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Abstract

This paper formulates a discrete simulation-based optimization (SO) algorithm for a family of

large-scale car-sharing network design problems. We focus on the profit-optimal assignment of

vehicle fleet across a network of two-way (i.e., round-trip) car-sharing stations. The proposed

approach is a metamodel SO approach. A novel metamodel based on a mixed-integer program

(MIP) is formulated. The metamodel is embedded within a general-purpose discrete SO algorithm.

The proposed algorithm is validated with synthetic toy network experiments. The algorithm is

then applied to a high-dimensional Boston case study using reservation data from a major US

car-sharing operator. The method is benchmarked versus several algorithms, including stochastic

programming. The experiments indicate that the analytical network model information, provided

by the MIP to the SO algorithm, is useful both at the first iteration of the algorithm and across

subsequent iterations. The solutions derived by the proposed method are benchmarked versus the

solution deployed in the field by the car-sharing operator. Via simulation, the proposed solutions
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improve those deployed with an average improvement of profit of 6% and of vehicle utilization of

3%.

The combination of the problem-specific analytical MIP with a general-purpose SO algorithm

enables the discrete SO algorithm to: (i) address high-dimensional problems, (ii) become compu-

tationally efficient (i.e., it can identify good quality solutions within few simulation observations),

(iii) become robust to the quality of the initial points and of the stochasticity of the simulator.

More generally, the information provided by the MIP to the SO algorithm enables it to exploit

problem-specific structural information. This leads to an algorithm with both asymptotic conver-

gence guarantees as well as good short term performance (i.e., performance given few simulation

observations). We view this general idea of combining analytical MIP formulations with general-

purpose SO algorithms, or more broadly with general-purpose sampling strategies of high-resolution

data, as an innovative and promising area of future research.

1. Introduction

In recent years, the most successful trend in the space of urban mobility services has been the

widespread use of shared mobility services, such as ride-sharing, car-sharing, bike-sharing and,

most recently, scooter-sharing (Shaheen and Chan 2016). Major technology companies have been

behind the rapid growth of these shared services. The operators of these services collect abundant

data of the usage of the vehicles and the behavior of the clients (or users). This data provides a

high-resolution disaggregate description of the interaction of demand and supply. This paper is

motivated by the following research question: how can we exploit the rich disaggregate information

in this data to optimize the design and the operations of these new urban mobility services?

As is detailed below, the most common approach to address these optimization problems is to

aggregate the data such as to estimate parameters of a mathematical program, such as a mixed-

integer programming model (MIP) or a stochastic programming model (SP). These mathematical

programs provide an aggregate description of both demand and of the interaction of demand and

supply. This aggregate description enables their computational tractability and their scalability

(i.e., their use for large-scale instances). Nonetheless, through this aggregation a wealth of infor-

mation of the intricate interactions between demand and supply is lost.

A current trend among major technology companies is to design optimization methods that

exploit the rich information in their disaggregate data. Companies are building high-resolution

simulators of their services that sample directly from their disaggregate data and provide a disag-

gregate description of the performance of their services (e.g., Greenhall (2016)). Hence, the next

generation of mobility optimization algorithms will increasingly perform optimization based on

models that provide a disaggregate description of mobility. This paper addresses this need. It for-

mulates a car-sharing optimization problem as a simulation-based optimization (SO) problem, and
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proposes a computationally efficient SO algorithm. We use a disaggregate car-sharing service sim-

ulator, which was developed in collaboration with Ford and with the car-sharing operator Zipcar

(Fields, Osorio, and Zhou 2017). The simulator samples from disaggregate car-sharing reserva-

tion data to estimate (disaggregate) demand (i.e., it yields a set of desired reservations) and then

provides a simple stochastic mapping of how this demand interacts with supply to yield disaggre-

gate reservations (i.e., a final set of realized reservations). The proposed algorithm is an example

of how abundant disaggregate mobility data can be used to perform large-scale (e.g., city-scale)

optimization.

Car-sharing service optimization

Car-sharing has become a popular transportation mode in urban areas in the past decades. Its

deployment, as of 2010, covered over 31,600 vehicles in over 1,100 cities in 26 countries with over

1 million members (Shaheen and Cohen 2013). The car-sharing literature has studied its potential

to reduce the transportation cost of households (Duncan 2011), to complement private-vehicle

ownership (Shaheen and Cohen 2013, Becker, Ciari, and Axhausen 2017) and public transportation

systems (Chiraphadhanakul 2013 Chapter 4, Nair and Miller-Hooks 2014, Zhou 2015 Chapter 3),

as well as to mitigate greenhouse gas emissions and total vehicle miles traveled (Firnkorn and

Müller 2011, Shaheen and Cohen 2013).

The main types of car-sharing service are two-way (also known as round-trip), one-way station-

based, free-floating and peer-to-peer. For full definitions, see for instance Schmöller et al. (2015).

A station is a location with a certain number of vehicle-sharing parking spots. Two-way services

consist of a set of vehicles parked at a set of fixed stations. In advance, customers reserve a vehicle

for a given duration and a given start time. They then pick-up and drop-off the vehicle from the

same predetermined station. Reservations can be made from several months in advance to minutes

in advance. There is no upper limit on the duration of a reservation. As of July 2015, there were an

estimated 1.17 million two-way service members along with 0.31 million one-way service members

in the United States (NCSL 2017). This paper focuses on two-way services with an application to

a Boston case study with Zipcar data. Zipcar is a major car-sharing service provider in the US.

It is also one of the world’s largest car-sharing service provider with operations in more than 500

cities worldwide. It has deployed over 12,000 vehicles around the world (Zipcar 2017). Currently,

Zipcar offers two-way service, one-way station-based service and free-floating service. Round-trip is

the primary service mode for Zipcar and the foundation of its business. Studying the optimization

of its two-way service is critical for Zipcar’s business.

The data we use in this paper consists of two-way car-sharing reservations made in the Boston

metropolitan area. Each reservation contains detailed information, such as creation time (time
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at which the reservation was made), duration, start time, end time, station (location where the

vehicle is to be picked up and dropped off), and other vehicle attributes. Hereafter, we use the

term data-driven to emphasize that: (i) unlike most approaches, we do not aggregate the data,

instead we sample directly from the disaggregate reservation data to yield a disaggregate description

of latent demand; (ii) we then use the disaggregate latent demand as input to a (disaggregate)

simulator that mimics the reservation process or behavior of individual clients (e.g., if their desired

reservation is not available, they may consider opting out or opting for a reservation at another

station or time); this yields a disaggregate set of realized (through simulation) reservations. The

optimization problem studied in this paper is the optimal spatial allocation of a fleet of two-

way car-sharing vehicles to a set of stations. This is a tactical decision that car-sharing operators

typically make on a monthly basis. The corresponding optimization problem is solved offline.

Detailed reviews of vehicle-sharing studies are given in Jorge and Correia (2013), Brandstätter

et al. (2016). Table 1 summarizes some of the recent vehicle-sharing network design literature.

The column “Optimization” indicates whether the method is analytical, simulation-based or a

combination of both. The column “Context” specifies the type of vehicle-sharing service (one-way,

two-way, free-floating) and the type of vehicle (bike, car). The column “Case study size” indicates,

for the main case study of each paper, the number of sites (e.g., locations, regions, stations), the

number of integer and the number of continuous variables (including both decision variables and

auxiliary variables). Cells are left blank for cases where these numbers are not directly reported in

the papers. The “Problem” column specifies the type of decisions the problem addresses.

Operational problems for one-way vehicle-sharing are often more intricate than their two-way

counterparts (e.g., real-time versus offline problems). Hence, most recent studies have focused on

one-way vehicle-sharing. More specifically, there is a vast literature on fleet rebalancing due to its

importance for both one-way and free-floating car-sharing, its relevance to bike-sharing and most

recently scooter-sharing, and also due to the interesting scientific challenges that it presents.

Car-sharing demand-supply interactions are intricate to model, yet are critical to account for

when planning and operating car-sharing services. Studies of car-sharing demand include Millard-

Ball et al. (2005), Stillwater, Mokhtarian, and Shaheen (2009), Ciari, Schuessler, and Axhausen

(2013), De Lorimier and El-Geneidy (2013), Coll, Vandersmissen, and Thériault (2014), Ciari, Bock,

and Balmer (2014), Ciari, Weis, and Balac (2016). The analytical modeling of demand involves

accounting for how the distribution of demand varies as a function of space, time, user-specific

attributes (e.g., value of time, willingness to walk, trip purpose) and other transportation system

attributes (e.g., alternative travel modes for that user and that trip purpose). Moreover, for two-

way car-sharing, the analytical modeling of the interaction of demand and supply is particularly

difficult due to the often low supply capacity: there are typically few car-sharing parking spots



Table 1 Summary of recent related vehicle-sharing network design papers

Paper
Optimization Context Case study size Problem

Analytical
Simulation-
based

One-
way

Two-
way

Free-
floating

Bike-
sharing

Car-
sharing

Site Integer Continuous
Site
location

Fleet
assignment

Station
capacity

Other

Correia and Antunes (2012) X X X 75 0 X X X Rebalance fleet
Cepolina and Farina (2012) X X X 11 9 0 X Fleet size
Chiraphadhanakul (2013,
Chapter 4)

X X X 27 27 X Route user flow

Correia, Jorge, and Antunes
(2014)

X X X 116 0 X X Select trips

Nair and Miller-Hooks
(2014)

X X X X 64 4420 6295 X X X Route user flow

Boyac̈ı, Zografos, and
Geroliminis (2015)

X X X 100 All together ∼ 105 X X

Determine fleet size,
regions served by each
station and number of
relocation personnel,
rebalance fleet

Deng (2015, Chapter 5) X X X 8 11 2 X X
Determine fleet size,
rebalance fleet

Jorge, Barnhart, and
Correia (2015)

X X X X 391 0 X X
Select trips, rebalance
fleet

O’Mahony (2015, Chapter 3) X X X 300 X X
Zhou (2015, Chapter 4) X X X 30 5133 ∼ 1.5× 107 X Route user flow
Jian et al. (2016) X X X X 466 932 0 X X

Lu, Chen, and Shen (2017) X X X X X 9 X X
Route user flow,
rebalance fleet

He et al. (2017) X X X 61 X
Route user flow,
rebalance fleet

This paper X X X X 315 315 0 X
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available at each station. Hence, if a user does not find a vehicle available at the desired time

and station, the user may opt out of renting a vehicle (the demand is said to be lost, and the

historical reservation data is aid to be truncated) or may opt into renting a nearby (e.g., in space,

in time) reservation (the demand is said to spillover or spillback and the historical reservation

is said to be censored). For a detailed description of truncation and censoring in the context of

car-sharing, see Fields, Osorio, and Zhou (2018). The likelihood of truncation and of censoring

can depend on user characteristics (e.g., willingness to walk, car ownership), on trip attributes

(e.g., trip purpose) as well as on the general mobility system (e.g., availability of other competitive

travel alternatives). Additionally, given this low supply capacity, it is important to account for the

temporal order in which users make reservations. In other words, modeling the first-come-first-

reserve principle (i.e., the fact that reservations are prioritized or processed in the order of their

creation time) is important. Due to the difficulties of accurately modeling car-sharing demand, as

well as demand-supply interactions, we propose to directly use disaggregate car-sharing reservation

data that embeds a detailed description of the interaction of demand and supply.

