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Introduction
Battery stacks based on lithium-ion (Li-ion) cells are used in many 
applications such as hybrid electric vehicles (HEV), electric vehicles (EV), 
storage of renewable energy for use at a later time, and energy storage  
on the grid for various purposes such as grid stability, peak shaving,  
and renewable energy time shifting. In these applications, it is important 
to measure the state of charge (SOC) of the cells, which is defined as 
the available capacity (in Ah) and expressed as a percentage of its  
rated capacity. The SOC parameter can be viewed as a thermodynamic 
quantity enabling one to assess the potential energy of a battery. It is 
also important to estimate the state of health (SOH) of a battery, which 
represents a measure of the battery’s ability to store and deliver 
electrical energy, compared with a new battery. Analog Devices power 
control processor, the ADSP-CM419, is a perfect example of a processor 
that has the capability to deal with battery charging techniques 
discussed throughout this article.

This article deals with the algorithms utilized for SOC and SOH estimation 
based on coulomb counting. The technical environment specifications for 
coulomb counting are defined and an overview of the estimation methods 
of the SOC and SOH parameters, in particular the coulomb counting 
method, the voltage method, and the Kalman filter method are presented. 
Several SOC and SOH estimation commercial solutions are also described. 
In addition, this article details the best-in-class SOC and SOH estimation 
algorithms, especially the enhanced coulomb counting algorithm, the 
universal SOC algorithm, and the extended Kalman filter algorithm. Finally, 
the evaluation procedure and the simulation results of the chosen SOC and 
SOH algorithm are presented.      

Battery SOC Measurement Principle
Since the determination of the SOC of a battery is a complex task depending 
on the battery type and on the application in which the battery is used, 
much development and research work has been done in recent years 
to improve SOC estimation accuracy. Accurate SOC estimation is one of 
the main tasks of battery management systems, which will help improve 
the system performance and reliability, and will also lengthen the lifetime 
of the battery. In fact, precise SOC estimation of the battery can avoid 
unpredicted system interruption and prevent the batteries from being over 
charged and over discharged, which may cause permanent damage to  

the internal structure of batteries. However, since battery discharge and 
charge involve complex chemical and physical processes, it is not obvious  
to estimate the SOC accurately under various operation conditions. 

The general approach for measuring SOC is to measure very accurately 
both the coulombs and current flowing in and out of the cell stack under 
all operating conditions, and the individual cell voltages of each cell in 
the stack. This data is then employed with previously loaded cell pack 
data for the exact cells being monitored to develop an accurate SOC 
estimate. The additional data required for such a calculation includes 
the cell temperature, whether the cell is charging or discharging when 
the measurements were made, the cell age, and other relevant cell 
data obtained from the cell manufacturer. Sometimes it is possible to 
get characterization data from the manufacturer of how their Li-ion 
cells perform under various operating conditions. Once an SOC has 
been determined, it is up to the system to keep the SOC updated during 
subsequent operation, essentially counting the coulombs that flow in and 
out of the cells. The accuracy of this approach can be derailed by not 
knowing the initial SOC to an accurate enough state and by other factors, 
such as self discharge of the cells and leakage effects.

Technical Specifications
This article encompasses the design and development of a coulomb 
counting evaluation platform to be used for SOC and SOH measurement  
for a typical energy storage module, which in this case is a 24 V module, 
typically comprising seven or eight Li-ion cells. The evaluation platform 
is composed of a hardware system including an MCU and required 
interfaces and peripherals, embedded software for the SOC and SOH 
algorithm implementation, and a PC-based application software as a user 
interface for system configuration, and data display and analysis.  

The evaluation platform periodically measures the voltage value of each 
cell and the battery pack’s current and voltage, by means of appropriate 
ADCs and sensors, and will run the SOC estimation algorithm in real time. 
This algorithm will use measured voltage and current values and some 
other data collected by temperature sensors, and/or given by PC-based 
software application (such as constructor specifications from a database). 
The SOC estimation algorithm output will be sent to the PC graphical user 
interface for dynamic display and database updating.

