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Chapter Objectives

• Define various types of flow, volume flow rate, 
weight flow rate, and mass flow rate and their units.

• Define steady flow and the principle of continuity.

• Write the continuity equation, and use it to relate the 
volume flow rate, area, and velocity of flow between 
two points in a fluid flow system.

• Describe five types of commercially available pipe 
and tubing: steel pipe, ductile iron pipe, steel tubing, 
copper tubing, and plastic pipe and tubing.

• Specify the desired size of pipe or tubing for carrying 
a given flow rate of fluid at a specified velocity.
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Laminar and Turbulent flow

• As the water flows from a faucet at a very low 
velocity, the flow appears to be smooth and 
steady.  The stream has a fairly uniform 
diameter and there is little or no evidence of 
mixing of the various parts of the stream. This is 
called laminar flow.

• When the faucet is nearly fully open, the water 
has a rather high velocity. The elements of fluid 
appear to be mixing chaotically within the 
stream. This is a general description of 
turbulent flow.
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Chapter Outline

1. Fluid Flow Rate and the Continuity Equation

2. Commercially Available Pipe and Tubing

3. Recommended Velocity of Flow in Pipe and 
Tubing

4. Conservation of Energy – Bernoulli’s Equation

5. Interpretation of Bernoulli’s Equation

6. Restrictions on Bernoulli’s Equation

7. Applications of Bernoulli’s Equation

8. Torricelli’s Theorem

9. Flow Due to a Falling Head
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6.1 Fluid Flow Rate and the Continuity Equation

• The quantity of fluid flowing in a system per unit time 
can be expressed by the following three different 
terms:

• Q The volume flow rate is the volume of fluid flowing 
past a section per unit time.

• W The weight flow rate is the weight of fluid flowing 
past a section per unit time.

• M The mass flow rate is the mass of fluid flowing past 
a section per unit time.
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6.1 Fluid Flow Rate and the Continuity Equation

• The most fundamental of these three terms is the 
volume flow rate Q, which is calculated from

• where A is the area of the section and ν is the 
average velocity of flow. The units of Q can be 
derived as follows, using SI units for illustration:
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6.1 Fluid Flow Rate and the Continuity Equation

• The weight flow rate W is related to Q by

• where γ is the specific weight of the fluid. The units of 
W are then

• The mass flow rate M is related to Q by
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6.1 Fluid Flow Rate and the Continuity Equation

• The units of M are then

• Table 6.1 shows the flow rates.

• Useful conversions are
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6.1 Fluid Flow Rate and the Continuity Equation
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6.1 Fluid Flow Rate and the Continuity Equation

• Table 6.2 shows the typical volume flow rates.
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Example 6.1

Convert a flow rate of 30 gal/min to ft3/s.

The flow rate is 
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Example 6.2

Convert a flow rate of 600 L/min to m3/s.



6. Flow of Fluid and Bernoulli’s Equation

ã2005 Pearson Education South Asia Pte Ltd

Example 6.3

Convert a flow rate of 600 L/min to m3/s.
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6.1 Fluid Flow Rate and the Continuity Equation

• The method of calculating the velocity of flow of a fluid 
in a closed pipe system depends on the principle of 
continuity.

• Fig 6.1 shows the portion of a fluid distribution system 
showing variations in velocity, pressure, and 
elevation.

• This can be expressed in terms of the mass flow rate 
as
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6.1 Fluid Flow Rate and the Continuity Equation
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6.1 Fluid Flow Rate and the Continuity Equation

• As M=ρAv, we have

• Equation (6–4) is a mathematical statement of the 
principle of continuity and is called the continuity 
equation. 

• It is used to relate the fluid density, flow area, and 
velocity of flow at two sections of the system in which 
there is steady flow. 

• It is valid for all fluids, whether gas or liquid. 
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6.1 Fluid Flow Rate and the Continuity Equation

• If the fluid in the pipe in Fig. 6.1 is a liquid that can be 
considered incompressible, then the terms ρ1 and ρ2 

is the same.

• Since Q = Av,

• Equation (6–5) is the continuity equation as applied to 
liquids; it states that for steady flow the volume flow 
rate is the same at any section.
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Example 6.4

In Fig. 6.1 the inside diameters of the pipe at sections 1 
and 2 are 50 mm and 100 mm, respectively. Water at is 
flowing with an average velocity of 8 m/s at section 1. 
Calculate the following:

(a) Velocity at section 2
(b) Volume flow rate
(c) Weight flow rate
(d) Mass flow rate
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Example 6.4

(a) Velocity at section 2.