The most popular approach to address vehicle-sharing (both car- and bike-sharing) network

design problems across all service types (two-way, one-way, floating) is the use of analytical mixed

integer programming (MIP). Studies with deterministic demand include Correia and Antunes

(2012), Chiraphadhanakul (2013, Chapter 4), Correia, Jorge, and Antunes (2014), Nair and Miller-

Hooks (2014), Zhou (2015, Chapter 3). Past work in the field has also accounted for demand

uncertainty by using a parametric probability distribution for demand combined with optimization

methods such as stochastic programming and robust optimization (O’Mahony 2015, Chapter 4,

Lu, Chen, and Shen 2017, He et al., 2017).

While stochastic simulators enable a more detailed modeling of demand and supply uncertainties,

and of demand-supply interactions, their use to address optimization problems of realistic dimen-

sions remains intricate. In the context of vehicle-sharing, simulation tools have mostly been used

to evaluate the performance of network designs obtained from analytical models, i.e., the simulator

is used to perform what-if analysis (Cepolina and Farina 2012, O’Mahony 2015 Chapter 5, Ciari,

Balac, and Balmer 2015). Various simulation studies that account for car-sharing (Ciari, Balmer,

and Axhausen 2009, Ciari, Balac, and Axhausen 2016, Balac, Ciari, and Axhausen 2016, 2017) have

been carried out with the MATSim transportation simulation software (MATSim 2018). Studies,

such as Cepolina and Farina (2012) and Deng (2015, Chapter 5), have included the simulator as

part of an optimization framework and have resorted to general-purpose black-box optimization

algorithms such as simulated annealing and particle swarm optimization. The study of Jian et al.

(2016) exploited problem-specific information to yield gradient-type information. Interestingly, Jian

et al. (2016) use the solution of an analytical linear integer program as the initial solution for
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a simulation-based optimization algorithm. Such an approach is also used as benchmark method

in the case studies of this paper. Of particular notice is the large-scale bike-sharing optimization

instance studied in Jian et al. (2016), which considers a set of 466 stations.

Discrete simulation-based optimization

In this paper, in order to enable the direct use of disaggregate car-sharing reservation data for

optimization, we formulate the problem as a discrete simulation-based optimization (SO) problem.

The problem has a simulation-based objective function with discrete decision variables. Constraints

are analytical (i.e., they are not simulation-based). The main challenges of addressing such problems

are the following. There is no analytical expression available for the objective function, hence

traditional (analytical) discrete optimization algorithms cannot be used. The objective function

can only be estimated by running a set of stochastic simulation replications. Discrete SO problems

inherit the curse of dimensionality of discrete analytical problems. Since simulation is used, the

objective function is often an intricate (e.g., non-convex) function of the decision variables with

several local optima.

There are a variety of discrete SO algorithms in the literature; recent reviews include Nelson

(2010) and Hong, Nelson, and Xu (2015). Discrete SO algorithms include Convergent Optimiza-

tion via Most-Promising-Area Stochastic Search (COMPASS) (Hong and Nelson 2006), Adaptive

Hyperbox Algorithm (AHA) (Xu, Nelson, and Hong 2013), R-SPLINE (Wang, Pasupathy, and

Schmeiser 2013), and cgR-SPLINE (Nagaraj 2014). Methods that aim to identify solutions with

good performance at an early stage (i.e., within few simulations) include an extension of COM-

PASS known as the Industrial Strength COMPASS (ISC) (Xu, Nelson, and Hong 2010), as well as

extension of AHA known as ISC-AHA (Xu, Nelson, and Hong 2013). Other common approaches

to discrete SO problems include ranking-and-selection (R&S) techniques, such as Chick and Inoue

(2001), Frazier, Powell, and Dayanik (2008). An R&S review can be found in Swisher, Jacobson,

and Yücesan (2003).

Discrete SO algorithms are most often designed: (i) as general-purpose algorithms, i.e., they

can be used to address a broad family of optimization problems, their use is not limited to trans-

portation problems, and (ii) based on asymptotic convergence properties, there is limited focus

on their short-term (i.e., small sample performance). The performance of these general-purpose

discrete SO algorithms is typically illustrated with low-dimensional problems (e.g., around 20 deci-

sion variables). Few studies have reported higher-dimensional instances. The work of Xu, Nelson,

and Hong (2013) reported experiments where AHA successfully addressed problems with up to

100 decision variables. Developing discrete SO algorithms that are suitable for high-dimensional

problems remains a challenge. Past studies, such as Xu, Nelson, and Hong (2013), illustrate that



Author: Large-Scale Data-Driven Simulation-Based Car-Sharing Network Design
8 Article submitted to Transportation Science; manuscript no. TS-2017-0313

for locally convergent general-purpose discrete SO algorithms, the quality of the final solution is

sensitive to the quality of the initial solution. Hence, there is also an interest to develop algorithms

with enhanced robustness to the quality of the initial solution.

There is a lack of studies that evaluate the performance of general-purpose discrete SO algorithms

for high-dimensional problems and under tight computational budgets (i.e., within few simulation

runs). Nonetheless, when using simulators to address optimization problems, practitioners often

use the algorithms under tight computational budgets (e.g., they terminate the algorithm once a

fixed time or a fixed number of iterations have elapsed). Hence, there is a need for computation-

ally efficient algorithms. These are algorithms that provide solutions with improved performance

(compared to initial solutions or solutions deployed in the field) within few simulation runs.

In transportation, fundamental optimization problems are naturally formulated as discrete prob-

lems. Additionally, realistic case studies quickly lead to high-dimensional instances. Hence, this

paper designs a discrete SO algorithm that is both computationally efficient and suitable for high-

dimensional problems. Moreover, the case studies of this paper, illustrate the robustness of the

algorithm to the quality of the initial point.

This paper focuses on metamodel SO approaches. In past work, we have formulated metamodel

SO algorithms for various continuous SO transportation problems (Osorio and Nanduri 2015,

Chong and Osorio 2017, Zhang, Osorio, and Flötteröd 2017, Osorio, Chen, and Santos forthcoming,

Osorio forthcoming). A recent review of metamodel SO methods appears in Osorio and Chong

(2015). A more detailed description of commonly used metamodels is given in Section 2.2. To

the best of our knowledge, the use of metamodel approaches for discrete SO has been limited to

low-dimensional problems (with up to 15 decision variables). In the broader area of transportation

(i.e., not limited to vehicle-sharing) discrete SO has been used in studies such as Jung et al. (2014),

Chen et al. (2015), Sebastiani, Lüders, and Fonseca (2016), Jian et al. (2016), Boyac̈ı, Zografos,

and Geroliminis (2017).

This paper formulates a novel metamodel for a family of car-sharing SO problems. We then

combine the metamodel with an existing general-purpose discrete SO algorithm, known as AHA,

leading to a novel metamodel SO algorithm. The proposed algorithm preserves the asymptotic

convergence properties of the general-purpose algorithm. More specifically, the proposed algorithm

remains a locally convergent algorithm.

In this paper, we use a car-sharing network simulator (Fields, Osorio, and Zhou 2017), which

relies on few demand modeling assumptions. Instead, it relies primary on sampling from disag-

gregate car-sharing reservation data. It provides a detailed description of the spatial-temporal

distribution of demand as well as of demand-supply interactions. Unlike most methods that aggre-

gate the data to fit aggregate model parameters, we use the data in disaggregate form. Hence, we

refer to our method as a data-driven SO algorithm.
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In Figure 1, we show the basic logic of the data-driven metamodel SO framework. The main idea

is that historical disaggregate car-sharing reservation data (which represents potentially censored

or truncated demand) is used to estimate disaggregate latent (i.e., uncensored and untruncated)

demand (for a detailed description of this demand estimation methodology, see Fields, Osorio, and

Zhou (2018)). For a given latent demand and a given supply solution (i.e., a given spatial allocation

of the vehicle fleet), the simulator stochastically evaluates the performance of the solution, this

yields a set of disaggregate reservations (which may have been censored). Every time new supply

solutions are evaluated via simulation, the metamodel is updated (i.e., its parameters are fitted by

using the current set of simulation observations) and then used to solve an analytical optimization

problem. More specifically, the metamodel optimization problem is a mixed-integer program (MIP).

While the analytical metamodel (i.e., the MIP) provides an aggregate description of demand and

of demand-supply interactions, the simulator operates based on a disaggregate representation of

demand (i.e., individual desired reservations) and of demand-supply interactions (i.e., individual

realized reservations).

Fit metamodel parameters.
Optimize metamodel
by solving a MIP

Simulator

Reservation process

Demand estimation

Historical
disaggregate
reservation
records

New supply
solution

Simulated perfor-
mance of the solution.
Disaggregate simu-
lated reservations

Disaggregate
latend demand

Figure 1 Data-driven metamodel SO framework

The contributions of this paper can be summarized as follows.