Visit analog.com

	 |	 Share on Twitter 	 |	 Share on LinkedIn 	 |	 Email

TECHNICAL ARTICLE

http://www.analog.com/en/products/processors-dsp/microcontrollers/cm4xx-mixed-signal-control-processors/adsp-cm419f.html
https://www.facebook.com/AnalogDevicesInc
https://twitter.com/adi_news
https://www.youtube.com/user/AnalogDevicesInc
https://www.linkedin.com/company/analog-devices
http://www.analog.com
https://registration.analog.com/login/AccountRegistration.aspx
http://www.analog.com
http://bit.ly/2hENwiB
http://bit.ly/2ht9nZH
mailto:?subject=A Closer Look at State Of Charge (SOC) and State Of Health (SOH) Estimation Techniques for Batteries&body=Check out this Analog Devices technical article http://www.analog.com/media/en/technical-documentation/technical-articles/A-Closer-Look-at-State-Of-Charge-and-State-Health-Estimation-Techniques-for-Batteries.pdf


	 2	 A Closer Look at State of Charge (SOC) and State of Health (SOH) Estimation Techniques for Batteries	

SOC and SOH Estimation Methods Overview
Regarding SOC and SOH estimation methods, three approaches are mainly 
being used: a coulomb counting method, voltage method, and Kalman filter 
method. These methods can be applied for all battery systems, especially 
HEV, EV, and PV, and each method is discussed in the next few sections.

Coulomb Counting Method
The coulomb counting method, also known as ampere hour counting and 
current integration, is the most common technique for calculating the 
SOC. This method employs battery current readings mathematically 
integrated over the usage period to calculate SOC values given by

SOC = SOC(t0) + (Ib – Iloss) dt ∫1
Crated

t0 + τ

t0

	 (1)

where SOC(t0) is the initial SOC, Crated is the rated capacity, Ib is the battery 
current, and Iloss is the current consumed by the loss reactions.

The coulomb counting method then calculates the remaining capacity 
simply by accumulating the charge transferred in or out of the battery. 
The accuracy of this method resorts primarily to a precise measurement 
of the battery current and accurate estimation of the initial SOC. With 
a preknown capacity, which might be memorized or initially estimated 
by the operating conditions, the SOC of a battery can be calculated 
by integrating the charging and discharging currents over the operating 
periods. However, the releasable charge is always less than the stored 
charge in the charging and discharging cycle. In other words, there are 
losses during charging and discharging. These losses, in addition with the 
self discharging, cause accumulating errors. For more precise SOC 
estimation, these factors should be taken into account. In addition, the 
SOC should be recalibrated on a regular basis and the declination of the 
releasable capacity should be considered for more precise estimation.  

Voltage Method
The SOC of a battery, that is, its remaining capacity, can be determined 
using a discharge test under controlled conditions. The voltage method 
converts a reading of the battery voltage to the equivalent SOC value using 
the known discharge curve (voltage vs. SOC) of the battery. However, 
the voltage is more significantly affected by the battery current due to the 
battery’s electrochemical kinetics and temperature. It is possible to make 
this method more accurate by compensating the voltage reading by a 
correction term proportional to the battery current and by using a lookup 
table of the battery’s pen circuit voltage (OCV) vs. temperature. The need 
for a stable voltage range for the batteries makes the voltage method 
difficult to implement. In addition, the discharge test usually includes a 
consecutive recharge, which makes it too time consuming to be considered 
for most applications. Another drawback is that during testing the system 
function is interrupted (offline method) contrarily to coulomb counting 
(online method). 

Kalman Filter Method
The Kalman filter is an algorithm to estimate the inner states of any 
dynamic system—it can also be used to estimate the SOC of a battery. 
Kalman filters were introduced in 1960 to provide a recursive solution to 
optimal linear filtering for both state observation and prediction problems. 
Compared to other estimation approaches, the Kalman filter automatically 
provides dynamic error bounds on its own state estimates. By modeling 
the battery system to include the wanted unknown quantities (such as 
SOC) in its state description, the Kalman filter estimates their values and 
gives error bounds on the estimates. It then becomes a model-based 
state estimation technique that employs an error correction mechanism 
to provide real-time predictions of the SOC. It can be extended in order to 
increase the capability of real-time SOH estimation using the extended 
Kalman filter. Notably, the extended Kalman filter is applied when the 
battery system is nonlinear and a linearization step is needed. Although 

Kalman filtering is an online and a dynamic method, it needs a suitable 
model for the battery and a precise identification of its parameters.  
It also needs a large computing capacity and an accurate initialization.  