From Eq. (6–5) we have
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Example 6.4

Then the velocity at section 2 is

Notice that for steady flow of a liquid, as the flow area 
increases, the velocity decreases.

This is independent of pressure and elevation.
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Example 6.4

(b) Volume flow rate Q.

From Table 6.1, Q = vA. Because of the principle of 
continuity we could use the conditions either at section 1 
or at section 2 to calculate Q. At section 1 we have
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Example 6.4

(c) Weight flow rate W.

From Table 6.1, W = γQ. At 70°C, the specific weight of 
water is 9.59kN/m3. Then the weight flow rate is
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Example 6.4

(d) Mass flow rate M.

From Table 6.1, M = ρQ. At the density of water is 
978 kg/m3. Then the mass flow rate is
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Example 6.5

According to the continuity equation for gases, Eq. (6–
4), we have

Then, we can calculate the area of the two sections and 
solve for ρ2
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Example 6.5

(a)Then, the density of the air in the round section is

(b) The weight flow rate can be found at section 1 from . 
Then, the weight flow rate is
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6.2 Commercially Available Pipe and Tubing

• The nominal sizes for commercially available pipe still 
refer to an “inch” size even though the transition to the 
SI system is an international trend.

• For many applications, codes and standards must be 
followed as established by governmental agencies or 
organizations such as the following:
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6.2.1 Steel Pipe

• General-purpose pipe lines are often constructed of 
steel pipe. 

• Standard pipe sizes are designated by the nominal 
size and schedule number. 

• Schedule numbers are related to the permissible 
operating pressure of the pipe and to the allowable 
stress of the steel in the pipe.
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6.2.1 Steel Pipe

Nominal Pipe Sizes in Metric Units

• Because of the long experience with manufacturing 
standard pipe according to the standard schedule 
numbers, they continue to be used often even when 
the piping system is specified in metric units.

• The following set of equivalents has been established 
by the International Standards Organization (ISO).
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6.2.1 Steel Pipe
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6.2.2 Steel Tubing

• Standard steel tubing is used in fluid power systems, 
condensers, heat exchangers, engine fuel systems, 
and industrial fluid processing systems. 

• Sizes are designated by outside diameter and wall 
thickness.
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6.2.3 Copper Tubing

• There are six types of copper tubing offered, and the 
choice of which to use depends on the application, 
considering the environment, fluid pressure, and fluid 
properties.

• Copper tubing is available in either a soft, annealed 
condition or hard drawn.

• Drawn tubing is stiffer and stronger, maintains a 
straight form, and can carry higher pressures. 

• Annealed tubing is easier to form into coils and other 
special shapes.
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6.2.3 Ductile Iron Pipe

• Water, gas, and sewage lines are often made of 
ductile iron pipe because of its strength, ductility, and 
relative ease of handling. 

• It has replaced cast iron in many applications.
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6.2.3 Plastic Pipe and Tubing

• Plastic pipe and tubing are being used in a wide 
variety of applications where their light weight, ease of 
installation, corrosion and chemical resistance, and 
very good flow characteristics present advantages.
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6.2.4 Hydraulic Hose

• Hose materials include butyl rubber, synthetic rubber, 
silicone rubber, thermoplastic elastomers, and nylon. 

• Braided reinforcement may be made from steel wire, 
Kevlar, polyester, and fabric. 

• Industrial applications include steam, compressed air, 
chemical transfer, coolants, heaters, fuel transfer, 
lubricants, refrigerants, paper stock, power steering 
fluids, propane, water, foods, and beverages.
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6.3 Recommended Velocity of Flow in Pipe and Tubing

• Many factors affect the selection of a satisfactory 
velocity of flow in fluid systems.

• Some of the important ones are the type of fluid, the 
length of the flow system, the type of pipe or tube, the 
pressure drop that can be tolerated, the devices (such 
as pumps, valves, etc.) that may be connected to the 
pipe or tube, the temperature, the pressure, and the 
noise.
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6.3 Recommended Velocity of Flow in Pipe and Tubing

• The resulting flow velocities from the recommended 
pipe sizes in Fig. 6.2 are generally lower for the 
smaller pipes and higher for the larger pipes, as 
shown for the following data.
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6.3 Recommended Velocity of Flow in Pipe and Tubing

Recommended Flow Velocities for Specialized 
Systems
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6.3 Recommended Velocity of Flow in Pipe and Tubing

• For example, recommended flow velocities for fluid 
power systems are as follows:
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6.3 Recommended Velocity of Flow in Pipe and Tubing

• The suction line delivers the hydraulic fluid from the 
reservoir to the intake port of the pump. 