Data-driven technique The most traditional approach to car-sharing service optimization has

been analytical optimization. This comes at the cost of a simplified description of demand and

of demand-supply interactions. In this work, our goal is to acknowledge both the intricacy of a

car sharing service (e.g., intricate demand distribution, intricate demand-supply interactions), as

well as the availability of high-resolution data. Hence, we propose a method that relies heavily on
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the rich reservation data and uses limited modeling assumptions. The information captured in the

data about the underlying demand distribution and demand-supply interactions is preserved and

exploited at a disaggregate level. To the best of our knowledge, this is the first work to design

an algorithm that preserves this high-resolution information of the data (i.e., does not merely

aggregate the disaggregate data) for car-sharing network design optimization. Case studies with

data from Zipcar’s Boston market are carried out.

High dimensional discrete SO problems The proposed algorithm is suitable to address high-

dimensional network design problems. In Section 3.3 and 3.4, we use it to address a Boston

metropolitan area case study with 315 stations. General-purpose discrete SO algorithms have been

extensively used to tackle problems with roughly 20 decision variables. Our enhanced scalability

comes at the cost of proposing an algorithm tailored for a specific class of network design prob-

lems, while the general-purpose algorithms can be used for a broader class of general discrete SO

problems. We achieve scalability by formulating and embedding within the general-purpose algo-

rithm AHA information from a MIP. This yields the proposed discrete SO algorithm, which we

call MetaAHA. The approach combines the merits of both analytical optimization methods (i.e.,

tractability and scalability) and of simulation-based optimization methods (i.e., we can sample

directly from the disaggregate data to enable a detailed description of demand and of demand-

supply interactions).

Computationally efficient algorithm The proposed algorithm is designed to identify good

quality solutions within few iterations (i.e., when few simulation observations are available). This

differs from most discrete SO literature which is focused on asymptotic performance. This efficiency

is achieved through the novel metamodel formulation which embeds a non-simulation-based repre-

sentation (a MIP formulation) of the network design problem. In other words, the simulator is no

longer treated as a black box, instead analytical problem-specific information is embedded within

the SO algorithm. The results of Section 3 indicate that this analytical structural information is

the key to achieving computational efficiency. They also illustrated how the combination of the

proposed metamodel along with a general-purpose discrete SO algorithm yields an algorithm with

both good short-term and asymptotic performance properties. Moreover, the metamodel enables

the general-purpose algorithm to become robust to the quality of the initial solution.

Metamodeling for discrete SO The main feature of the proposed algorithm is the formulation

of a metamodel, (i.e., an analytical approximation of the simulation-based objective function) that

has a functional form that is problem-specific. Such metamodel ideas for transportation problems

have been successfully formulated for various continuous SO problems. This is the first paper that

extends these ideas to the discrete SO setting. The paper shows that by using such metamodel

ideas, high-dimensional discrete SO problems can be addressed in a computationally efficient way.
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The paper shows how the proposed metamodel ideas enable general-purpose discrete SO algorithms

to become more scalable (i.e., suitable for higher-dimensional problems). Since fundamental OR

transportation optimization problems (e.g., routing) are naturally formulated as discrete optimiza-

tion problems, the ideas of this paper lay the foundations for a variety of important and difficult

transportation problems to be addressed efficiently with data-driven, or simulation-based, network

models.

Section 2 formulates the proposed methodology. Its performance is evaluated and benchmarked

in Section 3 with experiments on both synthetic toy networks and Boston networks. Conclusions

are presented in Section 4. Algorithmic details are presented in Appendix A. The formulation of

the SP model that is used as a benchmark in Section 3.4 is given in Appendix B. Additional

implementation detailes are given in Appendix C.

2. Methodology

This section presents the proposed methodology. The network design problem is formulated in

Section 2.1. The general metamodel SO framework is discussed in Section 2.2. The metamodel for

the considered car-sharing network design problem is formulated in Section 2.3 and the proposed

algorithm is described in Section 2.4. The car-sharing network simulator used in this paper as well

as the role of the car-sharing data are summarized in Section 2.5.

2.1. Network design problem formulation

We consider a two-way car-sharing system from the perspective of the car-sharing operator. The

network design problem is to assign a fleet of vehicles across a network of stations such as to

maximize the expected profit. We also refer to this problem as the fleet assignment problem. The

network design problem is studied for a given finite time horizon, which we refer to as the planning

period. To formulate the problem, we introduce the following notation.

xi number of cars assigned to station i (decision variable);
x vector of xi’s for all i∈ I;
R(x;q1) random variable representing the revenue;
g(x;q1) expected profit (SO objective function);
ci cost, over the planning period, of a parking space at station i;
q1 exogenous simulation parameter vector (e.g., reservation pricing);
N i capacity of station i (i.e., number of parking spots);
X total fleet size (i.e., number of cars to assign);
I total number of stations;
I set of all stations, I = {1,2, . . . , I};
F feasible region.

The problem is formulated as follows:

max
x

g(x;q1) =E[R(x;q1)]−
∑
i∈I

cixi (1)
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subject to ∑
i∈I

xi ≤X (2)

xi ≤N i ∀i∈ I (3)

xi ∈Z+ ∀i∈ I. (4)

The objective function represents the expected profit for a given fleet assignment vector, x. It is

defined as the difference between the expected revenue E[R(x;q1)] and the costs. The expected

revenue is a simulation-based function, estimates of which can be obtained via simulation. The cost

parameters, ci, are exogenous. In this work, they represent parking space leasing fees. Constraint (2)

bounds the total number of cars assigned across all stations with the fleet size. Constraint (3)

bounds the number of cars assigned to each station i with the space capacity of the station. The

number of cars assigned to each station are assumed to be non-negative integers (Constraint (4)).

Constraints (2)-(4) specify the feasible region, F .

The expectation in the objective function accounts for the stochasticity in the simulation process.

The simulator, which is summarized in Figure 1 and described in more detail in Section 2.5,

combines a sampling procedure that samples from a set of car-sharing reservation data and an

assigning procedure that determines whether a reservation request will be satisfied and how it

will be satisfied. In other words, realizations of the revenue random variable R are obtained by

sampling from car-sharing reservation data. The sources of uncertainty include: (i) a stochastic

sampling process that samples from the historical reservation data to infer a set of disaggregate

latent demand (or desired reservations); (ii) a stochastic description of how demand and supply

interact and how truncation and censoring occur (e.g., probability with which a user for which

his/her desired reservation is not available, decides to opt out of making a reservation or decides

to find a substitute reservation).

The challenges of addressing discrete SO problems, such as Problem (1)-(4), were detailed in

Section 1. Given these challenges, we propose an algorithm that at every iteration, uses the set of

estimates of g obtained so far to formulate and solve an (approximate) analytical discrete problem

that: (i) provides good quality solutions to the underlying SO problem, (ii) can be solved efficiently

for high-dimensional instances, and (iii) can be solved with a variety of widely-used commercial

solvers.

Note that the traditional approach to address this fleet assignment problem is to formulate it

as a MIP (such a formulation is given in Section 2.3), or as a stochastic programming model.

The problem would no longer be simulation-based, and hence large-scale instances could be solved

efficiently. Nonetheless, this would come at the cost of using only aggregate information from the
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car-sharing reservation data (since the data would merely be used to fit a set parameters of the

analytical mathematical programs) and of embedding a simplified description of demand-supply

interactions, as is detailed below.

A stochastic programming model is used as a benchmark method in the case study of Section 3.4.

Compared to its SP counterpart, the simulator provides a more detailed description of the trun-

cation and of the censoring of demand. First, it satisfies the first-come-first-reserve principle, i.e.,

the desired reservations are processed in the order of their creation time (which is obtained from

the historical data). Second, when a user’s desired reservation is not available and he/she decides

to consider alternate substitute reservations, the simulator considers a sequential process where

feasible substitute reservations are ranked by a distance metric (for instance, available vehicles

that are closer in spatial or temporal distance, are more likely to be a substitute than those further

away). These aspects could be naturally formulated as analytical nonlinear functions, or based on

analytical linear approximations. Nonetheless, the resulting SP would be less tractable and less

scalable.

As is detailed below, the proposed methodology combines the advantages of using a simulation-

based model (which allows for the use of more detailed models and historical data) and those of

an analytical mathematical program (which allows for computational tractability and scalability).

2.2. General metamodel approach

Let us first briefly present the main ideas of the metamodel SO approach, which are based on the

continuous SO framework of Osorio and Bierlaire (2013). To formulate the problem, we introduce

the following notation.

k iteration index of the SO algorithm;
mk metamodel at SO iteration k;
βk vector of metamodel parameters at SO iteration k, element i is denoted βk,i;
z vector of endogenous variables;
q2 vector of exogenous parameters;
gA approximation of g (Equation (1)) derived by the analytical

network model;
h constraints of the analytical network model.

The main idea of metamodel SO is to replace the simulation-based objective function (1) with an

analytical approximation, which is known as the metamodel. In the metamodel literature, general-

purpose functions (e.g., low-order polynomial functions, radial-basis functions, Kriging functions)

are the most common choice both for continuous SO problems (Jones, Schonlau, and Welch 1998,

Barton and Meckesheimer 2006, Wild, Regis, and Shoemaker 2008, Kleijnen, Van Beers, and

Van Nieuwenhuyse 2010, Ankenman, Nelson, and Staum 2010) and for discrete SO problems (Xu

2012, Sun, Hong, and Hu 2014, Salemi 2014 Chapter 4, Xie, Frazier, and Chick 2016). They are
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chosen based on their mathematical properties. They are referred to as general-purpose functions

because their choice does not depend on the specific problem formulation (i.e., their functional form

is invariant to the choice of the objective function (1)). Nonetheless, due to this generality, their

functional form does not embed any problem-specific structural information. Osorio and Bierlaire

(2013) propose to formulate metamodels that embed problem-specific information. By doing so,

the resulting SO algorithms have enhanced computational efficiency, scalability and robustness to

both simulator stochasticity and to the quality of the initial solutions.