Other methods for SOC estimation are presented in various literature, 
such as impedance spectroscopy, which is based on cell impedance 
measurements, using an impedance analyzer in real time for both charge 
and discharge. Although this technique can be used for Li-ion cells 
SOC and SOH estimation, it was omitted since it is based on external 
measurements utilizing instrumentation. The methods based on the 
electrolytes’ physical properties and artificial neural networks are not 
applicable for Li-ion batteries.    

Methodology for SOC and SOH Estimation 
Method Choice
Several criteria should be considered to select the suitable SOC estimation 
method. First, the SOC and SOH estimation technique could be applied 
to Li-ion batteries for HEV and EV applications, storage of renewable 
energy for use at a later time, and energy storage on the grid. In addition, 
it is crucial that the selected method should be an online and real-time 
technique with low computational complexity and high accuracy (low 
estimation error). It is also required that the estimation method uses 
measured voltage, current values, and other data collected by temperature 
sensors and/or given by PC-based software applications.

Enhanced Coulomb Counting Algorithm
In order to overcome the shortcomings of the coulomb counting method 
and to improve its estimation accuracy, an enhanced coulomb counting 
algorithm has been proposed for estimating the SOC and SOH 
parameters of Li-ion batteries. The initial SOC is obtained from the loaded 
voltages (charging and discharging) or the open circuit voltages. The losses 
are compensated by considering the charging and discharging efficiencies. 
With dynamic recalibration on the maximum releasable capacity of an 
operating battery, the SOH of the battery is evaluated at the same time.  
This in turn leads to a more precise SOC estimation.       

Technical Principle
The releasable capacity (Creleasable), of an operating battery is the released 
capacity when it is completely discharged. Accordingly, the SOC is defined 
as the percentage of the releasable capacity relative to the battery rated 
capacity (Crated), given by the manufacturer. 

SOC = 100%
Creleasable

Crated

	 (2)

 
A fully charged battery has the maximal releasable capacity (Cmax), which 
can be different from the rated capacity. In general, Cmax is to some extent 
different from Crated for a newly used battery and will decline with the used 
time. It can be used for evaluating the SOH of a battery.  

SOH = 100%
Cmax
Crated

	 (3)

When a battery is discharging, the depth of discharge (DOD) can be 
expressed as the percentage of the capacity that has been discharged 
relative to Crated, 

DOD = 100%
Creleased
Crated

	 (4)

where Creleased is the capacity discharged by any amount of current.

With a measured charging and discharging current (Ib), the difference of 
the DOD in an operating period (Ʈ) can be calculated by    

∆DOD =
–

100%Crated

Ib(t) dt ∫ t0 + τ

t0
	 (5)
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where Ib is positive for charging and negative for discharging. As time 
elapsed, the DOD is accumulated. 

DOD(t) = DOD(t0) + ∆DOD 	 (6)

To improve the accuracy of estimation, the operating efficiency denoted  
as ŋ is considered and the DOD expression becomes, 

DOD(t) = DOD(t0) + η∆DOD 	 (7)

with ŋ equal to ŋc during charging stage and equal to ŋd during 
discharging stage.

Without considering the operating efficiency and the battery aging, the 
SOC can be expressed as

SOC(t) = 100% – DOD(t) 	 (8)

Considering the SOH, the SOC is estimated as

SOC(t) = SOH(t) – DOD(t) 	 (9)

Figure 1 shows the flowchart of the enhanced coulomb counting algorithm. 
At the start, the historic data of the used battery is retrieved from the 
associated memory. Without any information for a newly used battery, the 
SOH is assumed to be healthy and has a value of 100%, and the SOC is 
initially estimated by testing either the open circuit voltage, or the loaded 
voltage depending on the starting conditions. 

The estimation process is based on monitoring the battery voltage (Vb) 
and Ib. The battery operation mode can be known from the amount 
and the direction of the operating current. The DOD is adding up the 
drained charge in the discharging mode and counting down with the 
accumulated charge into the battery for the charging mode. After a 
correction with the charging and discharging efficiency, a more accurate 
estimation can be achieved. The SOC can be then estimated by subtracting 
the DOD quantity from the SOH one. When the battery is open circuited with 
zero current, the SOC is directly obtained from the relationship between the 
OCV and SOC.   

