▼▲▼▲▼▲▼	56:171 Operations Research	▼▲▼▲▼▲▼
	Final Examination Solutions	
▼▲▼▲▼▲▼	Fall 1998	▼▲▼▲▼▲▼

Write your name on the first page, and initial the other pages.
Answer both Parts A and B, and 4 (out of 5) problems from Part C.

inter court	i and b, and i (our of b) problems from i art e.	
		Possible
Part A:	Miscellaneous multiple choice	20
Part B:	Sensitivity analysis (LINDO)	20
Part C:	1. Discrete-time Markov chains I	15
	2. Discrete-time Markov chains II	15
	3. Continuous-time Markov chains	15
	4. Decision analysis	15
	5. Dynamic programming	<u>15</u>
	total possible:	100

VAVAVAV PART A VAVAVAV

Multiple Choice: Write the appropriate letter (a,	b, c, d, or e) : $(NOTA = \underline{N}one \ \underline{o}f \ \underline{t}he \ \underline{a}bor$	ve).
<u>e</u> 1. If, in the optimal <i>primal</i> solution of an LF	P problem (min cx st Ax \geq b, x \geq 0), there	is zero slack in constraint #1, then
in the optimal dual solution,		
a. dual variable #1 must be zero	c. slack variable for dual cons	
b. dual variable #1 must be positive		
<u>c</u> 2. If, in the optimal solution of the <i>dual</i> of positive, then in the optimal <i>primal</i> solution,		$(0, X \ge 0)$, dual variable #2 is
a variable #2 must be zero	c slack variable for constrain	nt #2 must be zero
b. variable #2 must be positive	d. constraint #2 must be slac	
<u>b</u> 3. If $X_{ij} > 0$ in the transportation problem, then	n dual variables U and V must satisfy	
a. $C_{ii} > U_i + V_i$	c. $C_{ij} < U_i + V_j$ e	$C_{ii} = U_i - V_i$
b. $C_{ij} = U_i + V_j$. NOTA
<u>_c</u> 4. For a discrete-time Markov chain, let P be		The sum of each
a. column is 1 c. row is	s 1	
b. column is 0 d. row is		
<u>b</u> 5. In PERT, the completion time for the proj		
a. have the Beta distribution c. b		- NOTA
b. have the Normal distribution d. h <u>b</u> 6. In an M/M/1 queue, if the arrival rate = λ		e. NOTA
<u>b</u> 0. In all W/W/1 queue, if the all value $= \lambda$ a. $\pi_0 = 1$ in steady state c. $\pi_i > 0$		not a birth-death process
•		not a birtir death process
b. no steady state exists d. π_0		4 (7.11
<u>d</u> 7. If there is a tie in the "minimum-ratio tes a. will be nonbasic		
a. will be nonfeasible	 c. will have a worse objective d. will be degenerate 	e. <i>NOTA</i>
<u>d</u> 8. An absorbing state of a Markov chain is on	6	C. 1001/1
	moving into that state is one.	
•	moving out of that state is zero	e. NOTA
The problems (9)-(12) below refer to the following		
	(with inequalities converted to	o equations:)
Minimize $8X_1 + 4X_2$	Minimize $8X_1 + 4X_2$	
subject to $3X_1 + 4X_2 \ge 6$	subject to $3X_1 + 4X_2 - X_3$	
$5X_1 + 2X_2 \le 10$	$5X_1 + 2X_2 + X_3$	
$x_1 + 4x_2 \le 4$	$X_1 + 4X_2$	$+X_{5} = 4$
$X_1 \ge 0, X_2 \ge 0$	$X_i \ge 0$), j=1,2, 3,4,5