In this paper, we follow the idea of Osorio and Bierlaire (2013). The metamodel is defined by

(5) as the sum of a problem-specific function (gA) and a general-purpose linear function (term

within parenthesis of (5)). The problem-specific function (gA) is the analytical objective function

of a mathematical program (more specifically of a mixed-integer linear fleet assignment problem),

which embeds a simplified representation (compared to the simulator) of the mapping between the

supply configuration (x) and the expected profit (g of (1)). The goal of gA is to provide a good

analytical approximation of the simulation-based objective function for the considered problem.

Nonetheless, this analytical approximation is not expected to be accurate (due to the more detailed

and intricate models of demand and of supply embedded in the simulator, that are not accounted

for in the mathematical program). Hence, the metamodel (5) can be thought of as the objective

function of a MIP that is corrected for parametrically by both a scaling term (scalar βk,0 of (5))

and an additive linear error term (term within parenthesis of (5)). To the best of our knowledge,

this is the first work to consider a metamodel that combines both a problem-specific component

and a general-purpose component for discrete SO problems.

At a given iteration k of the SO algorithm, we solve the following analytical problem, referred

to as the metamodel optimization problem.

max
x,z

mk(x,z;βk,q2) = βk,0gA(x,z;q2) +

(
βk,1 +

∑
i∈I

βk,i+1xi

)
(5)

h(x,z;q2) = 0 (6)

x∈F . (7)

Since gA is the objective function of a MIP, the corresponding constraints of the MIP are represented

here through the function h of (6). These are formulated in detail in Section 2.3. The constraints

of Section 2.3 consist of both equality and inequality constraints. They are summarized here as a

set of equality constraints (they can equivalently be represented as a set of inequality constraints).

The metamodel optimization Problem (5)-(7) differs from the simulation-based optimization

Problem (1)-(4) in that: (i) it replaces the (unknown) simulation-based objective function (g of (1))

with an analytical function (mk of (5)); (ii) it has additional constraints (Eq. (6)). The main feature
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that has allowed us in the past to design efficient algorithms for continuous SO problems is the

formulation of a metamodel that embeds an analytical and problem-specific approximation of g(x).

This is the key component of the approach, yet this is also where the main methodological challenge

lies because it is necessary to formulate an analytical model that: (i) provides a good approximation

of the intricate function g(x), which as will be discussed in Section 2.3 is particularly difficult for

this car-sharing context, (ii) is scalable (i.e., is suitable to address high-dimensional instances),

and (iii) is computationally efficient. The latter is critical because the metamodel optimization

problem is solved at every iteration of the SO algorithm. Hence, it should be sufficiently efficient

to warrant the allocation of computing resources to solving it rather than to running the simulator

(i.e., simulating new points or increasing the accuracy of the estimates of simulated points).

The metamodel (mk of (5)) is a parametric function with parameter vector βk. The latter

are fitted, at every iteration of the SO algorithm, by solving a problem that minimizes a least

squares distance between metamodel predictions and simulation observations. For more details,

see Problem (14) in Appendix A. As discussed above, the main challenge in this approach is

the formulation of a computationally efficient and scalable problem-specific approximation of g,

denoted here gA. Let us now present the proposed formulation.

2.3. Car-sharing network design metamodel formulation

To formulate the analytical problem-specific component of the metamodel, gA, which approximates

the profit of a given network design strategy, we introduce the following additional notation.

ditl number of customers that desire a reservation at station i with start time t
and duration l;

rtl revenue from a reservation with start time t and duration l;
pij discount to the revenue if a reservation is desired for station i but is

fulfilled at (i.e., is made at) station j;
zitl number of customers that make a reservation at station i with start time

t and duration l;
zijtl number of customers that desire to make a reservation at station i with

start time t and duration l but make an adjusted reservation at station
j with start time t and duration l;

tmax number of one-hour reservation start time intervals during the planning
period (e.g., for an n-day planning period, tmax = n× 24);

lmax maximum reservation duration;
Ii set of stations “near” station i, including station i;
L set of reservation durations (in hours), L= {1,2, . . . , lmax};
T set of reservation start time interval indices, T = {1,2, . . . , tmax};
T1(t, l) set of reservation start times for reservations with duration l that are ongoing

at time t (i.e., they start prior to t and have not finished at time t).

The vector z defined in Section 2.2 consists of all variables {zitl} and {zijtl }. The function gA is

formulated as:

gA(x,z;q2) =
∑
i∈I

∑
j∈Ii

∑
t∈T

∑
l∈L

pijrtlz
ij
tl −

∑
i∈I

cixi. (8)
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This function is defined as the difference between the total revenue and the total cost. Note that

in the total revenue expression, we give a discount (pij) for reservations that are adjusted (i.e.,

the initial desired reservation was not feasible because a car was not available). This allows us to

account for the impact on revenue of demand spillback (i.e., demand censoring). Note that demand

spillback and loss are described in a more detailed and disaggregate manner in the simulator (see.

Section 2.5).

The auxiliary variable zijtl is related to the decision vector x through the analytical network

model, which is denoted by h in Equation (6) and is defined as follows.∑
j∈Ii

zjitl = zitl ∀i∈ I,∀t∈ T ,∀l ∈L (9)∑
j∈Ii

zijtl ≤ ditl ∀i∈ I,∀t∈ T ,∀l ∈L (10)∑
l∈L

zitl +
∑
l∈L

∑
t′∈T1(t,l)

zit′l ≤ xi ∀i∈ I,∀t∈ T (11)

zitl ∈R+ ∀i∈ I,∀t∈ T ,∀l ∈L (12)

zijtl ∈R+ ∀i∈ I,∀j ∈ Ii,∀t∈ T ,∀l ∈L, (13)

where T1(t, l) = {t′ ∈ T : t′+ 1≤ t≤ t′+ l− 1}. Equation (9) states that zitl, the number of reserva-

tions at station i with start time t and duration l, is the sum of all desired reservations at station

j (with start time t and duration l) that were shifted to station i. Note that i ∈ Ii, hence this

summation includes the reservations that were desired and also made at station i (with start time

t and duration l). Equation (10) is a demand constraint. The right-hand side is the total demand

for station i with start time t and duration l. The left hand side considers the set of reservations

with a preference for station i start time t and duration l. This summation includes reservations

where: (i) the preference was available and was made, (ii) the preference was not available and

the reservation was adjusted and made at a neighboring station j (with the same start time t and

the same duration l). For a given fleet assignment, the difference between the right-hand side and

the left-hand side represents the lost demand for reservations at station i with start time t and

duration l. The left-side of the Constraint (11) consists of two terms. The first term represents the

total number of reservations at station i that start at time t. The second term represents the total

number of reservations at station i that have started prior to time t and are still ongoing. Hence,

Constraint (11) ensures that at station i and time t, the number of reserved cars (left-side of the

inequality) is bounded above by the number of cars assigned to station i. Constraints (12) and

(13) assume non-negative real values for the auxiliary variables (zitl and zijtl ). The use of real-valued

auxiliary variables, rather than integer variables, contributes to the computational efficiency of

this analytical approximation. In this model, the exogenous parameters are ditl, rtl, ci, p
ij, tmax and
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lmax. Together they form the exogenous parameter vector q2. The endogenous variables are zitl, z
ji
tl

and xi. The exogenous parameters rtl, ci, p
ij and lmax are directly estimated from the data and in

consultation with Zipcar staff. Note that we have 0≤ pij ≤ 1 and pii = 1 for all i ∈ I and j ∈ Ii.
A discussion on the simplifications of this analytical model compared to the simulator is given in

Section 2.5.

The demand parameters (ditl) are estimated by sampling from the historical reservation data to

estimate latent demand. For a description of the demand sampling step, see Section 2.5. Since this

data sampling is stochastic, the case studies of Section 3 consider experiments based on different

realizations of the sampling (i.e., they consider different latent demand estimates). This serves to

evaluate the impact of varying demand on the performance of the proposed method. Moreover,

the SP, which is used as one of the benchmark algorithms in Section 3.4, considers a set of latent

demand realizations. This data sampling process yields a set of disaggregate desired reservations,

which are then aggregated to estimate the aggregate parameters ditl. The simulator, unlike the

analytical MIPs (metamodel MIP or SP), uses the disaggregate demand without aggregating it.

For any station i ∈ I, if we assume the maximum number of stations in the neighborhood of

i, Ii, is smaller than a constant W , i.e., |Ii| ≤W , then the number of auxiliary variables of the

metamodel is in the order of O (W |I||T ||L|), and the number of constraints is in the order of

O (|I||T ||L|). Hence, by bounding the duration of the planning period and the maximum duration

of a reservation, the number of variables and the number of constraints increase linearly with the

number of stations. This contributes to the scalability of the model. In summary, the metamodel

optimization problem is a mixed-integer linear model, which can be solved in a computationally

efficient way with a variety of standard solvers. For the case studies of Section 3.2, the MIP (5)-(7)

is solved on average in 2.4 seconds for the the Boston South End network and in 35.1 seconds for

the large-scale Boston network of Section 3.3.

2.4. Discrete SO algorithm: MetaAHA

The proposed metamodel is embedded within a general-purpose discrete SO algorithm. We have

chosen the Adaptive Hyperbox Algorithm (AHA) of Xu, Nelson, and Hong (2013). As discussed

in Section 1, AHA has been used to solve high-dimensional problems with a decision vector of

dimension 100. AHA is a locally convergence random search algorithm. We use the term current

iterate, denoted xk, to refer to the point considered to have best performance at iteration k. The

name AHA stems from the sampling, at every iteration, from a region which is the intersection

of the feasible region and the hyperbox (for more details, see Appendix A). The latter is centered

at the current iterate with a size that is updated, at every iteration, based on the performance of

the current iterate and of its neighbors. Let Hk denote the hyperbox at iteration k. The proposed

algorithm, denoted MetaAHA, is an extension of AHA. Algorithm 1 presents MetaAHA.
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Algorithm 1 MetaAHA

Initialization:

— Initialize parameters: iteration index k= 1, hyperbox H1 = {x : 0≤ xi ≤N i,∀i∈ I}, set n

(the number of solutions to simulate per iteration). Set the number of randomly sampled

solution in each iteration r= n− 2. For the metamodel parameter vector β1, set β1,0 = 1

and β1,i = 0 (∀i≥ 1).