It is noted that the SOH can be reevaluated when the battery is either 
exhausted or fully charged, and the battery operating current and voltage 
are specified by manufacturers. The battery is exhausted when the loaded 
voltage (Vb) becomes less than the lower limit (Vmin) during the discharging. 
In this case, the battery can no longer be used and should be recharged. 
At the same time, a recalibration to the SOH can be made by reevaluating 
the SOH value by the accumulative DOD at the exhausted state. On the 
other hand, the used battery is fully charged if (Vb) reaches the upper limit 
(Vmax) and (Ib) declines to the lower limit (Imin) during charging. A new SOH is 
obtained by accumulating the sum of the total charge put into the battery 
and is then equal to SOC. In practice, the fully charged and exhausted 
states occur occasionally. The accuracy of the SOH evaluation can be 
improved when the battery is frequently fully charged and discharged.   

Thanks to the simple calculation and the uncomplicated hardware 
requirements, the enhanced coulomb counting algorithm can be easily 
implemented in all portable devices, as well as electric vehicles. In 
addition, the estimation error can be reduced to 1% at the operating 
cycle next to the reevaluation of the SOH.

Initial SOC Determination
A battery can be operated at one of the three modes; charging, discharging, 
and open circuit. At the charging stage, the variations of the battery voltage 
and current when the battery is charged by the constant current, constant 
voltage (CC-CV) mode are usually specified by the manufacturer. With 
a constant charging current, the battery voltage increases gradually 
and reaches the threshold. Once the battery has been charged by the 
constant voltage mode, the charging current drops first rapidly, and then 
slowly. Eventually, the current declines to almost zero when it has been 
fully charged. This charging curve can be converted into the relationship 
between the SOC and the charging voltage during the constant current 
stage, and the relationship between the SOC and the charging current 
during the constant voltage stage. The initial SOC during charging can  
be deduced from these relationships.

Same 
Battery?

Identify Battery
Serial Number

Start

Yes

No
Read Historic Data

From Memory Determine Initial SOC(t0)
SOH = 100

DOD(t0) = 100 – SOC(t0)

Monitor 
Vb and Ib

Ib > 0
Charging Mode

Ib = 0
Open Circuit

Mode

Vb = Vmax
Ib = Imin

SOH = SOCSOH = DOD

Vb > Vmin?

SOC and SOH Indication

DOD(t) = DDOD(t0) + ηcΔDOD
SOC = SOH – DOD

DOD(t) = DOD(t0) + ηdΔDOD
SOC = SOH – DOD

Fully
Charged?

Ib?

Ib < 0
Discharging Mode

Yes NoYes No

Figure 1. Flowchart of the enhanced coulomb counting algorithm.
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At the discharging stage, the typical voltage curves when the battery 
is discharged when different currents are given by the manufacturer. 
The terminal voltage declines as the operating time elapses. A higher 
current causes faster decline in the terminal voltage, leading to a shorter 
operation time. The relationship between SOC and the discharging voltage 
at different currents can then be obtained, and the initial SOC during the 
discharging stage can be deduced.   

At the open circuit stage, the relationship between the OCV and the 
SOC is needed. The battery is discharged by different currents before 
disconnecting from the load. The OCV can be used to estimate SOC if a  
long period rest time is available. 

Charging and Discharging Efficiencies
The operational efficiency of a battery can be evaluated by the coulombic 
efficiency, which is defined as the ratio of the number of charges that can 
be extracted from the battery during discharging, compared to the number 
of charges that enter the battery during charging. It is noted that the 
coefficients of the charging and discharging efficiencies are obtained from 
the average values of several tested batteries. 

All tested batteries are charged by a constant maximal rate to the 
designated capacities, which is the product of the charging rate and 
charging duration, and then discharged by a constant minimal rate to the 
cutoff voltage. The charging efficiency is defined as 

ηC =   
Cdischarge, rate min
Ccharge, rate max

	 (10)

The discharging efficiency is the ratio of the released capacity of two 
stages to Cmax in one discharge cycle. All tested batteries are fully charged 
and then discharged by the two stage current profile, first by a specified 
current to a designated DOD and then by a minimal rate to the cut off 
voltage. The discharging efficiency is calculated by   

ηd =   
I1T1 + I2T2

C max

	 (11)

where I1, I2, T1 and T2 are the discharging currents and periods during the 
first and second stages, respectively.