• A discharge line carries the high-pressure fluid from 
the pump outlet to working components such as 
actuators or fluid motors. 

• A return line carries fluid from actuators, pressure 
relief valves, or fluid motors back to the reservoir.
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Example 6.6

Determine the maximum allowable volume flow rate in 
L/min that can be carried through a standard steel tube 
with an outside diameter of 1.25in and a 0.065 in wall 
thickness if the maximum velocity is to be 3.0 m/s.

Using the definition of volume flow rate, we have
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Example 6.7

Because Q and v are known, the required area can be 
found from

First, we must convert the volume flow rate to the units 
of m3/s:
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Example 6.7

This must be interpreted as the minimum allowable area 
because any smaller area would produce a velocity 
higher than 6.0 m/s. Therefore, we must look in 
Appendix F for a standard pipe with a flow area just 
larger than 8.88 x 10-3 m2. A standard 5-in Schedule 40 
steel pipe, with a flow area of 1.291 x 10-2m2 is required. 
The actual velocity of flow when this pipe carries 0.0533 
m3/s of water is
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Example 6.7

If the next-smaller pipe (a 4-in Schedule 40 pipe) is 
used, the velocity is
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Example 6.8

Entering Fig. 6.2 at Q = 400 gal/min, we select the 
following:

The actual average velocity of flow in each pipe is
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Example 6.8 - Comments

Although these pipe sizes and velocities should be 
acceptable in normal service, there are situations
where lower velocities are desirable to limit energy 
losses in the system. Compute the velocities resulting 
from selecting the next-larger standard Schedule 40 pipe 
size for both the suction and discharge lines:
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Example 6.8 - Comments

The actual average velocity of flow in each pipe is

If the pump connections were the 4-in and 3-in sizes 
from the initial selection, a gradual reducer and gradual 
enlargement could be designed to connect these pipes 
to the pump.
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6.4 Conservation of Energy – Bernoulli’s Equation

• In physics you learned that energy can be neither 
created nor destroyed, but it can be transformed from 
one form into another. 

• This is a statement of the law of conservation of 
energy.

• Fig 6.3 shows the element of a fluid in a pipe.
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6.4 Conservation of Energy – Bernoulli’s Equation

• There are three forms of energy that are always 
considered when analyzing a pipe flow problem.

1. Potential Energy. Due to its elevation, the potential 
energy of the element relative to some reference 
level is

where w is the weight of the element.
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6.4 Conservation of Energy – Bernoulli’s Equation

2. Kinetic Energy. Due to its velocity, the kinetic energy 
of the element is

3. Flow Energy. Sometimes called pressure energy or 
flow work, this represents the amount of work 
necessary to move the element of fluid across a 
certain section against the pressure p. Flow energy 
is abbreviated FE and is calculated from
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6.4 Conservation of Energy – Bernoulli’s Equation

• Equation (6–8) can be derived as follows.

• The work done is

where V is the volume of the element. The weight of 
the element w is

where γ is the specific weight of the fluid. Then, the 
volume of the element is
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6.4 Conservation of Energy – Bernoulli’s Equation

• And we have Eq. (6-8)

• Fig 6.4 shows the flow energy.
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6.4 Conservation of Energy – Bernoulli’s Equation

• The total amount of energy of these three forms 
possessed by the element of fluid is the sum E,

• Each of these terms is expressed in units of energy, 
which are Newton-meters (Nm) in the SI unit system 
and foot-pounds (ft-lb) in the U.S. Customary 
System.
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6.4 Conservation of Energy – Bernoulli’s Equation

• Fig 6.5 shows the fluid elements used in Bernoulli’s 
equation.
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6.4 Conservation of Energy – Bernoulli’s Equation

• At section 1 and 2, the total energy is

• If no energy is added to the fluid or lost between 
sections 1 and 2, then the principle of conservation 
of energy requires that
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6.4 Conservation of Energy – Bernoulli’s Equation

• The weight of the element w is common to all terms 
and can be divided out. 