Step 1: identify the set of n points to sample

— Step 1a: obtain r points in F ∩Hk based on the asymptotically uniform sampling mech-

anism of AHA.

— Step 1b: obtain 1 point, denoted xmeta
k , as the solution to the metamodel optimization

Problem (5)-(7).

— Step 1c: obtain 1 point, denoted xmeta-hyper
k , as the solution to the metamodel optimization

Problem (5)-(7) with the additional constraint that the point belongs to Hk.

Step 2: simulation

— Following the procedure of AHA: simulate the points identified in Step 1; simulate xk−1

(for k > 1); select the point with best performance xk (i.e., update the current iterate);

update the hyperbox.

Step 3: check for algorithm termination

— Step 3a: test if xk is a local optimum following the procedure of AHA. If so, stop.

— Step 3b: if the total number of iterations exceeds the maximum number of iterations (i.e.,

if the computational budget is depleted), stop.

Step 4: metamodel update

— Step 4a: for any simulated point x that has not been evaluated by the analytical network

model, evaluate it (i.e., for a given x, maximize gA(x,z) of Equation (8) over z subject

to Constraints (9)-(13)).

— Step 4b: use all simulation observations collected so far to fit the metamodel parameter

βk (i.e., solve the least squares Problem (14) defined in Appendix A).

Step 5: update iteration counter

— Set k= k+ 1, proceed to Step 1.

Each iteration k of the algorithm consists of 4 main steps. Step 1 identifies the set of points to

simulate. These can be new points that have not been simulated before or points that have already

been simulated and for which we will run additional simulation replications. Step 2 simulates these

points. Step 3 checks whether termination criteria are satisfied. Step 4 uses the set of all simulation
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observations collected so far and updates the fit of the metamodel. Additional algorithmic details

and a flowchart summary of MetaAHA are given in Appendix A.

Algorithm AHA is obtained from MetaAHA by omitting Steps 1b, 1c , 3b and 4; and setting r (of

Step 1a) to n (while for MetaAHA r= n−2). Steps 1b and 1c solve mixed-integer programs. These

steps yield solutions to MIPs. Hence, they exploit problem-specific analytical structural information

provided by the analytical network design model. This information enables the algorithm to: (i)

identify points with good performance within few, or even no, simulation runs because the analytical

network design model can be solved without available simulation observations, and (ii) become less

sensitive to the quality of the initial sample. This sensitivity to the quality of the initial sample

has been identified and discussed in past AHA work (Xu, Nelson, and Hong 2013). While both

Steps 1b and 1c exploit this problem-specific analytical information, Step 1c does so within the

hyperbox, leading to the identification of local points with good performance, while Step 1b does

so in the entire feasible region, leading to the identification of global points with good performance.

In Step 2, we determine the number of replications to simulate for each point (this is done based

on the approach of AHA, which is also described in this paper in Appendix A), we simulate the

points and then update both the hyperbox and the current iterate. In Step 3b, if the computational

budget is depleted, then the algorithm is terminated without convergence. This serves to reflect

the most common way in which these algorithms are used in practice.

Note that MetaAHA does not change the main building blocks of the basic algorithm AHA. It

merely complements it by adding a problem-specific sampling strategy which is based on the use

of the metamodel. Hence, AHA’s asymptotic local optimality guarantee is preserved. MetaAHA

illustrates how a variety of general-purpose discrete SO algorithms can be complemented with

such problem-specific sampling strategies to improve their robustness to the quality of the initial

points as well as their short-term (i.e., small sample) performance. For practitioners, who typically

use these algorithms under tight computational budgets, this has the potential to improve the

performance of these general-purpose algorithms.

2.5. Two-way car-sharing simulator

We summarize here the main ideas underlying the simulator. For more details on the specification of

the simulator as well as on its validation, see Fields, Osorio, and Zhou (2017). The simulator takes

as input disaggregate historical reservation data, estimated daily demand per station (i.e., total

daily number of reservations desired per station), a fleet assignment strategy, and yields as output

a set of realized reservations (reservations actually made) with the corresponding network-wide

profit.
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More specifically, the simulation process consists of two main parts, as summarized in Figure 1.

The first step, referred to as the demand sampling step, samples from the data such as to (approx-

imately) obtain a set of desired reservation requests (i.e., reservations that users would ideally

desire to make). These reservations can be thought of as realizations of latent demand. Hence, we

distinguish between realized demand (an empirical distribution of which is given by the dataset)

and latent demand. The second step, referred to as the reservation simulation step, considers a

given latent demand (i.e., a given set of desired reservations) and simulates the reservation process

as follows. It ranks, and then sequentially processes, the desired reservations by increasing creation

time. For a given reservation, if a car is available (at the desired station and during the desired

time interval), then the reservation is made. Otherwise, with a given probability the client will

either not make a reservation (this is referred to as lost demand) or it will consider an “adjacent”

reservation, which is either at a nearby station or at a nearby start time (this is referred to as

demand spillback; it accounts for demand censoring). The probability depends on the distance

between the initially desired reservation and the considered adjacent reservation. Once a given

reservation is made, other users cannot use the same car at any time during this reservation period.

This procedure mimics the first-come-first-reserve process.

The most important input to the simulator is the set of historical disaggregate reservation data.

In this work, we use Zipcar data. For each reservation observation in the dataset, the following

attributes are used: station (this is both the pick-up and the drop-off location), start time, duration

and reservation creation time (i.e., the timestamp of when the reservation was made). Additionally,

based on information available online we have estimated reservation revenues. The time resolution

of the simulator is based on that of the data which is 30 minutes. This means that reservation

durations and reservation start times are defined in 30 minute increments.

A main feature of this simulator is that this reservation process simulation is based on a handful of

parameters, which are estimated from the data. Additionally, there are few modeling assumptions,

which were made in consultation with Zipcar staff. They include the probability of considering an

adjacent reservation and the formulation of a distance metric between reservations. Each of the two

steps of the simulation process described above (i.e., demand sampling and reservation simulation)

are stochastic. In other words, the generation of a set of desired reservation requests is stochastic

and the mapping of a desired reservation to a realized (or even a lost) reservation is also stochastic.

We now present the main simplifications of the analytical network model compared to the sim-

ulator. These simplifications contribute to the formulation of an efficient analytical metamodel.

First, the analytical model does not enforce the first-come-first-reserve rule of the simulator. In

other words, for a given set of reservation requests, they will not be processed by increasing order of

reservation creation time. Instead, the set of reservations that leads to highest (metamodel) profit
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will be realized regardless of their respective creation times. Second, the analytical model allows

for reservations to be adjusted in space (i.e., change of station) but not in time (i.e., the start time

of a desired reservation cannot change). Third, the adjustment process is simplified. For a given

reservation, the simulator checks whether it is available, and if not with a certain probability it

considers to either not make any reservation (leading to lost demand) or to attempt a nearby (in

space and time) reservation (leading to demand spillback). The simulator iterates on these steps

(i.e., a given client may attempt to make several reservations before deciding on a final reserva-

tion or before deciding not to make a reservation). In the analytical model, there is no sequential

reservation process. Instead, demand spillback is approximated through the discounted revenue

parameter, pij of Eq. (8). Fourth, the simulator considers a time resolution of 30 minutes (i.e.,

reservation start times and durations are defined in 30 minute increments), while the analytical

model considers a time resolution of 1 hour.

3. Case studies

In this section, we apply MetaAHA to optimize the design of two-way car-sharing systems. Sec-

tion 3.1 considers a low-dimensional problem with synthetic toy networks. Sections 3.2-3.4 consider

high-dimensional problems for Zipcar’s Boston market. We study its two-way services for two

Boston areas: (i) an area of downtown Boston known as South End (Section 3.2) and (ii) a larger

network that includes 23 zipcodes of the Boston metropolitan area (they include Allston, Arlington,

Boston, Brighton, Brookline, Cambridge, Charlestown, Chelsea, Medford and Somerville) (Sec-

tion 3.3 and 3.4). All experiments are conducted on a machine with 125GB RAM with an Intel

Xeon E5-2630 v3 processor.

3.1. Synthetic toy networks

The goal of these low-dimensional synthetic experiments is to evaluate the quality of the analytical

approximation (gA of Equation (8), which is provided by the analytical network model) of the

simulation-based objective function (g of Equation (1)). We consider 3 networks with topologies

that are simple and are representative of subnetwork topologies of Zipcar’s Boston network. The 3

networks are displayed in Figure 2. Each circle represents a car-sharing station. Each network has

four stations. Recall from Section 2.3 that, in the analytical model, when the desired reservation

of a user is not available, he/she may consider a substitute chosen from a set of neighbors that

are defined as spatially nearby locations (this set was denoted Ii in Section 2.3). In other words,

these are stations where the demand can spillover. In Figure 2, for a given station i, its set of

neighbors or substitute stations, Ii, is the set of stations that are connected with an edge to

station i. Hence, the three network topologies of Figures 2a, 2b and 2c consider, respectively, a

loosely connected network of stations, where no stations share any neighbors; a centralized network,
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where all stations have the center station as a neighbor; and a fully connected network, where all

stations are neighbors with all other stations. Each station has a capacity of 6 vehicles (i.e., N i of

Equation (3) equals 6), the fleet size is unlimited (i.e., X of Equation (2) takes any value such that

X ≥ 24). Hence, the feasible region is {x∈ [0,6]
4∩Z4}, which contains 2401 feasible solutions. The

data used for simulation is the Zipcar reservation data related to such a subnetwork. The planning

period is an 8-day period in July 2014 (July 10 to July 17).