Universal SOC Algorithm
The universal SOC algorithm is proposed in and it applies to all types of 
batteries—in particular, Li-ion batteries. Using linear system analysis in 
the frequency domain but without a circuit model, the OCV is calculated 
based on the sampled terminal voltage and discharge current of the 
battery. Knowing OCV leads to SOC due to the well known mapping 
between OCV and SOC, the considered assumptions that the SOC is 
constant within a time window of certain width, and the battery being a 
linear or weakly nonlinear system. 

Mathematical Formulation
In each time window, the terminal voltage v(t ) of a battery can be 
decomposed as

v(t) = vzi(t) + vzs(t)
v(t) = vzi(t) + h(t) × i(t)

	 (12)

where vzi(t) is the zero input response corresponding to the terminal 
voltage with no discharge current, and vzs(t ) is the zero state response 
corresponding to the terminal voltage with discharge current, i (t ) as input 
and the voltage source shorted. h (t ) is the impulse response of the linear 
system modeling the battery. Note that the validity of the convolution in 
(Equation 12) is based on the assumption of linearity.

The SOC is assumed to be extracted in the time window 0 ≤ t ≤ tw and at 
t < 0, the discharge current is always zero. This assumes that before t = 0, 
the battery is disconnected from load. This assumption is later removed 

as the window is shifted. With this assumption and ignoring the self-
discharge effect, the zero input response is actually the OCV; that is,

vzi(t) = OCV.u(t)    0 ≤ t ≤ tw 	 (13)

where u (t ) is a unit step function

u(t) = 1  if t ≥ 0
u(t) = 0  if t < 0

	 (14)

First, f (t ) which satisfies the following relationship should be found

f(t) × i(t) = δ(t)    0 ≤ t ≤ tw 	 (15)

where δ(t ) is the Dirac delta function, that is

δ(t) = 1  if t = 0
δ(t) = 0  if t ≠ 0

	 (16)

Note that it is required that f (t ) satisfies (Equation 15) only in the window.

The time discrete algorithm to solve for f (t ) is illustrated in Algorithm 1, 
where n is the total number of sampling points in the window and  
t1, t2, …, tn are the sampling time points. The key idea is to inverse 
convolute the samples. The process is similar to that of solving the  
inverse of a matrix using elementary transformation. 

With, f (t ), vf(t ) = f (t ) × v (t ) can be computed as

vf(t) = f(t) × v(t)
vf(t) = f(t) × [OCV.u(t) + vzs(t)]
vf(t) = OCV.uf(t) + f (t) × vzs(t)

vf(t) = OCV.uf(t) + f(t) × i(t) × h(t)
vf(t) = OCV.uf(t) + δ(t) × h(t)

vf(t) = OCV.uf(t) + h(t) 0 ≤ t ≤ tw

	

(17)

where uf(t ) = f (t ) × u(t ).

Algorithm 1. The Algorithm to Calculate f(t)

1: INPUT: Sampled i(t1), 0 ≤ t1 < … < tn ≤ tw 

2: OUTPUT: f(t1), 0 ≤ t1 < … < tn ≤ tw   
3: for j = 1 to n do 
4:   fnorm (tj) = f(tj) = δ(tj)/i(ti) 
5:   inorm (tj) = if(tj) = i(tj)/i(ti)  
6: end for 
7: for i = 2 to n do 
8:   for j = n to i do 
9:      f(tj) = f(tj) – fnorm (tj - 1 + 1)if(t1) 
10:     if(tj) = if(tj) – inorm (tj - 1 + 1)if(t1) 
11:  end for 
12: end for

The frequency domain response of the battery can be considered as finite 
and according to the final value theorem

lim h(t) = lim sH(s) = 0
f→∞ s→0

	 (18)

Accordingly

lim = OCV
t→∞

vf(t)
uf(t)

	 (19)

This means that when a large t is used, h (t ) approaches zero and vf(t )/uf(t ) 
gives a good approximation of OCV in the current time window.

