  (20)

where the bilinear form Fis defined as

Fqu;x,v) = (Vhg/e — Vi), Vh(r/e — Vv)oo
+ (Vk(=V - q + @) Nk(=V T+ &))og. 21

Proof: Taking a; = ¢, ! and oy = cfl gives the desired
result. .
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Theorem 1. The bilinear form F defines a norm equivalent to the
H(div) x H' norm. That is, there exists positive constants y, and
y2 such that

F(q,u;r,v)
< yi(lalG@iv) + ulld )Vl div) + VIl )'? (22)

and
F(q.us q.10) = va(llqll (div) + [|ullF o). 23)

Proof: A proof for the general case is given in [37]. Here we
offer a proof for our specific case, to obtain sharper constants of
ellipticity; our proof is in the same spirit as a proof presented in [39].

First we prove boundedness of F [eq. (22)]. An application of
Cauchy-Bunyakovsky-Schwarz inequality to (18) leads to

F(qu;r,v) < (F(qu;qu) 2 (Fr,v;r,o)'2 (24)
Using the fact that € is bounded away from zero in €2 yields

FQu;qu) = llg/e — Vullio + | = V- q+ ull§ o
<ralig + IVulg + 1V - qligq + llul§o)
= y3(llqlF (div) + [lul? ). (25)

where y3 = max(2, 2ik%,2¢7%) = max(2, 2/2?,26;2,26;2). Com-
bining eqs. (25) and (24) proves boundedness of F.

To prove coercivity, we consider a modified bilinear form, as
defined by (21). We define A(x) and k(x) as:

Q 1 Q
= {9 FEIm g k= FEm
Te(x) x € Q4 T/ki x € s,

(26)

where 7 is a constant such that 0 < 7 < 1.
We can decompose the integral over 2 and evaluate F over €2
and Q,,

F(q,usq,u) = F(qu; q, 0|, + F(q,u:q,w)lg, 27)

where

F(q.u;q.w)le, = [v/7a/ve — VT/eVull
+ = VTRV g+ VTRUlG o (28)

and
F@u;qu)le, = lla/ve — VeVullg +1IV-qldq . (29)
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Integration by parts shows that

/ V«qu—i—/ q-Vu—/uq-nmzo, 30)
m m r

where ny, is the unit normal at I", pointing from the solute region
into the solvent region. Applying this result to (29), we obtain

Fqu;qw)le, = lla/vVeldq, + IVeVuldq,

—2/ q-Vu+||V-Q||(2),Qm+ZT/ V. qu
Qm

+ 27.’/ g-Vu— 21[ uq -y + Nl — T luldg,
'm F
= lg/ve+ (t — DVeVullgo, + IV -q+Tulljq,
— P lulfg, + @t —H)IVeVulig — 21/ uq - Npy.
r

(3D

Similarly, using integration by parts on eq. (28) yields

]:—(qv u;q, u)'Sl
= IVTa/VelG o, + IVTVeVullg o, — 21 / q-Vu

s

+IVTY - 4/l g, + VTRl o, — 27 f V- qu

s

= V@ /k)V - aligq, + IVTa/Velgq, + IVTVEVU[F g
+ IVTkaullg o, — ZT/ uq-ns, (32)
r
where ny = —ny, is the unit normal along I', pointing from the

solvent domain into the solute.
Using the Poincaré-Friedrichs inequality, we can assume

lullfq < AlIVUlfq, with A > 1. (33)

From eqs. (27), (31), (32), (33) and choosing 7 = ﬁ < 1 we
have

F(q.u;q.u) = [V7q/Velf g, + INTVeVull g,
+IVTV-q/ksll5 0, + VTRl o, + 19/ + (T = DVeVullg o,
+ 1V - q+tullgq, — t*lulgq, + QT — tHIVeVulGg,
> [IVTVeVullg g, + 21 — ) IVeVulgo, — T lulfq,