(a) Toy network 1 (b) Toy network 2 (c) Toy network 3
Figure 2 Toy network topologies

For each network, we generate a group of 10 demand scenarios. A demand scenario consists of

the desired reservations generated through the demand sampling step described in Section 2.5. The

use of various demand scenarios serves to account for demand stochasticity. For a given point, x,

one simulation replication (i.e., one simulation-based realization of its performance) is defined as

the average simulated performance over the 10 demand scenarios. For a given point, x, the final

estimate of its simulation-based performance, ĝ(x), is obtained as the average over 50 simulation

replications. For the analytical model, we generate a different demand scenario to estimate its

exogenous parameters (ditl of Equation (10)). For a given point x ∈ F , the analytical objective

function, gA(x,z∗), is obtained by maximizing Equation (8) over z subject to Constraints (9)-(13).

Each plot of Figure 3 considers one network and displays the analytical objective function,

gA(x,z∗), along the x-axis and the estimated simulation-based objective function, ĝ(x), with a

corresponding 95% interval along the y-axis. The confidence intervals are barely visible. Each plot

displays the 2401 feasible solutions.

For all three plots, there is a positive linear correlation between the analytical approximations,

gA(x,z∗), and the simulation-based estimates, ĝ(x). This indicates that for all three representative

network topologies the analytical network model provides a good approximation of the simulation-

based objective function.
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Figure 3 Comparison of the analytical objective function value with the estimated simulation-based objective

function value for toy networks

3.2. Boston South End network

We now consider the South End neighborhood in downtown Boston. A map of the area is displayed

in Figure 4. The 23 stations over which we optimize are displayed with red circles. The planning

period is July 10-17, 2014. During this period the average fleet size is 101 cars (i.e., X = 101). Based

on consultation with Zipcar, we set the station capacity, N i, to 16. We compare the performance of

MetaAHA and AHA. This comparison serves to evaluate the added value of complementing AHA

with information from the analytical problem-specific network model. The maximum number of

algorithm iterations, K, is set to 40. At every iteration, the number of points to be simulated is

set to 10 (i.e., n= 10).

Figure 4 Zipcar stations in Boston South End neighborhood (map data: Google Maps (2017b))
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To account for the stochasticity of demand, we proceed as in Section 3.1. We consider a group

of 10 demand scenarios. For a given point, x, one simulation replication (i.e., one simulation-based

realization of its performance) is defined as the average simulated performance over the 10 demand

scenarios. Figure 5 contains four plots. Each plot considers a different group of 10 demand scenarios.

As in Section 3.1 for each group of demand scenarios, one additional demand scenario is used to

estimate the exogenous parameters of the analytical network model.
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(a) Demand scenario group 1
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(b) Demand scenario group 2
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(c) Demand scenario group 3
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(d) Demand scenario group 4
Figure 5 MetaAHA vs. AHA: objective function estimate of the current iterate across iterations

Each plot displays the iteration index along the x-axis and the performance estimate of the

current iterate (i.e., simulation-based estimate of the objective function of the best point) along

the y-axis. The range of the y-axis differs across the plots. Each plot illustrates, for a given demand

scenario group, the difference in performance of the two methods. Each plot displays 6 lines: 3

solid (resp. dashed) lines that represent 3 MetaAHA (resp. AHA) runs. For all plots, we observe

the following main trends. First, MetaAHA identifies points with good performance from the first
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iteration, while the points initially sampled by AHA do not have good performance. Actually,

for all six runs of MetaAHA, the best point identified in the first iteration corresponds to the

solution of the analytical network design problem (i.e., maximize gA of Equation (8) over both x

and z subject to Constraints (2)-(4) and (9)-(13)). This shows the added value of the analytical

structural information provided by gA. Note that the initial points sampled by AHA are obtained

from an asymptotically uniform sampling distribution for integral points from compact polyhedrons

as defined in Hong and Nelson (2006). This general-purpose sampling method allows AHA to

ensure asymptotic convergence properties, yet since it lacks problem-specific information, it is not

designed to provide good quality initial solutions. Second, as the iterations advance, AHA identifies

points with improved performance. This is consistent with the experiments and observations in

Xu, Nelson, and Hong (2013), which show that AHA is an efficient algorithm for a broad class of

discrete SO problems. Nonetheless, it is outperformed throughout by MetaAHA. Third, MetaAHA

shows a slight improvement across iterations, yet it is not as significant as that of AHA. Fourth,

the performance of the final solution derived by MetaAHA (i.e., the current iterate at the final

iteration) is similar across the 3 MetaAHA runs, while final solutions have higher variability in

performance for the 3 AHA runs. This indicates that MetaAHA is less sensitive to the stochasticity

of the simulator. This may be attributed to the structural analytical information provided by the

problem-specific network design model (gA).

Note that in Figure 5 all lines terminate prior to iteration 40. This occurs if a current iterate is

considered to be a local optimum (Step 3a of Algorithm 1). To limit the premature convergence

of AHA, Xu, Nelson, and Hong (2013) have combined it with the multi-start ISC framework (Xu,

Nelson, and Hong 2010). Also, most lines are not monotonically non-decreasing. This can occur

when running additional simulation replications of the current iterate leads to a lower objective

function estimate (which can itself lead to a change of the current iterate).

These results indicate the ability of the metamodel approach to: (i) improve the robustness of the

algorithm to the quality of the initial points, (ii) identify good solutions within very few iterations,

and (iii) lead to low variability across the performance of the derived final solutions. These are

all trends that have been observed in our past metamodel work for continuous SO transportation

problems (Zhang, Osorio, and Flötteröd 2017, Chong and Osorio 2017, Osorio, Chen, and Santos

forthcoming, Osorio forthcoming).

The results of Figure 5 indicate that a suitable approach would be to include in the initial sample

of AHA the solution proposed by the analytical network design problem (i.e., the solution that

maximizes gA of Equation (8) over both x and z subject to Constraints (2)-(4) and (9)-(13)),

and then to use the traditional AHA algorithm for all other iterations. Let AHAInit denote this

approach. We now carry out a comparison of MetaAHA with AHAInit. This comparison serves
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to evaluate the added value of using analytical network model information across the iterations

of AHA, rather than limiting the use of this analytical model to the first iteration. We use the

same experimental design as for Figure 5. Figure 6 display four plots. Each plot considers a given

group of 10 demand scenarios for the simulator and one demand scenario for the analytical model.

The solid (respectively, dashed) lines represent MetaAHA (resp. AHAInit). The range of the y-axis

differs across the plots.
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(c) Demand scenario group 3
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(d) Demand scenario group 4
Figure 6 MetaAHA vs. AHAInit: objective function estimate of the current iterate across iterations

The following trends are common to the four plots. First, MetaAHA outperforms AHAInit across

all iterations. This reveals the added value of the metamodel mk which combines the analytical

network design information gA with the simulation information. In other words, using the analyt-

ical network design model gA to initialize a general-purpose algorithm contributes to its efficiency,

yet there is even further added value of using the analytical information across iterations. Second,
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AHAInit tends to converge more quickly to a local optimum. Often, this local optimum has per-

formance that is similar to that of the point obtained by solving the analytical network design

problem (i.e., the point obtained by maximizing gA subject to Constraints (2)-(4) and (9)-(13)).

For the 12 MetaAHA runs of Figure 6 (i.e., 3 runs for each of the 4 plots), there are a total of

87 instances where the current iterate is updated. Recall that for MetaAHA a current iterate can

be of 3 types: (i) it can be a solution to the metamodel optimization problem solved in the entire

feasible region (i.e., Step 1b of Algorithm 1, which yields points denoted xmeta), (ii) it can be a

solution to the metamodel optimization problem solved in the intersection of the entire feasible

region and the hyperbox (i.e., Step 1c of Algorithm 1, which yields points denoted xmeta-hyper), or

(iii) it can be obtained from random sampling (i.e., Step 1a of Algorithm 1, which yields points

denoted xsampled). Note that a point can be both of type xmeta and of type xmeta-hyper. This occurs

when the solution to the metamodel optimization problem in the entire feasible region is located

in the hyperbox. Of the 87 different current iterates of the 12 MetaAHA runs in Figure 6, more

than two thirds (i.e., 71.3% or 62 points) are of type xmeta or xmeta-hyper, while less than one third

(28.7% or 25 points) are of type xsampled. In other words, two thirds of the current iterates are

obtained by using the structural information of the analytical network model. For the 12 final best

solutions returned by the MetaAHA runs, 9 of them are identified by solving the metamodel and

3 of them by random sampling. Moreover for the 12 runs of MetaAHA, we simulated 2364 points.

Only 18.1% of the simulated points are obtained by solving the metamodel (429 points), while

the remaining 81.9% are obtained by random sampling. Hence, even though the points derived

by metamodel evaluations represent only 18.1% of the total set of sampled points, they lead to

75% of the final solutions and 71.3% of the current iterates. This highlights the added value of the

structural information provided by the analytical MIP. Among the 62 current iterates obtained by

using structural analytical information, 21 are of type xmeta and 47 are of type xmeta-hyper (note

that 6 points are both of type xmeta and xmeta-hyper). This shows that both the global (i.e., in the

entire feasible region) and the local (i.e., in the hyperbox) information of the analytical network

model help to identify points with improved performance. Recall that the metamodel is fitted after

every iteration, hence the metamodel optimization problems solved across iterations differ and

hence their solutions may differ. It is through this fitting process that the metamodel combines

information from the simulator with information from the analytical network model. The high

number of distinct current iterates identified by the metamodels illustrates the added value, across

iterations, of combining the analytical information with the simulated information.

Figure 7 compares the performance of the best fleet assignment identified by MetaAHA (the

proposed strategy) with that used by Zipcar during the planning period of interest. The final

proposed (or “best”) MetaAHA solution is defined as follows. We consider a set of 50 new demand
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scenarios. For all 12 solutions derived by MetaAHA (i.e., 3 algorithmic runs for each of the 4 plots

of Figure 6), we estimate the average (over the 50 demand scenarios, each scenario is simulated with

50 replications) performance. The proposed solution is that with the best (i.e., largest) average

performance.
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Figure 7 Comparison of the Zipcar fleet assignment with the proposed assignment for the Boston South End

network

Figure 7 displays two plots. The left plot compares the profit estimates of the two assignments.