After the extraction of OCV, the impulse response of the system in the 
current time window can be obtained 

h(t) = vf(t) – OCV.uf(t) 	 (20)

After finishing the OCV extraction in the current window, the same process 
to extract the OCV can be repeated in the next window.
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Algorithm Implementation
In Algorithm 1, the bottleneck of runtime is mainly in the step to solve  
f (t ) × i (t ) = δ(t ) for f (t ) and the following step to calculate vf(t ) = f (t ) × v (t ) 
and uf (t ) = f (t ) × u (t ). Actually, these two steps can be combined  
into one and there is no need to explicitly calculate f (t ). The overall 
algorithm is shown in Algorithm 2, where n is the total number of sampling 
points that are in one window. 

Algorithm 2. The Algorithm to Combine the Steps of 
Deconvolution and Convolution

1: INPUT: Sampled i(t1), v(t1), 0 ≤ t1 < … < tn ≤ tw 

2: OUTPUT: vf(t1), uf(t1), 0 ≤ t1 < … < tn ≤ tw   
3: for j = 1 to n do 
4:   vnorm (tj) = vf(tj) = v(tj)/i(tl) 
5:   unorm (tj) = uf(tj) = u(tj)/i(tl) 
6:   inorm (tj) = if(tj) = i(tj)/i(tl)  
7: end for 
8: for i = 2 to n do 
9:   for j = n to i do 
10:     vf(tj) = vf(tj) – vnorm (tj - 1 + 1)if(tl) 
11:     uf(tj) = uf(tj) – unorm (tj - 1 + 1)if(t1) 
12:     if(tj) = if(tj) – inorm (tj - 1 + 1)if(t1)  
13:  end for 
14: end for

Once the OCV is extracted, the SOC can be inferred by using the variations 
of SOC as a function of OCV.

The time complexity of the algorithm is O (n 2) where n  is the number of 
samples. Experiments verify that the SOC can be extracted online with 
less than 4% error for different battery types and discharge current.

Extended Kalman Filter Algorithm
The extended Kalman filter is applied in to estimate SOC directly for 
a lithium battery pack. It is assumed that the relationship between 
battery OCV and SOC is approximately linear, and varies with the ambient 
temperature. This assumption matches with the real battery behavior. 
A battery is modeled as a nonlinear system with the SOC defined as a 
system state and so the extended Kalman filter can be applied.   

Lithium-Ion Battery Model
An equivalent circuit model for a lithium battery pack is shown in 
Figure 2. The bulk capacitance (Ccb) represents the battery pack storage 
capacity and the surface capacitance (Ccs) represents battery diffusion 
effects. Resistances (Ri) and (Rt) represent the internal resistance and 
the polarization resistance, respectively. The voltages across the bulk 
capacitor and the surface capacitor are denoted by (Vcb) and (Vcs), 
respectively. The battery pack terminal voltage and terminal current are 
denoted by (V0) and I, respectively.

The parameters required for the battery model can be determined from 
experimental data, where OCV tests are performed upon successive 
discharge of battery by injection of current pulses.  

Figure 2. Equivalent circuit model for a lithium-ion battery pack.

The characteristics of the model in Figure 2 are governed by the  
following equations

Vcb =
. I

Ccb
	 (21)

Vcs = Vcs + I
. I

RtCcs

1
Ccs

	 (22)

V0 = Vcb + Vcs + IRi 	 (23)

Since the relationship between battery OCV and SOC is only piecewise 
linear in practice, VCB can be expressed as

Vcb = kSoc + d 	 (24)

where the coefficients k and d are not constant and vary with battery SOC 
and the ambient temperature. So

Soc =
. I

kCcb
	 (25)

Vcs = – Vcs + I
. 1

RtCcs

1
Ccs

	 (26)

V0 = kSoc + Vcs + IRi + d  	 (27)

Then the final system equations can be rewritten as

=   
–   +   

I
kCcb

I
SOC
Vcs Vcs

.
.

1
RtCcs

1
Ccs

	

(28)

V0 = kSoc + Vcs + IRi + d  	 (29)

The battery system modeled by the previous equations is nonlinear, and 
the extended Kalman filter technique is applied. 

Extended Kalman Filter Application
Extended Kalman filter is the extension of the Kalman filter for nonlinear 
systems. With the extended Kalman filter technique, a linearization process 
at every time step is performed to approximate the nonlinear system 
with a linear time varying system. The linear time varying system is then 
used in a Kalman filter, resulting in an extended Kalman filter for the true 
nonlinear system. Like a Kalman filter, the extended Kalman filter also uses 
the measured input and output to find the minimum mean squared error 
estimate of the true state, with the assumptions that the process noise 
and sensor noise are independent, zero mean, Gaussian noises.