2 2 2 2 2
= T”«/EVM”(),Q -7 ||u||og >(t—At )”«EV””()Q

1
= 5 IVeVulle = a3 Vulig,  (34)

where a3 = ﬁ min(ey, €).
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Now from eq. (20), we get
F(qu;q,u) = a4l Vullg g (35)

where a4 = a 3. From the Poincaré-Friedrichs inequality (33), we
find

F(q,u;q,u) > as]|ullfq. (36)
Moreover,
2 2 2
la/ellsq < 2(la/e — Vullg g + IVulg )
1
<2 (1 + —) F(q,u;q,u),
a4
and hence F(q,u;q,u) > a6”q”5’9 for g = oy[2(1 +

ot4) max(e, €;,)] ", Similarly,

IV-aldo <231V - q — &2ulld o + 17%ul} o)
< 2(1 4 ktas)F(q,u; q, u), (37)

and thus F(q, u; q, u) > a7||V - qllj o for a7 = [2(1 + kfas)] "
Taking y» = min(a4, as, a6, 7) completes the proof. n

The FOSLS functional (15) is H(div) x H'! equivalent. In some
FOSLS formulations, a curl term of the form V x (q/¢) = 0Ois added
to problem formulation (e.g., ref. 39), yielding a H' x H(div) N
H (curl) equivalent FOSLS functional. The extra constraint is moti-
vated by q = €Vu, which implies V x q/e = 0 (c.f, ref. 47,
Theorem 2.9). However, for our case, we cannot take the curl of
q/¢€. This follows from our definition of q = € Vu + (€ — €y,) Viu;
the curl of q/¢ is undefined at the interface. Hence we do not add
the curl term to the formulation.

Traditionally, developing an effective error estimator for use in
local adaptive refinement is challenging. Error estimators based on
the Galerkin method are not immediately obvious from the problem
formulation and local error bounds for the PBE can be complicated
to derive.® In contrast, the FOSLS framework directly provides a
natural error indicator through the functional. The local value of
FOSLS functional is an a posteriori lower error bound, and, under
some restrictions on mesh refinement, the bound can be shown to be
a sharp theoretical error estimate.*®> We exploit this fact and build
an adaptive refinement scheme based on the value of the FOSLS
functional.

Let G.(q,u;u.) be the value of the FOSLS functional (15)
restricted to element 7. Note that if S is the set of elements
comprising the mesh, then

G(q, Uy ue) = Z G (q, u; uc).

Tes

Let ur = VG (q, u; uc) and fimax = Maxqes o. We mark simplex
t for refinement if p; > ¥ max, where y € (0, 1).

DOI 10.1002/jcc
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Our strategy is relatively straightforward, yet more advanced
marking strategies based on the “solvation free-energy”*® and
FOSLS*:3% functionals have been proposed in the literature. How-
ever, in our numerical experiments, we did not find a significant
difference in performance when the marking strategy is varied
for our problem. When compared on the same mesh, FOSLS
requires more memory and CPU time than the standard second-order
Galerkin method. However, the meshes produced by the corre-
sponding adaptive refinement schemes are different, and the FOSLS
approach is often able to achieve a more accurate solution with less
refinement. As a result, the FOSLS approach is often more efficient
than a standard second-order Galerkin method. The effectiveness of
our scheme is highlighted in the following section.

Numerical Experiments

We use a tetrahedral mesh of 2 with globally continuous piece-
wise linear finite functions (P1 elements) and implement our finite
element method and mesh refinement in FETK.*> The meshes
are generated using the Geometry-preserving Adaptive Mesher
(GAMer), which is designed to produce simplicial meshes of molec-
ular volumes and interfaces.’! As a result, the solvent domain has a
spherical outer boundary and the mesh is conforming at the interface
of the solvent and molecule regions.

For the first four numerical experiments, we choose €, = 1,
€s = 78, and ks = 0.918168, which corresponds to a typical ionic
strength of 0.1M. In these experiments, we solve for the regularized
potential and strongly impose boundary conditions. The experi-
ments are performed on the Born ion, Fasciculin 1, methanol, and
a simple dipole. Let q" and " be our finite-element solution, and
q and u the true solution. We verify convergence to the solution by
monitoring the square-root of FOSLS functional, G(q", " ;uc)%,
as the FOSLS functional measures the error in the norm induced
by G: G(q", u"; u)? = G(q" — q,u" — u;0)7. Therefore, conver-
gence of the FOSLS functional to zero implies convergence of our
finite element solution to the true solution. We use uniform octal
refinement and adaptive refinement to test the effectiveness of your
method, with adaptive refinement being carried out by longest edge

Qs

{a) Domain

50

-150

-2501

3

bisection. As G(., ., O)% is equivalent to H(div) x H' norm, a stan-
dard finite-element error estimate implies optimal convergence rate
to be O(h) using uniform refinement with piecewise linear basis
functions.’” This optimal estimate assumes the problem to be H?
regular. The convergence rate degrades as the solution becomes less
smooth. We examine this scenario (dipole) and show that we still
recover optimal convergence using adaptive refinement. In the fol-
lowing results, we refer to G(q", u"; ue)? as the FOSLS norm and
plot convergence rates normalized by the largest value.

