

A CYCLIC SOIL MODEL AND ITS APPLICATION IN SOIL-PIER INTERACTION UNDER AXIAL LOADING

Gang Wang and Nicholas Sitar Dept. of Civil and Environ. Eng. University of California at Berkeley

OpenSees Developer Symposium August 24, 2005

Dynamic Soil-Pile-Structure System

System Response

- * Structure Stiffness
- * Foundation Stiffness Loading Type Soil Properties Installation
- * Energy Dissipation Viscous Damping Hysteretic Damping Radiation Damping

Nonlinear Cyclic Soil Response

- Modulus Reduction
- Hysteretic Damping
- Strength

Bounding Surface Cyclic Soil Model (R. Borja) --- Hardening Rule

Bounding Surface Cyclic Soil Model --- Loading/Unloading Criterion

Bounding Surface Cyclic Soil Model --- Unloading

Bounding Surface Cyclic Soil Model --- Hardening of the Bounding Surface

OpenSees Command

nDMaterial MultiaxialCyclicPlasticity \$matTag \$rho \$v \$Gmax \$Su \$Ho \$h \$m \$beta \$Ko

- \$matTag: Material ID
- \$rho : Soil density
- \$vPoisson's ratio
- \$Gmax : Small strain shear modulus
- Su : Undrained shear strength

- SHO : Hardening modulus of bounding surface \$h : Exponential hardening parameter
- Sm : Exponential hardening parameter
- \$beta : Integration parameter (0.5)

Parameter Determination

- Material Density
- Elastic Parameters

 $G_{max} = \rho V_s^2$ Vs: shear wave velocity profile Poisson's ratio V

- Undrained Shear Strength
 - Su From Unconfined Compression Test or SPT correlation
- Hardening Parameters
 - Fit modulus reduction curves h, m Ho
 - Fit tangential shear modulus at large strain

Dynamic Pier Load Test (PLT)

PLT Test and Static Compression (Pier A1-19)

Comparison of Dynamic and Static Stiffness

Axially Loaded Pier in Nonlinear Soil

Shear Wave Velocity Profiles

Shear Wave Velocity Vs (ft/s)

Undrained Shear Strength Profile

Modulus Reduction Curves

Finite Element Simulation (Pier A1-19 PLT)

Finite Element Simulation (Pier A1-19 PLT)

Finite Element Simulation (Pier A1-20A PLT)

Finite Element Simulation (Pier A1-19 Static Compression Test After PLT)

Vertical Displacement Field

Deformed Mesh (\times 10)

Vertical Stress Field

Shear Stress Field

SUMMARY

• The nonlinear finite element and cyclic soil model we developed has successfully captured the pier-soil system stiffness, capacity and energy dissipation for the dynamic and static loadings.

• The nonlinear cyclic soil model has been implemented in OpenSees, and it is ready to be used in a three dimensional fully coupled nonlinear soil-structure analysis.

OpenSees/..../nDMaterial/cyclicSoil/

ACKNOWLEGEMENTS

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER (PEER) NSF AWARD NO. EEC-9701568

OPENSEES -- OPEN SYSTEM FOR EARTHQUAKE ENGINEERING SIMULATION

http://opensees.berkeley.edu