In the battery pack system Equation 28 and 29, the system state variables 
are defined as x1(t ) = SOC and x2(t ) = Vcs

The input is defined as u (t ) = I and the output is y (t ) = V0. The battery 
pack system Equation 28 and 29 can be rewritten as

x = f(x,u) + w 
. 	 (30)

y = g(x,u) + v 	 (31)

where x = [x1, x2]T 

The terms w and v not only represent random disturbances, but also 
represent errors caused by the changes of the parameters d and k. It is 
assumed that the terms w and v are independent, zero mean, Gaussian 
noise processes with covariance matrices R and Q, respectively.

The functions f (x,u) and g (x,u) are

f (x,u) =   
–   +   

u
kCcb

ux2
1

RtCcs

1
Ccs

	

(32)

g(x,u) = kx1 + x2 + Riu + d 	 (33)

I2

I

+

+
+

–

–

–

I1

Ccs

Ccb

Vcs

Vcb

R1

R1

V0
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If the functions f (x,u) and g (x,u) are linearized by a first-order, Taylor 
series expansion, at each sample step about the current operating point,  
the linearized model is 

δx = Ak δx + Bd δu
.

	 (34)

δy = Ck δx + Dk δu 	 (35)

where

δf(x,u)
δx

1
RtCcs

Ak = , =  – 
00

0
δf(x,u)
δx

1
kCcb

1
Ccs

Bk = , = 
δg(x,u)
δxCk =  = [k   1] 

	

δf(x,u)
δx

1
RtCcs

Ak = , =  – 
00

0
δf(x,u)
δx

1
kCcb

1
Ccs

Bk = , = 
δg(x,u)
δxCk =  = [k   1] , and 

δg(x,u)
δuDk =  = Ri 	

 
The model represented by Equation 34 and 35 can be discretized as

xk+1 = Ad xk + Bd uk 	 (36)

yk+1 = Cd xk + Dd uk 	 (37)

where Ad ≈ E + TcA k, Bd ≈ TcB k, E is the unit matrix and Tc is the sampling 
period, and Cd ≈ C k, Dd ≈ D k . 

The Kalman filter is an optimal observer whose principle is illustrated in 
Figure 3. The principle is to minimize, in real time, the errors between the 
estimated and the measured outputs, using a feedback that adjusts the 
uncertain variables of the used model. By such a model fit, it is possible  
to observe the physical parameters of the model that are not accessible to 
measurements. The correction is weighted by a gain vector K that allows 
correction of the dynamic and the performance of the filter. The gain is 
calculated at each iteration from error predictions and uncertainties (noise) 
on states and measurements. The filter dynamic control is then based on 
the initialization of the noise matrices of states Q and measurements R, as 
well as through the initialization of the matrix of error covariance P.

Figure 3. Kalman filter principle.

The Kalman filter algorithm, illustrated in Figure 4, takes place in two 
phases: the first concerns the initialization of the matrices P, Q, and R,  
and the second concerns the observation which is composed of two  
steps at each sampling interval. First, the algorithm predicts the value 
of the present state, output, and error covariance. Second, by using a 
measurement of the physical system output, it corrects the state  
estimate and error covariance.

So, the extended Kalman filter is applied to obtain SOC estimation for a 
lithium battery pack. The computational complexity of this algorithm is 
O (n 3), where n  is the number of measurements. Experimental results 
show that the proposed extended Kalman filter-based SOC estimation 
method is effective and can estimate battery SOC accurately. It can also 
been applied to estimate the SOH value of the Li-ion battery pack.

Figure 4. Kalman filter algorithm.

SOC Algorithm Selection
In order to fit the application requirements in terms of computational 
capabilities, required accuracy, real-time constraints, and system environ-
ment, the enhanced coulomb counting seems to be an advantageous 
algorithm. In fact, it is based on a simple real-time calculation and does 
not present complicated hardware constraints. Its complexity is obviously 
lower than that of the other algorithms. In addition, the enhanced coulomb 
counting algorithm presents a small estimation error and it can then pro-
vide acceptable accuracy. Furthermore, this algorithm does not need extra 
information besides the data provided by the manufacturer.     