• The equation then becomes

• This is referred to as Bernoulli’s equation.
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6.5 Interpretation of Bernoulli’s Equation

• Each term in Bernoulli’s equation, Eq. (6–9), resulted 
from dividing an expression for energy by the weight 
of an element of the fluid. 

• Each term in Bernoulli’s equation is one form of 
the energy possessed by the fluid per unit 
weight of fluid flowing in the system.

• The units for each term are “energy per unit weight.” 
In the SI system the units are Nm/N and in the U.S. 
Customary System the units are lb.ft/lb.
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6.5 Interpretation of Bernoulli’s Equation

• Specifically,

• Fig 6.6 shows the pressure head, elevation head, 
velocity head, and total head.
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6.5 Interpretation of Bernoulli’s Equation
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6.5 Interpretation of Bernoulli’s Equation

• In Fig. 6.6 you can see that the velocity head at 
section 2 will be less than that at section 1. This can 
be shown by the continuity equation,

• In summary,

• Bernoulli’s equation accounts for the changes in 
elevation head, pressure head, and velocity head 
between two points in a fluid flow system. It is 
assumed that there are no energy losses or 
additions between the two points, so the total 
head remains constant.
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6.6 Restriction on Bernoulli’s Equation

• Although Bernoulli’s equation is applicable to a large 
number of practical problems, there are several 
limitations that must be understood to apply it 
properly.

1. It is valid only for incompressible fluids because the 
specific weight of the fluid is assumed to be the 
same at the two sections of interest.

2. There can be no mechanical devices between the 
two sections of interest that would add energy to or 
remove energy from the system, because the 
equation states that the total energy in the fluid is 
constant.
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6.6 Restriction on Bernoulli’s Equation

3. There can be no heat transferred into or out of the 
fluid.

4. There can be no energy lost due to friction.

• In reality no system satisfies all these restrictions. 

• However, there are many systems for which only a 
negligible error will result when Bernoulli’s equation 
is used. 

• Also, the use of this equation may allow a fast 
estimate of a result when that is all that is required.
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6.7 Applications of Bernoulli’s Equation

• Below is the procedure for applying bernoulli’s 
equation:

1. Decide which items are known and what is to be 
found.

2. Decide which two sections in the system will be used 
when writing Bernoulli’sequation. One section is 
chosen for which much data is known. The second is 
usually the section at which something is to be 
calculated.
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6.7 Applications of Bernoulli’s Equation

3. Write Bernoulli’s equation for the two selected 
sections in the system. It is important that the 
equation is written in the direction of flow. That is, 
the flow must proceed from the section on the left 
side of the equation to that on the right side.

4. Be explicit when labeling the subscripts for the 
pressure head, elevation head, and velocity head 
terms in Bernoulli’s equation. You should note where 
the reference points are on a sketch of the system.

5. Simplify the equation, if possible, by canceling terms 
that are zero or those that are equal on both sides of 
the equation.
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6.7 Applications of Bernoulli’s Equation

6. Solve the equation algebraically for the desired term.

7. Substitute known quantities and calculate the result, 
being careful to use consistent units throughout the 
calculation.
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Example 6.9

In Fig. 6.6, water at 10°C is flowing from section 1 to 
section 2. At section 1, which is 25 mm in diameter, the 
gage pressure is 345 kPa and the velocity of flow is 3.0 
m/s. Section 2, which is 50 mm in diameter, is 2.0 m 
above section 1. Assuming there are no energy losses in 
the system, calculate the pressure p2.

List the items that are known from the problem 
statement before looking at the next panel.
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Example 6.9

The pressure p2 is to be found. In other words, we are 
asked to calculate the pressure at section 2, which is 
different from the pressure at section 1 because there is 
a change in elevation and flow area between the two 
sections.

We are going to use Bernoulli’s equation to solve the 
problem. Which two sections should be used when 
writing the equation?
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Example 6.9

Now write Bernoulli’s equation.

The three terms on the left refer to section 1 and the 
three on the right refer to section 2.
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Example 6.9

The final solution for p2 should be

The continuity equation is used:

This is found from
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Example 6.9

Now substitute the known values into Eq. (6–10).