The right plot compares them according to vehicle utilization. Both of these metrics are important

for Zipcar. For each plot, the x-axis considers the Zipcar assignment and the y-axis considers the

MetaAHA proposed assignment. Each plot displays 50 points, which correspond to 50 demand

scenarios. For each demand scenario, we estimate the performance based on 50 simulation repli-

cations. The performance estimate of each point is displayed along with a, barely visible, 95%

confidence interval along each direction. Both the left and the right plots indicate that for all 50

demand scenarios the proposed plan yields improved performance, and this across all 50 demand

scenarios. Compared to Zipcar’s fleet assignment, the proposed solution yields an average improve-

ment of profit of 3.2% and of vehicle utilization of 2.2%. Recall that these estimates are obtained

via simulation. Hence, they do not state that the proposed method outperforms the Zipcar method

when deployed in the field.

3.3. Boston area network - comparison versus AHAInit

In this section, we consider a larger area of the Boston metropolitan area. This serves to evaluate the

performance of MetaAHA for a high-dimensional problem. We consider a network of 315 stations

distributed throughout 23 zipcodes that span over Allston, Arlington, Boston, Brighton, Brookline,

Cambridge, Charlestown, Chelsea, Medford and Somerville. The map of Figure 8 displays the
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stations as red circles. We consider the same planning period as before. The station capacity, N i,

is set to 16, based on consultation with Zipcar. Historical data indicates that, during this planning

period, there are an average of 894 cars assigned to these stations, i.e., X = 894. We proceed

as before and consider a group of 10 demand scenarios. One additional demand scenario is used

to estimate the exogenous parameters of the analytical model. We set the maximum number of

iterations to 40 (i.e., K = 40) and the number of points to simulate per iteration to 70 (i.e., n= 70).

Figure 8 315 Zipcar stations in Boston area (map data: Google Maps (2017a))

Figure 9 displays the results of 8 MetaAHA runs (solid lines) and 8 AHAInit runs (dashed lines).

Only 3 of the 16 runs deplete the computational budget (i.e., they stop at iteration 40). They

correspond to 3 MetaAHA runs. More specifically, the 8 MetaAHA runs stop at iterations 13, 14,

24, 33, 33, 40, 40 and 40. Those of AHAInit stop at iterations 14, 15, 15, 19, 20, 24, 33 and 38.

All 8 runs of AHAInit yield final solutions with similar objective estimates. Seven out of the 8

MetaAHA final solutions are better than all 8 AHAInit final solutions.

Figure 10 compares the performance of the best solution identified by MetaAHA with the fleet

assignment strategy used by Zipcar. To evaluate the performance of a given fleet assignment strat-

egy (that proposed by MetaAHA or that of Zipcar), we proceed as before. We generate 50 demand

scenarios. For each of the 8 final solutions derived by MetaAHA and for each demand scenario, we

run 50 simulation replications to estimate the average profit per solution. The solution with the

highest average simulated profit is selected as the proposed solution. Figure 10 displays two plots:

the left plot considers profit and the right plot considers vehicle utilization. For each plot, the x-

axis considers the Zipcar assignment and the y-axis considers the proposed assignment. Each plot

displays 50 points which correspond to the 50 demand scenarios. Each point estimate is displayed
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Figure 9 MetaAHA vs. AHA: objective function estimate of the current iterate across iterations

along with a 95% confidence interval along both directions. The confidence intervals, which are

barely visible, are computed based on 50 replications. For both plots, the 50 points, which represent

50 different demand scenarios, are above the diagonal. Compared to Zipcar’s fleet assignment, the

proposed solution yields an average improvement of profit of 6% and of vehicle utilization of 3.1%.

Moreover, for all 50 demand scenarios, the proposed strategy improves both the profit and the fleet

utilization. Again, note that this comparison is based on simulated performance, which may not

reflect field performance.
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Figure 10 Comparison of the Zipcar fleet assignment with the proposed assignment for the Boston area network
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3.4. Boston area network - comparison versus stochastic programming

As mentioned in Section 1, the most common approach to study the fleet assignment problem

is the use of analytical optimization methods, such as mathematical programs. In this section,

we benchmark the performance of the proposed approach to stochastic programming (SP), which

accounts for demand uncertainty. We consider a two-stage SP, where the second stage accounts

for demand scenario realizations. The SP formulation is given in Appendix B. We use the same

Boston area network as that of Section 3.3. We consider a set of 9 experiments with varying levels

of demand and of cost. Demand is scaled by a factor: λ ∈ {1,2,3}, cost (i.e., term ci of Eq.(1))

is scaled by a factor: θ ∈ {1,2,3}. For each experiment (i.e., a given value of (λ, θ)), we proceed

as follows. We consider one demand scenario to estimate the exogenous parameters of MetaAHA,

and 3 additional demand scenarios for SP and for the simulator. Hence, the SP model and the

simulator used as part of MetaAHA have the same demand input. When evaluating a solution

via simulation (within MetaAHA), the simulated estimate of the objective function is obtained as

the average over the 3 demand scenarios. We solve the SP model to obtain one SP solution. We

run MetaAHA 3 times (in order to account for the stochasticity of both the simulator and the

algorithm) to obtain 3 MetaAHA solutions. We use the same MetaAHA algorithmic parameters as

in Section 3.3 (i.e., K = 40 and n= 70). For each final solution (SP or MetaAHA), we simulate its

performance considering 50 demand scenarios and 50 simulation replications per demand scenario

(for a total of 2500 simulations per solution). We compare the performance of the SP solution to

that of the best MetaAHA solution, which is defined as that with the best simulated profit over

the 2500 simulations.

Figure 11 displays 9 plots, one for each experiment. The demand scaling factor λ (resp. cost

scaling factor θ) is constant across columns (resp. rows) and increases across rows (resp. columns).

Each plot displays 50 points, which correspond to each of the 50 demand scenarios. The y-axis

(resp. x-axis) displays the estimated, via simulation, mean profit over 50 replications using the SP

(resp. best MetaAHA) solution. Each point has a 95% confidence interval along both coordinate

directions. These intervals are barely visible. Each plot also displays the diagonal line defined by

y= x.

For λ= 1 (i.e., top row of plots: Figures 11a, 11b, 11c), all 50 points are above the diagonal line.

In other words, the SP solution outperforms that of MetaAHA. More specifically, the SP solution

improves, on average, the profit by 0.65%, 0.43% and 0.21%, for θ= 1,2 and 3, respectively. This

trend is reversed for the other 2 rows of plots. For λ = 2 (i.e., second row of plots), MetaAHA

outperforms SP by an average of 0.1%, 0.26% and 1.36%, for θ= 1,2 and 3, respectively. For λ= 3

(bottom row of plots), MetaAHA outperforms SP, on average, by 0.51%, 2.80% and 3.48%, for

θ= 1,2 and 3, respectively. For demand levels λ of 2 or 3 (i.e., second or third row of plots), as the
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cost level θ increases, so does the amount by which MetaAHA outperforms SP. For a given cost

level (i.e., a given column of plots), as the demand level increases (i.e., from the top row to the

bottom row), so does the amount by which MetaAHA outperforms SP.
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Figure 11 Comparison of the average profit, considering 50 demand scenarios, of the SP solution and of the

best MetaAHA solution

Figure 12 considers the same 9 levels of demand and cost. It evaluates the ability of SP to

approximate the simulation-based objective function. Each point of Figure 12 considers a given

feasible solution and displays along the x-axis the simulated estimate of its objective function value

and along the y-axis its SP objective function value. Each plot considers a set of the following 30

feasible solutions: the SP optimal solution (displayed as a blue circle), the best MetaAHA solution

(displayed as a red triangle), and a set of 28 randomly sampled solutions (black crosses) that are in

the neighborhood of the line connecting the SP optimal solution and the best MetaAHA solution

(the sampling process is detailed in Appendix C). The diagonal line, y = x, is also displayed. For

each solution, the SP objective function value and the simulation-based objective function estimate

are based on the same 3 demand scenarios. These demand scenarios are the same as those used to

derive the SP solution of the previous analysis. The simulation-based objective function estimate

is obtained as the average across 50 replications of each of these 3 demand scenarios (i.e., each
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estimate involves 150 = 50×3 simulation evaluations). Figure 13 differs from Figure 12 in that the

y-axis of each plot displays the metamodel objective function value. The value of the metamodel

parameter β is that of the last iteration of the MetaAHA run which generated the best MetaAHA

solution. Each of the 9 subplots of Figure 12 have the same axis limits as the corresponding subplot

in Figure 13. Hence, the subplots are directly comparable across Figures 12 and 13.

For all plots of Figure 12, all points are above the diagonal line, i.e., SP tends to overestimate

the simulated profit for all cost and demand levels. For λ= 1, the SP objective function exhibits a

positive linear correlation with the simulated estimate. This also occurs for (λ, θ)∈ {(2,1), (2,2)}.

Hence, the SP model correctly ranks the performance of the feasible solutions, and hence is an

adequate tool for optimization. Nonetheless for high values of demand and of cost (i.e., all plots

with λ= 3, as well as the plot (λ, θ) = (2,3)), there is no longer a positive linear correlation.

For all plots of Figure 13, all points are close to the diagonal line. This indicates that the meta-

model approximates well the simulation-based objective function. The positive linear correlation

also highlights the ability of the metamodel to correctly rank the performance of the solutions, and

hence its adequacy for optimization. Unlike Figure 12, this correlation trend holds even for high

levels of demand and of supply.

These figures indicate the ability of the metamodel approach to approximate the simulation-

based objective function even as the demand-supply interactions become more intricate to model

(i.e., when both demand levels and cost levels are high). Recall that the main simplifications of the

MIPs (both the metamodel MIP and the SP) compared to the simulator are the lack of the first-

come-first-reserve principle, as well as the coarse description of demand spillback (for a description

of these simplifications, see the last paragraph of Section 2.5). Hence, we expect the ability of

the MIPs to approximate the simulator’s objective function to deteriorate as the demand and

cost levels increase. This is illustrated by comparing Figures 12 and 13. Moreover, the results of

Figure 13 indicate that a simple linear parametric correction to the MIP (through the metamodel

parameter β) suffices to correct for these simplifications. In other words, we need not resort to the

formulation of a more intricate analytical optimization problem (e.g., with nonlinear functions to

describe spillback in more detail).