Enhanced Coulomb Counting Evaluation
In this section, we’ll evaluate the presented enhanced coulomb counting 
algorithm in order to validate its accuracy and performance. In fact, it 
is obvious that the extended Kalman filter presents high computational 
complexity and complicated hardware requirements. It is then not suitable 
for the application. For the evaluation of the universal SOC algorithm, we 
need the curve of the SOC vs. the OCV, which is not provided in the battery 
data sheet. It is then essential to have this curve in order to evaluate the 
universal SOC algorithm. 

A first evaluation step of the enhanced coulomb counting is described, and 
it can be followed by other advanced steps when we dispose of realistic 
experimental values of measured voltage and current.

Evaluation Procedure
The SOC values obtained by enhanced coulomb counting algorithm 
simulation are compared to the experimental SOC values deducted from  
the charging and discharging curves, which are given by battery data 
sheets. The charging and discharging curves can also be reproduced 
using the Simulink model of MATLAB (MathWorks model), which implements 
a generic dynamic model parametrized to represent most popular types  
of rechargeable batteries—in particular, Li-ion batteries.

Simulation Results
We have tested the implemented enhanced coulomb counting algorithm 
using MATLAB simulation tool for the charging mode, the discharging 
mode, and the two modes together. In Figure 5, the blue curves represent 
the experimental SOC and the red curves represent the estimated SOC, 
obtained by an enhanced coulomb counting algorithm.  

System

Observer

yu

y x̂ˆ

K

Model

Initial Estimate x0/0
and Error Covariance P0, Q, and R

Prediction

Determine State
xk + 1/k = Adxk/k + Bduk

Determine Output
yk + 1 = Cdxk/k + Dduk

Determine Error Covariance
Pk + 1/k = AdPk/kAd

T + R

Correction

Determine Kalman Gain
Kk + 1 = Pk + 1/kCd

T [CdPk + 1/kCd
T + Q]–1

Employ Correction on Prediction of States
xk + 1/k + 1 = xk + 1/k + Kk + 1 [yk + 1 – yk + 1] 

Determine Error Covariance
Pk + 1/k + 1 = [I – Kk + 1Cd] Pk + 1/k

ˆ

ˆ ˆ

ˆ ˆ ˆˆ
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Charging Mode
Figure 5 shows the experimental and estimated SOC using the enhanced 
coulomb counting algorithm for a complete charging stage. The maximal 
obtained error between experimental and estimated values is of about 
3.5% at the end of the charging stage. After a SOH reevaluation, the error 
will be considerably reduced.  

Figure 5. Experimental and estimated SOC for a complete charging stage.

Figures 6 and 7 illustrate the variations of the experimental and simulated 
SOC as a function of time for the CC and CV stages of charging mode.  
The maximal estimation error that can be obtained in the end of 
algorithm execution before reevaluating the SOH value is less than 2% 
for the CC stage and less than 1% for the CV stage. It is noted that the 
estimation error increases with the algorithm runtime and before the SOH 
reevaluation when the battery is fully charged. It is also worthwile noting 
that the precise determination of initial SOC is of great importance for 
reducing the estimation error. The accurate evaluation of the charging 
efficiency can also reduce the error between the experimental and the 
simulated SOC values.   

Figure 6. Experimental and estimated SOC for a CC charging stage.

Figure 7. Experimental and estimated SOC for a CV charging stage.

Discharging Mode
Figures 8 and 9 illustrate the experimental and simulated SOC as a 
function of battery terminal voltage for a complete discharging stage and 
a partial discharging stage. The maximal estimation error does not exceed 
2% for the long complete stage and almost equals to zero for the short 
partial stage. The estimation error reaches its maximal value at the end 
of a complete discharging stage before reevaluating the SOH value and 
increases with the algorithm runtime.

The enhanced coulomb counting algorithm is also evaluated for charging 
and discharging stages together, which can reproduce the real behavior of 
a battery pack. It has been verified that the estimation error is often small 
enough (<4%) to ensure an accurate SOC estimation in real time and 
without disturbing the battery pack operation.    

Figure 8. Experimental and estimated SOC for a complete discharging stage.

Figure 9. Experimental and estimated SOC for a partial discharging stage.
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