The details of the solution are
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Example 6.9

The pressure p2 is a gage pressure because it was 
computed relative to p1, which was also a gage 
pressure. In later problem solutions, we will assume the 
pressures to be gage unless otherwise stated.
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6.7.1 Tanks, Reservoirs and Nozzles Exposed to the Atmosphere

• When the fluid at a reference point is exposed to 
the atmosphere, the pressure is zero and the 
pressure head term can be cancelled from 
Bernoulli’s equation.

• Fig 6.7 shows the siphon.
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6.7.1 Tanks, Reservoirs and Nozzles Exposed to the Atmosphere

• The tank from which the fluid is being drawn can be 
assumed to be quite large compared to the size of 
the flow area inside the pipe.

• The velocity head at the surface of a tank or 
reservoir is considered to be zero and it can be 
cancelled from Bernoulli’s equation.
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6.7.2 When Both Reference Points Are in the Same Pipe

• When the two points of reference for Bernoulli’s 
equation are both inside a pipe of the same size, 
the velocity head terms on both sides of the 
equation are equal and can be cancelled.
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6.7.3 When Elevation Are Equal at Both Reference Point

• When the two points of reference for Bernoulli’s 
equation are both at the same elevation, the 
elevation head terms z1 and z2 are equal and can 
be cancelled.
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Example 6.10

Figure 6.7 shows a siphon that is used to draw water 
from a swimming pool. The pipe that makes up the 
siphon has an inside diameter of 40 mm and terminates 
with a 25-mm diameter nozzle. Assuming that there are 
no energy losses in the system, calculate the volume 
flow rate through the siphon and the pressure at points 
B–E.
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Example 6.10

The first step in this problem solution is to calculate the 
volume flow rate Q, using Bernoulli’s equation. The two 
most convenient points to use for this calculation are A 
and F. What is known about point A?

Point A is the free surface of the water in the pool. 
Therefore, pA = 0Pa. Also, because the surface area of 
the pool is very large, the velocity of the water at the 
surface is very nearly zero. Therefore, we will assume vA

= 0.
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Example 6.10

Point F is in the free stream of water outside the nozzle. 
Because the stream is exposed to atmospheric 
pressure, the pressure pF = 0 Pa. We also know that 
point F is 3.0 m below point A.

Because pA = 0Pa,pF = 0Pa , and vA is approximately 
zero, we can cancel the from the equation. What 
remains is
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Example 6.10

The objective is to calculate the volume flow rate, which 
depends on the velocity.

The result is

Using the continuing equation , compute the volume flow 
rate.
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Example 6.10

Points A and B are the best. As shown in the previous 
panels, using point A allows the equation to be simplified 
greatly, and because we are looking for pB, we must 
choose point B. Write Bernoulli’s equation for points A 
and B, simplify it as before, and solve for pB.

Because pA = 0 and vA = 0, we have
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Example 6.10

We can calculate vA by using the continuity equation:
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Example 6.10

The pressure at point B is

The negative sign indicates that pB is 4.50 kPa below 
atmospheric pressure. Notice that when we deal with 
fluids in motion, the concept that points on the same 
level have the same pressure does not apply as it does 
with fluids at rest.
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Example 6.10

The next three panels present the solutions for the 
pressures pC, pD, and pE, which can be found in a 
manner very similar to that used for pB. Complete the 
solution for pC before looking at the next panel.
The answer is pC = -16.27kPa. We use Bernoulli’s 
equation.
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Example 6.10

Because pA = 0 and vA = 0, the pressure at point C is
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Example 6.10

The pressure at point E is 24.93 kPa. We use Bernoulli’s 
equation:

Because pA = 0 and vA = 0, we have
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Example 6.10
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6.7.3 When Elevation Are Equal at Both Reference Point

SUMMARY OF THE RESULTS

1. The velocity of flow from the nozzle, and therefore 
the volume flow rate delivered by the siphon, 
depends on the elevation difference between the 
free surface of the fluid and the outlet of the nozzle.

2. The pressure at point B is below atmospheric 
pressure even though it is on the same level as point 
A, which is exposed to the atmosphere. In Eq. (6–
11), Bernoulli’s equation shows that the pressure 
head at B is decreased by the amount of the velocity 
head. That is, some of the energy is converted to 
kinetic energy, resulting in a lower pressure at B.
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6.7.3 When Elevation Are Equal at Both Reference Point

SUMMARY OF THE RESULTS

• When steady flow exists, the velocity of flow is the 
same at all points where the pipe size is the same.

• The pressure at point C is the lowest in the system 
because point C is at the highest elevation.