Finally, to validate the solutions generated by our implementa-
tion, we compute the solvation free energy of transcription factor
PML (PDB code 1BOR). We compare the computed value with
values found in the literature.

Born Ion

Because of the complex geometries associated with molecules, there
are few analytical solutions to the PBE or linearized PBE; however,
it is possible to find an expression for the potential of a spherical
ion in a solvent.” This system is referred to as the Born ion after
its author Max Born.> The domain is consists of a spherical solute
of radius R with a single point charge Q; at its center. The solute is
surrounded by an unbounded solvent, €2, as depicted in Figure 2a.

Writing the linear regularized PBE in spherical coordinates
yields

_1d 2 d =2 _ =2 R
2 <€(r)r ;M(V)) + i (Nu(r) = —k“(Nuc(r), r#R,

r=R

d d
|:|:€(r)5u(r)i|i| :(Gm_es)auc(r),
r

u(oo) =0

where w = i/ /€. Following [52], we obtain the analytic solution

u(r) = Ciexpl—o(r —R)]/r — Cy/r, R<r,
| - /R, 0<r<R,
_"-l-.____ -
/’"’f
5 |
|\
\ /
| /
y i
\I . )

(h) Convergence

Figure 2. Born ion.
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e 1 e 1
C = C—Qli, and C; = Q1 —.
kgT (1 + wR)eg kgT €n

Figure 3a displays the convergence of the reaction potential u in
the L? norm, where the normalized L? error is plotted as a function
of N, the number of points in the mesh. In three-dimensions, we
observe a convergence rate of nearly O(h?) for uniform refinement,
which corresponds to O(N~2/3). On the other hand, for adaptive
refinement, we observe a slightly better convergence rate. Figure 3b
displays the FOSLS functional residual as the mesh is refined.
In three-dimensions, a convergence rate of O(h) corresponds to
O(N~1/3). We see that the FOSLS functional decreases nearly lin-
ear in h. During refinement, we ensure that new points on the
solute/solvent interface lie on the analytically determined spheri-
cal boundary of the interface. As an example of convergence, in
Figure 2b we display a slice of the true solution, a numerical solu-
tion on the initial mesh, and numerical solutions after two successive
steps of uniform mesh refinement.

Fasciculin 1

The Born ion is a useful test case as the analytical solution is known;
however, it is not a realistic simulation. To study the effectiveness of
the FOSLS formulation on a realistic protein, we compute the reg-
ularized potential of Fasciculin 1 (1FAS in the Protein Data Bank)
in an implicit solvent. 1FAS is a neurotoxin found in green mamba
venom.’* The dynamics and electrostatics of the Fasciculin 2 variant
of this protein in its role as an acetylcholinesterase inhibitor have
been studied in [55] and [56], where the electrostatics are argued to
be important to its function. In our experiments, we use the descrip-
tion of the molecule specified in the PDB file from the Protein Data
Bank and strip off water molecules using VMD.?” The molecule
region is not perfectly spherical, and we do not expect the solution
to be symmetric as we did in the case of Born ion. It is assumed that
the initial mesh defines the solute and solvent regions so that the
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solute/solvent interface in this case is polygonal and defined by the
initial mesh. Consequently, refinement adds points to the polyg-
onal interface. Although the analytical solution for Fasciculin 1
is not known, we are able to monitor the convergence of FOSLS
functional.

Figure 4 shows the normalized convergence rate of FOSLS func-
tional. Both uniform and adaptive refinement perform well, the
convergence rate is better than O(h) for both cases. Figure 5 depicts
adaptive refinement around the Fasciculin molecule. The adaptive
scheme refines aggressively around the areas where the solution is
changing sharply.

Methanol

We examine our method in the more challenging setting of a
methanol molecule, obtained from the APBS software package.'!

