8-Bit Arithmetic Logic Unit (ALU)

Specification:

An 8-bit arithmetic logic unit (ALU) is a combinational circuit which operates on two 8-bit input buses
based on selection inputs. The ALU performs common arithmetic (addition and subtraction) and logic
(AND, INV, XOR, and OR) functions. These operations are common to all computer systems and thus are
an essential part of computer architecture.

Inputs and outputs are as follows:

Name | Width | [nput/Output Description
A 8 [nput first operand
B 8 Input second operand
cin | [nput used to get more operations
alu_sel 3 [nput chooses operation alu perforims
enable | [uput enable alu
M 8 Output result of operation performed
m7 1 Output sign bit if signed numbers
v 1 Output overflow assuming signed numbers
c_out 1 Output carry out

Operations performed based on alu_sel selection inputs are as follows:

alu_sel action
0 AORB
1 not({A)
2 A+ not(B) + clin
3 A+ B+cin
4 A XORB
5] AAND B
G A-1+ can
7 A+ cln




Design:

This ALU design is unique, effective, and minimally engineered. The basic design is as follows: two 8-bit
input buses (“A” and “B”) and 1-bit c_in get passed straight to the 8-bit logic gates or to an 8-bit inverter
and/or “8-bit clear” and then to the 8-bit adder to be added together. The “8-bit clear” is also used as an
enable as it sets all of the bits to “0”. This “8-bit clear” is also used when sending “not(A)”, “A—1+ c_in",
and “A + c_in” through to the adder as it eliminates bus “B” from these equations. The 8-bit inverter is
used to flip every bit of the respective buses in the cases of “not(A)” and “A + not(B) + c_in”. All of the
respective outputs of these operations are sent to a 8-bit 4x1 mux that is used for selecting which of
these results will be sent to the final output bus “M” (labeled “OUT” in the diagram below). This
designed coupled with a combinational circuit which take the alu_sel parameters as inputs and
determines whether or not the 8-bit inverters and 8-bit clears are turned on and determines which
inputs of the 8-bit 4x1 mux to use for the final output. All components are shown below.
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8-BIT CLEAR DESIGN
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8-BIT INVERTER DESIGN




8-BIT OR DESIGN




8-BIT AND DESIGN
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2X1 MUX DESIGN
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8-BIT 2X1 MUX DESIGN
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8-BIT 4X1 MUX DESIGN
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Verification:

To verify the design of this circuit | tested each of the possible alu_sel settings and manually verified the
bits to make sure that they were correct. For the alu_sel settings which performed addition/subtraction
| verified cases where overflow occurred and thus demonstrated that my overflow output parameters,
namely “c_out” and “v” worked correctly. For each of the 8-bit logic circuits (8-bit AND, OR, XOR, INV,
etc) | tested each circuit to make sure that each individual bit was being operated on correctly before |
implemented these circuits in my implementation.

Through induction | have verified that each simple gate (AND, OR, XOR, INV, etc) works effectively, and
thus each complex circuit (multiplexor, etc) works effectively, and thus this circuit which is composed of
such circuits also works effectively.

Waveforms:

Although | have tested many more situations than are included or mentioned: | include waveforms for
the reader to verify for themselves the functionality of this circuit, in a few cases for each specific alu_sel
setting.
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