• The pressure at point D is the same as that at point 
B because both are on the same elevation and the 
velocity head at both points is the same.

• The pressure at point E is the highest in the system 
because point E is at the lowest elevation.
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6.7.4 Venturi Meters and Other Closed Systems with Unknown Velocities

• Figure 6.8 shows a device called a venturi meter that 
can be used to measure the velocity of flow in a fluid 
flow system.
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6.7.4 Venturi Meters and Other Closed Systems with Unknown Velocities

• The analysis of such a device is based on the 
application of Bernoulli’s equation. 

• The reduced-diameter section at B causes the 
velocity of flow to increase there with a 
corresponding decrease in the pressure.

• It will be shown that the velocity of flow is dependent 
on the difference in pressure between points A and 
B. Therefore, a differential manometer as shown is 
convenient to use.
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Example 6.11

The venturi meter shown in Fig. 6.8 carries water at 
60°C. The specific gravity of the gage fluid in the 
manometer is 1.25. Calculate the velocity of flow at 
section A and the volume flow rate of water.

The problem solution will be shown in the steps outlined 
at the beginning of this section but the programmed 
technique will not be used.
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Example 6.11

1. Decide what items are known and what is to be 
found. The elevation difference between points A 
and B is known. The manometer allows the 
determination of the difference in pressure between 
points A and B. The sizes of the sections at A and B 
are known. The velocity is not known at any point in 
the system and the velocity at point A was 
specifically requested.

2. Decide on sections of interest. Points A and B are 
the obvious choices.
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Example 6.11

3. Write Bernoulli’s equation between points A and B:

4. Simplify the equation, if possible, by eliminating 
terms that are zero or terms that are equal on both 
sides of the equation. No simplification can be done 
here.
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Example 6.11

5. Solve the equation algebraically for the desired term. 
This step will require significant effort. First, note that 
both of the velocities are unknown. However, we can 
find the difference in pressures between A and B 
and the elevation difference is known. Therefore, it is 
convenient to bring both pressure terms and both 
elevation terms onto the left side of the equation in 
the form of differences. Then the two velocity terms 
can be moved to the right side. The result is
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Example 6.11

6. Calculate the result. Several steps are required. The 
elevation difference is

The value is negative because B is higher than A. 
This value will be used in Eq. (6–12) later. The 
pressure-head difference term can be evaluated by 
writing the equation for the manometer. We will use 
γg for the specific weight of the gage fluid, where
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Example 6.11

A new problem occurs here because the data in Fig. 6.8 
do not include the vertical distance from point A to the 
level of the gage fluid in the right leg of the manometer. 
We will show that this problem will be eliminated by 
simply calling this unknown distance y or any other 
variable name. Now we can write the manometer 
equation starting at A:
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Example 6.11

Note that the two terms containing the unknown y 
variable can be cancelled out. Solving for the pressure 
difference, we find
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Example 6.11

The entire left side of Eq. (6–12) has now been 
evaluated. Note, however, that there are still two 
unknowns on the right side, vA and vB. We can eliminate 
one unknown by finding another independent equation 
that relates these two variables. A convenient equation
is the continuity equation,
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Example 6.11

We can now take these results, the elevation head 
difference [Eq. (6–13)] and the pressure head difference 
[Eq. (6–14)], back into Eq. (6–12) and complete the 
solution. Equation (6–12) becomes
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6.8 Torricelli’s Theorem

• Fig 6.9 shows the flow from a tank.
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6.8 Torricelli’s Theorem

• Fluid is flowing from the side of a tank through a 
smooth, rounded nozzle. 

• To determine the velocity of flow from the nozzle, 
write Bernoulli’s equation between a reference point 
on the fluid surface and a point in the jet issuing from 
the nozzle:
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6.8 Torricelli’s Theorem

• Equation (6–16) is called Torricelli’s theorem in 
honor of Evangelista Torricelli, who discovered it in 
approximately 1645.
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Example 6.12

For the tank shown in Fig. 6.9, compute the velocity of 
flow from the nozzle for a fluid depth h of 3.00 m.

This is a direct application of Torricelli’s theorem:
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Example 6.13

For the tank shown in Fig. 6.9, compute the velocity of 
flow from the nozzle and the volume flow rate for a 
range of depth from 3.0 m to 0.50 m in steps of 0.50 m. 
The diameter of the jet at the nozzle is 50 mm.