10
— Unitorm Refinement |/
' N 'Qfh) Convergence
' - - - Adaptive Refinement
E
(=]
z
7}
. |
3
I
-l
o
™
E
=]
=
10° 10" 10° 10°
Number of Vertices

Figure 4. Fasciculin 1. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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Figure S. Adaptive refinement around the solute/solvent interface of Fasciculin 1.
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Figure 7. Adaptive refinement around the solute/solvent interface of methanol.
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Figure 8. Methanol: Solution around the interface.

The model consists of three charged spheres representing charge
groups: CH3 and H with positive charges of 0.27 and 0.43, respec-
tively, and an O atom with a negative charge of 0.7. The net charge
on the molecule is zero. Figure 6a displays the methanol molecule.

‘We assume again that the initial mesh properly defines the solute
and solvent regions. Figure 6b displays the FOSLS functional as a
function of the number of vertices in the mesh. We see from the
plot that the FOSLS functional does decrease, but the convergence
is slightly less than O(h). On the other hand, adaptive refinement is
ideal for this problem as the solution varies sharply across the inter-
face, indicating areas where local refinement is useful. As Figure 6b
shows adaptive refinement yields slightly better than O(h) conver-
gence. The performance of adaptive refinement is shown in Figures 7
and 8, where the regularized electrostatic potential around the inter-
face is displayed. Figure 7 shows the initial mesh and an adaptively
refined mesh. Figure 8 displays a slice of the regularized solution,
which highlights the areas in which the solution changes rapidly and
also that the solution is not symmetric.

Dipole

In this section we illustrate the performance of our scheme on a
simple dipole, as depicted in Figure 9. The linearized PBE for ions
inside a spherical molecular region has been studied in.® For our
experiment the domain consists of a spherical molecular region of
radius 2 units, with two equal, but opposite unit charges, g+ and g™,
inside. The charges are placed on opposite sides of the x-axis, each at
distance d from the origin (see Fig. 9). As d is increased, the charges
move closer to the interface, the solution becomes less well-behaved,
developing a sharp gradient at the interface. Uniform refinement
does not efficiently resolve the solution in this scenario. However,
adaptive refinement is able to refine locally around the simplices at
the interface, and gives a significantly better convergence rate than
uniform refinement as shown in Figure 10. In particular, the rate of
convergence for adaptive refinement is nearly insensitive to changes
in the parameter d.

Journal of Computational Chemistry

Figure 9. Domain for a simple dipole.

1BOR

Finally, we compute the electrostatic solvation free energy of tran-
scription factor PML (PDB code 1BOR), and compare our value
with the results in ref. 59, where they choose €, = 1, €, = 80. The
electrostatic free energy of solvation is defined by’

1 &
AGur = 5 ,:Zl Qi@ (X)) — Phomo (1)), (38)

where ¢nomo 18 the solution of eq. (2a) in homogenous environment,
thats is €, = €, = 1. In terms of the regularized potential u, the
solvation free energy can be computed as,

1 kT &
DGyt = 52— ) Qju(x) (39)
c =1

On a mesh with 131,086 vertices, we compute the free energy of
solvation equal to —792.577 kcal/mol, which compares well with
the value of —853.7 kcal/mol computed from the MIBPB-III method
in ref. 59. The free energy of solvation is sensitive to the geometry
of the protein surface. We use GAMer to define this interface geom-
etry, and hence our result does not exactly match up with,>® who
surface.
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Figure 10. FOSLS functional convergence rates for a simple dipole.
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Conclusion

The interface jump condition in (11) presents a challenge to design a
single-domain FOSLS approach. We overcome this difficulty with
a choice of a vector parameter q that results in a consistent and
well-posed first-order system. The approach is also useful for solv-
ing the nonlinear equation using a Newton-FOSLS method,®' as
each step of Newton’s method will effectively involve solution of
a linearized Poisson-Boltzmann equation. In this article, we show
that the resulting FOSLS functional defines a norm equivalent to the
norm on H' x H(div), yet can be used in an existing finite element
framework that uses more standard piecewise continuous elements
inH'.

We offer numerical evidence in support of this approach and
test the methodology on several problems. We observe that adaptive
refinement based on the FOSLS functional scheme yields a faster
convergence rate than uniform refinement, and that this effect is
more pronounced for solutions that are more sharply varying.
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