8-Bit Arithmetic Logic Unit (ALU)

Specification:

An 8-bit arithmetic logic unit (ALU) is a combinational circuit which operates on two 8-bit input buses
based on selection inputs. The ALU performs common arithmetic (addition and subtraction) and logic
(AND, INV, XOR, and OR) functions. These operations are common to all computer systems and thus are
an essential part of computer architecture.

Inputs and outputs are as follows:

Name | Width | [nput/Output Description
A 8 [nput first operand
B 8 Input second operand
cin | [nput used to get more operations
alu_sel 3 [nput chooses operation alu perforims
enable | [uput enable alu
M 8 Output result of operation performed
m7 1 Output sign bit if signed numbers
v 1 Output overflow assuming signed numbers
c_out 1 Output carry out

Operations performed based on alu_sel selection inputs are as follows:

alu_sel action
0 AORB
1 not({A)
2 A+ not(B) + clin
3 A+ B+cin
4 A XORB
5] AAND B
G A-1+ can
7 A+ cln

Design:

This ALU design is unique, effective, and minimally engineered. The basic design is as follows: two 8-bit
input buses (“A” and “B”) and 1-bit c_in get passed straight to the 8-bit logic gates or to an 8-bit inverter
and/or “8-bit clear” and then to the 8-bit adder to be added together. The “8-bit clear” is also used as an
enable as it sets all of the bits to “0”. This “8-bit clear” is also used when sending “not(A)”, “A—1+ c_in",
and “A + c_in” through to the adder as it eliminates bus “B” from these equations. The 8-bit inverter is
used to flip every bit of the respective buses in the cases of “not(A)” and “A + not(B) + c_in”. All of the
respective outputs of these operations are sent to a 8-bit 4x1 mux that is used for selecting which of
these results will be sent to the final output bus “M” (labeled “OUT” in the diagram below). This
designed coupled with a combinational circuit which take the alu_sel parameters as inputs and
determines whether or not the 8-bit inverters and 8-bit clears are turned on and determines which
inputs of the 8-bit 4x1 mux to use for the final output. All components are shown below.

ALU DESIGN
S) S : o
o i0 9
a our B, o= 01100110_B ¥
T,
i2 y’“
A
i3
. . &
L . .
. = @c_aul
i
o= e
.
ir
41100110_B)

L

©)

BT

@

2l

L0

JLETE LR
12—

L

- +a_u_um|#_n_.m @ e
ash Clbe] —I 0o Ml
A H
L T e
. . —I_ ino M

il =1

7 @ 1100000)s

« ;8 oreoorrv.

AHl
nc il

aNw HY-5
aHl

nc il

moJ_m.zm

nc Ml

w8 01100L10

p LN

WE=|2THYE
a1

Ml

W | 3-8

[t

(14

aul

IH

aml

N Ml

=]

b ._m__“_m_._s

R

il =

T g LLL 1=

8-BIT CLEAR DESIGN

wf0001111_B O)F

CLR |§l>———D;=O—< —

PYPPPPYL

00000000_B out

8-BIT INVERTER DESIGN

8-BIT OR DESIGN

8-BIT AND DESIGN

wlJ0111110_B O

wgaooo110_8 O

TTYTTTTT

{ 00o00110_B seut

2X1 MUX DESIGN

§Y®

8-BIT 2X1 MUX DESIGN

. |u.ﬁi C} |un| 255 O - - - -
. u . |
wrowm wm we wg vz e wn wrowm wn wa v vz owr wn

. .] . a
s @ *
Zed_miux
LY =]
'l
Zed_muxd
LY =]
'l
Zed_muxz
LY =]
'l
Ze1_puzl
=]
T
Zed_muxd
LY =]
'l
Fri_muzs
=]
'l
Zed_muzxe
LY =]
]
ERL

L T R T T T N T U T I (3
"
:>D"r'

8-BIT 4X1 MUX DESIGN

INA ‘

0 O>— A

INB

INB ‘

ouT

5
8-bit_2x1_mux
1. O)m

INC ‘

20 1A

INB

IND ‘

OUTW

(@

‘S0

5
<j> 8-bit_2x1_mux1

~

A
INE

5
8-bit_2x1_mux2

ouT

ouT

Verification:

To verify the design of this circuit | tested each of the possible alu_sel settings and manually verified the
bits to make sure that they were correct. For the alu_sel settings which performed addition/subtraction
| verified cases where overflow occurred and thus demonstrated that my overflow output parameters,
namely “c_out” and “v” worked correctly. For each of the 8-bit logic circuits (8-bit AND, OR, XOR, INV,
etc) | tested each circuit to make sure that each individual bit was being operated on correctly before |
implemented these circuits in my implementation.

Through induction | have verified that each simple gate (AND, OR, XOR, INV, etc) works effectively, and
thus each complex circuit (multiplexor, etc) works effectively, and thus this circuit which is composed of
such circuits also works effectively.

Waveforms:

Although | have tested many more situations than are included or mentioned: | include waveforms for
the reader to verify for themselves the functionality of this circuit, in a few cases for each specific alu_sel
setting.

AUL_sel set to 000:

AUL_sel set to 001:

enable

ALU_sel U E |
[EH |
AS1

AS0

BusA Q0101101 B

Busg > JI001071 E 07007100 & 01007707 B 0001110 B

c_in —
ouT TIT0TT11 B 7107101 B TTI0T111 B

c_out

m7

Y

enapble

ALU_sel 00T B

A2
AS1

A0

BusA 00110070 B

Busg 01070010 B 07070011 B

c_in

ouT 11001101 B K AT00T1H0 K 1001101 B K AT00T1H0 & 001101 B A AT00T10

c_out

mr7
[]

AUL_sel set to 010:

enahle

ALU_sel UB

AS2
AS1
ASD

BusA 00101001 B

Busk 01001001 B 01007010 B

c_in |

ouT TT0T1111 B K TT00000 B O B K TIOIT110 B

©_out
m?

W

AUL_sel set to 011:

enahle

ALU_sel

U B

A2
AS1
ASD

BusA

00110711 B

00711000 E

nn1711007

BusE 01010710 B 01010111 B

01071000 B 07071001 B 07071070 B

c_in

10007110 B« TO000M[T11 B

¢ 10010000 B 10010001 B 10010010 B

0010011 B

¥ 0010100

c_out

m7

AUL_sel set to 100:

enable

ALU_sal

100 B

A2
AS1

ASD

Bush

00111110 B

Busk UEB 01011011 B

01017100 B 01011101 B

01011110 B

01011111 B

c_in

07100100 B 01100101 B

01100070 B 01100017 B

01100000 B

01100001 B

c_out

m7?

AUL_sel set to 101:

enahle

ALU_zel

101 B

AS2
AS1

AS0

BusA 01000110 B

01000111 E

01001000 B 01007001 B

BuskE

UEB

c_in

07000010 B

07000000 B

c_out

Q7100011 B 01100700 B

07000001 B 01000000 B

m7?

AUL_sel set to 110:

enable

ALU_sel

110 B

AB2

AS1
ASD

BusA

01010001 B

Busk

Ug

c_in

\

01070000 B

01070001 B 01010000 B

01070001 B

01010000 B

c_out

m?

AUL_sel set to 111:

enahle

ALU_sel

AS2

LB » 01011000 B

01011001 B 01011010 B

UB 01111000 B 011110071 E|

0107+ 01087000 B

01011001 B 01011010 B

01011011 B 01011010 B 07071011 B 01071010 B

c_out