The same procedure used in Example Problem 6.12 can 
be used to determine the velocity at any depth. So, at 
h = 30m, v2 = 7.67 m/s. The volume flow rate is 
computed by multiplying this velocity by the area of the 
jet:
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Example 6.13

Then,

Using the same procedure, we compute the following 
data:
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Example 6.13

Figure 6.10 is a plot of velocity and volume flow rate 
versus depth.
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6.8 Torricelli’s Theorem

• Another interesting application of Torricelli’s theorem 
is shown in Fig. 6.11, in which a jet of fluid is 
shooting upward.
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6.8 Torricelli’s Theorem

• If no energy losses occur, the jet will reach a height 
equal to the elevation of the free surface of the fluid 
in the tank. 

• Of course, at this height the velocity in the stream is 
zero. This can be demonstrated using Bernoulli’s 
equation. 

• First obtain an expression for the velocity of the jet at 
point 2:
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6.8 Torricelli’s Theorem

• If no energy losses occur, the jet will reach a height 
equal to the elevation of the free surface of the fluid 
in the tank. 

• Of course, at this height the velocity in the stream is 
zero. This can be demonstrated using Bernoulli’s 
equation. 

• First obtain an expression for the velocity of the jet at 
point 2:
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6.8 Torricelli’s Theorem

• Now, write Bernoulli’s equation between point 2 and 
point 3 at the level of the free surface of the fluid, but 
in the fluid stream:

• From Eq. (6–16), v2
2 = 2gh. Also, (z2 – z1). Then,
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6.8 Torricelli’s Theorem

• This result verifies that the stream just reaches the 
height of the free surface of the fluid in the tank.

• To make a jet go higher (as with some decorative 
fountains, for example), a greater pressure can be 
developed above the fluid in the reservoir or a pump 
can be used to develop a higher pressure.
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Example 6.14

First, use Bernoulli’s equation to obtain an expression 
for the velocity of flow from the nozzle as a function of 
the air pressure.
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Example 6.14

Then, in this problem, if we want a height of 12.2 m and 
h=1.83 m,
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6.9 Flow Due to Falling Head

• Figure 6.13 shows a tank with a smooth, well-
rounded nozzle in the bottom through which fluid is 
discharging. 

• For a given depth of fluid h, Torricelli’s theorem tells 
us that the velocity of flow in the jet is
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6.9 Flow Due to Falling Head

• In a small amount of time dt, the volume of fluid 
flowing through the nozzle is

• Meanwhile, because fluid is leaving the tank, the 
fluid level is decreasing.

• During the small time increment dt, the fluid level 
drops a small distance dh. Then, the volume of fluid 
removed from the tank is
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6.9 Flow Due to Falling Head

• These two volumes must be equal. Then,

• Solving for the time dt, we have

• From Torricelli’s theorem, we can substitute
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6.9 Flow Due to Falling Head

• Rewriting to separate the terms involving h gives

• The time required for the fluid level to fall from a 
depth h1 to a depth h2 can be found by integrating 
Eq. (6–23):
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6.9 Flow Due to Falling Head

• We can reverse the two terms involving h and 
remove the minus sign.
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Example 6.15

For the tank shown in Fig. 6.13, find the time required to 
drain the tank from a level of 3.0 m to 0.50 m. The tank 
has a diameter of 1.50 m and the nozzle has a diameter 
of 50 mm.

To use Eq. (6–26), the required areas are
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Example 6.15

The ratio of these two areas is required:

Now, in Eq. (6–26),

This is equivalent to 6 min and 57 s.
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6.9.1 Draining a Pressurized Tank

• If the tank in Fig. 6.13 is sealed with a pressure 
above the fluid, the piezometric head p/γ should be 
added to the actual liquid depth before completing 
the calculations called for in Eq. (6–25).
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6.9.2 Effect of Type of Nozzle

• The development of Eq. (6–26) assumes that the 
diameter of the jet of fluid flowing from the nozzle is 
the same as the diameter of the nozzle itself.

• Fig 6.14 shows the flow through a sharp-edged 
orifice.
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6.9.2 Effect of Type of Nozzle

• The proper area Aj to use for in Eq. (6–26) is that at 
the smallest diameter.

• This point, called the vena contracta, occurs slightly 
outside the orifice. 

• For this sharp-edged orifice, Aj = 0.62A0 is a good 
approximation.
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