4. Conclusions

This paper formulates a discrete SO algorithm for a family of large-scale car-sharing network

design problems. The approach is a metamodel SO approach. A novel metamodel is formulated,

which is based on a MIP formulation. The metamodel is embedded within a general-purpose dis-

crete SO algorithm. The proposed algorithm is validated with synthetic toy network experiments.

The metamodel approximations of profit are shown to have a positive linear correlation with the
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Figure 12 Comparison of the objective functions of the SP model and of the simulation model across various

demand levels and cost levels.
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Figure 13 Comparison of the objective functions of the metamodel and of the simulation model across various

demand levels and cost levels.
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higher resolution simulation-based profit estimates. The algorithm is then applied to several Boston

case studies using Zipcar car-sharing reservation data, including a high-dimensional problem. The

method is first benchmarked versus two types of algorithms that differ only in their use of the

analytical MIP information: one benchmark algorithm (AHA) does not use any analytical net-

work information (i.e., no MIP information), the second benchmark algorithm (AHAInit) uses

the MIP information only to identify an initial solution but not throughout the optimization pro-

cess. The experiments indicate that the analytical network model information is useful both at

the first iteration of the algorithm and across iterations. The solutions derived by the proposed

method are also benchmarked versus the Zipcar deployed solution. Via simulation, the proposed

solutions outperform those deployed, both in terms of profit and vehicle utilization. This holds for

all considered demand scenarios. We also benchmark MetaAHA versus stochastic programming

(SP). SP outperforms the proposed approach for low levels of demand and of cost. As demand and

cost levels increase, so does the occurrence of demand spillback and the importance of accounting

for the first-come-first-reserve principle. In these cases, the SP approach is outperformed by the

metamodel approach.

The combination of the problem-specific analytical MIP with a general-purpose SO algorithm

enables the discrete SO algorithm to: (i) address high-dimensional problems, (ii) become compu-

tationally efficient (i.e., it can identify good quality solutions within few simulation observations),

(iii) become robust to the quality of the initial points and to the stochasticity of the simulator.

More generally, the information provided by the MIP to the SO algorithm enables it to exploit

problem-specific structural information. Hence, the simulator is no longer treated as a black box.

We view this general idea of combining analytical MIP formulations with general-purpose SO

algorithms, or more broadly with general-purpose sampling strategies, as an innovative and promis-

ing area of future research. With the increase in the availability and the resolution of transportation

data comes the potential to address more intricate formulations of traditional transportation opti-

mization problems (e.g., formulations with a more detailed probabilistic data-driven description of

demand). This paper illustrates how the traditional MIP formulations that exist can be coupled

with high-resolution data, a sampling (or simulation) strategy, and a general-purpose SO algorithm,

to address this next generation of transportation problems.

There is a wide-variety of general-purpose discrete SO algorithms. As general-purpose algorithms,

they can be used to address a broad class of problems. Nonetheless, they are rarely designed such

as to achieve good short term performance (i.e., good performance within few simulation runs).

This paper illustrates how the scalability, computational efficiency and robustness of these SO

algorithms can be enhanced such as to enable them to address realistic transportation problems.
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The proposed approach performs optimization preserving the disaggregate information in the

data (rather than limiting its use to fitting aggregate demand parameters). This leads to a data-

driven approach that exploits the rich information of demand and of demand-supply interactions

embedded in the data. Nonetheless, this also limits its use for car-sharing markets where data is

unavailable or unreliable. In particular, it is not directly applicable for new markets where data

has not yet been collected. Extensions of ongoing interest include the use of MIPs to enable the

design of real-time discrete SO problems.
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Appendix A: Algorithmic details

In this section, we present algorithmic details of MetaAHA. The algorithmic steps refer to Algorithm 1. In

Step 2 of the algorithm, the number of simulation replications to run for a given point x up until and including

iteration k, denoted Nk(x), is computed based on the approach of AHA (Xu, Nelson, and Hong 2013). It is

given by Nk(x) = min{5, d5(logk)1.01e}. If at a given iteration k, the number of simulation replications of

point x obtained from previous iterations is greater or equal to Nk(x), then we do not evaluate additional

replications.

In Step 2 of the algorithm, the hyperbox is updated based on the following AHA approach (Xu, Nelson,

and Hong 2013). Let xk denote the current iterate at iteration k, with the ith element denoted xk,i. Let

E(k) denote the set of points that have been simulated up until and including iteration k. The hyperbox is

defined (or updated) at iteration k as Hk = {x : lk,i ≤ xi ≤ uk,i,∀i∈ I}. The bounds lk,i and uk,i are defined

as follows.

lk,i = max
x∈E(k)\{xk}

{xi : xi <xk,i} ,∀i∈ I.

If lk,i is empty, then set lk,i = 0. Similarly,

uk,i = min
x∈E(k)\{xk}

{xi : xi >xk,i} ,∀i∈ I.

If uk,i is empty, then set uk,i =N i.

Step 4b of the algorithm fits the metamodel parameter βk by solving the below least squares problem,

which is formulated and discussed in more detail in Osorio and Bierlaire (2013).

min
βk

∑
x∈E(k)

[wk(x) (ĝ(x;q1)−mk(x,z;βk,q2))]
2

+ (w0(βk,0− 1))
2

+

|I|+1∑
i=1

(w0βk,i)
2, (14)

where w0 is a fixed scalar weight, ĝ(x;q1) represents the simulated estimate of the profit function for point x,

and the weight wk(x) function is defined as wk(x) = 1/(1+‖x−xk‖2). The least squares problem minimizes
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a weighted distance between the simulated profit estimates ĝ and the metamodel predictions mk. Each point

is weighted by a distance function that gives more weights to points that are closer to the current iterate,

such as to improve the local (i.e., close to the current iterate) fit of the metamodel. The additional terms in

the least squares problem are included such as to ensure a full rank least-squares matrix.

Figure 14 provides a flowchart summary of the MetaAHA algorithm.

(1) Solve problem (5)-(7) and obtain xmeta
k ;

(2) Solve problem (5)-(7) with constraint x ∈
Hk and obtain xmeta-hyper

k ;
(3) Randomly sample r points from F ∩Hk

Initialize algorith-
mic parameters

Simulate all points derived in the
above step; simulate xk−1 if k > 1

Determine the current iterate xk

Update Hk

Is xk a local
optimum or is the
computational

budget depleted?

Return xk

For all solutions simu-
lated during iteration k,
maximize gA(x,z) over z
with Constraints (9)-(13)

Fit metamodel
to estimate βk+1

Set k = k+ 1

yes
no

Figure 14 MetaAHA Steps
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Appendix B: Stochastic programing (SP) formulation

To formulate the SP model, we use the notation of the main manuscript and introduce the following notation.

Q number of demand scenarios;

d
i(q)
tl number of customers that desire a reservation at station i with start time

t and duration l in demand scenario q;

z
i(q)
tl number of customers that make a reservation at station i with start time

t and duration l in demand scenario q;

z
ji(q)
tl number of customers that desire to make a reservation at station j with

start time t and duration l but make an adjusted reservation at station
i with start time t and duration l in demand scenario q;

z vector that combines all variables {zi(q)tl } and {zji(q)tl };
π(q) probability of scenario q, set to 1/Q;
q3 vector of exogenous parameters;
gSP analytical approximation of g (Equation (1)) derived by the SP model.

We view the network design strategy x as the first-stage decision variables, and the demand-supply inter-

action z as the second-stage decision variables. The SP problem is formulated as follows.

max
x,z

gSP (x,z;q3) =

Q∑
q=1

π(q)

(∑
i∈I

∑
j∈Ii

∑
t∈T

∑
l∈L

pijrtlz
ij(q)
tl

)
−
∑
i∈I

cixi, (15)

subject to

∑
j∈Ii

z
ji(q)
tl = z

i(q)
tl ∀i∈ I,∀t∈ T ,∀l ∈L,∀q ∈ {1,2, . . . ,Q}, (16)∑

j∈Ii

z
ij(q)
tl ≤ di(q)tl ∀i∈ I,∀t∈ T ,∀l ∈L,∀q ∈ {1,2, . . . ,Q}, (17)∑

l∈L

z
i(q)
tl +

∑
l∈L

∑
t′∈T1(t,l)

z
i(q)
t′l ≤ xi ∀i∈ I,∀t∈ T ,∀q ∈ {1,2, . . . ,Q}, (18)

z
i(q)
tl ∈R+ ∀i∈ I,∀t∈ T ,∀l ∈L,∀q ∈ {1,2, . . . ,Q}, (19)

z
ij(q)
tl ∈R+ ∀i∈ I,∀j ∈ Ii,∀t∈ T ,∀l ∈L,∀q ∈ {1,2, . . . ,Q}, (20)

x∈F , (21)

where T1(t, l) = {t′ ∈ T : t′+ 1≤ t≤ t′+ l− 1}. In this model, the exogenous parameters are d
i(q)
tl and π(q),

as well as rtl, ci, p
ij , tmax and lmax defined in Section 2.3, represented by the vector q3. The objective

function (15) is the expected revenue over all scenarios minus the cost. Constraints (16)-(20) are the equivalent

of their MIP counterparts Constraints (9)-(13), respectively. Constraint (21) is equivalent to Constraint (7).

Appendix C: Sampling of feasible solutions for the experiments of Figures 12 and
13

For a given demand scenario, let x(1) be the SP solution and x(2) be the best MetaAHA solution of the

experiments of Section 3.4. We use the following procedure to generate a solution near the line connecting

the SP optimal solution and the best MetaAHA solution:

• Step 1: generate u∼U(0,1), where U(0,1) is the standard uniform distribution.
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• Step 2: let x̃=x(1) +u
(
x(2)−x(1)

)
.

• Step 3: build a hyperbox H(x̃) = {x : x̃i− 2≤ xi ≤ x̃i + 2,∀i∈ I}.

• Step 4: randomly sample a point x from H(x̃) ∩ F using the uniform sampling distribution of AHA

(Xu, Nelson, and Hong 2013).
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