$3 - X_2$ 2 - E - E - E - E - E - E - E - E - E -	B ₂ 3 4	D X ₁	
a. B, F, & G	c. C, E, & I	F	
b. A, B, C, & F	d. E, F, &0	G e. NOTA	
<u>d</u> 10. At point F, the basic varia			
a. X2 & X3 b. X3 & X4	c. X4 & X5		
b . $A_3 \propto A_4$ <u>b</u> 11. Which point is degenerate i	d. X ₁ & X	4 e. <i>WOTA</i>	
a. point A	c. point C		
b. point B	d. point D	e. <i>NOTA</i>	
 a. 2 constraints of type (≥) b. one each of type ≤ & ≥ c. 2 constraints of type (≤) d. one each of type ≥ & = e. <i>None of the above</i> 		ling nonnegativity or nonpositivity):	
<u>b</u> 13. The dual of the LP has the fo			
a. three non-negative variablesb. one non-negative and two negative and two negative and two nega		e. three non-positive variables f. <i>None of the above</i>	
c. two non-negative variables		1. None of the above	
d. two non-negative variables a			
	which dual variables must be zero	o, according to the Complementary Slackness	<i>S</i>
Theorem ?	d Vr only		
 a. Y₁ and Y₂ b. Y₁ and Y₃ 	d. Y ₁ only e. Y ₂ only		
c. Y ₂ and Y ₃	f. Y ₃ only		
Consider a discrete-time Markov chai		rix :	
a. 0.4		tem will be in state 2 after exactly one step i e. none of the above	is:
b. 0.6 <u>d</u> 16. If the Markov chain in the presstate 1 after 2 transitions is	d. 0.52 evious problem was initially in sta	ate #1, the probability that the system will st	ill b
a. 0.36	c. 0	e. 0.52	
b. 0.60	d. 0.48	f. <i>NOTA</i>	

still be in

• •	lity vector π of a discrete Markov chain with	transition probability matrix P satisfies the
a. $P \pi = 0$	c. π (I-P) = 0	e. NOTA
b. P $\pi = \pi$	d. P ^t $\pi = 0$	
18. For a continuous-time M	arkov chain, let Λ be the matrix of transition	rates. The sum of each
a. row is 0	c. row is 1	e. NOTA
b. column is 0	d. column is 1	
19. To compute the steady st	ate distribution π of a continuous-time Marko	ov chain, one must solve (in addition to sum
of π components equal to 1)	the matrix equation (where Λ^t is the transpo	se of Λ):
a. $\pi \Lambda = 1$	c. $\Lambda^{T}\pi=\pi$	e. $\pi \Lambda = 0$
b. $\Lambda^{T} \pi = 1$	d. $\pi \Lambda = \pi$	f. NOTA
20. Little's Law is applicable	e to queues of the class(es):	
a. M/M/1	c. any birth-death process	e. any queue with steady state
b. M/M/c for any c	d. any continuous-time Markov chain	f. NOTA
21. In a birth/death model of	f a queue,	
a. time between arrivals h	nas Poisson distribution	
b. number of "customers" s	served cannot exceed 1	
c. the distribution of the n	umber of customers in the system has expone	ential distribution
d. the arrival rate is the sa	me for all states	
e. None of the above		
	matrix equation a. $P \pi = 0$ b. $P \pi = \pi$ 18. For a continuous-time M a. row is 0 b. column is 0 19. To compute the steady st of π components equal to 1) a. $\pi \Lambda = 1$ b. $\Lambda^{T} \pi = 1$ 20. Little's Law is applicable a. M/M/1 b. M/M/c for any c 21. In a birth/death model of a. time between arrivals h b. number of "customers" c. the distribution of the n d. the arrival rate is the sa	a. $P \pi = 0$ b. $P \pi = \pi$ c. $\pi (I-P) = 0$ d. $P^{t} \pi = 0$ 18. For a continuous-time Markov chain, let Λ be the matrix of transition a. row is 0 b. column is 0 c. row is 1 b. column is 0 d. column is 1 19. To compute the steady state distribution π of a continuous-time Markov of π components equal to 1) the matrix equation (where Λ^{t} is the transpon a. $\pi \Lambda = 1$ b. $\Lambda^{T} \pi = 1$ c. $\Lambda^{T} \pi = \pi$ b. $\Lambda^{T} \pi = 1$ d. $\pi \Lambda = \pi$ 20. Little's Law is applicable to queues of the class(es): a. $M/M/1$ c. any birth-death process b. $M/M/c$ for any c d. any continuous-time Markov chain 21. In a birth/death model of a queue, a. time between arrivals has Poisson distribution b. number of "customers" served cannot exceed 1 c. the distribution of the number of customers in the system has exponent d. the arrival rate is the same for all states

VAVAVAV PART B VAVAVAV

Sensitivity Analysis in LP.

"A manufacturer produces two types of plastic cladding. These have the trade names <u>Ankalor and Beslite</u>. One yard of Ankalor requires 8 lb of polyamine, 2.5 lb of diurethane and 2 lb of monomer. A yard of Beslite needs 10 lb of polyamine, 1 lb of diurethane, and 4 lb of monomer. The company has in stock 80,000 lb of polyamine, 20,000 lb of diurethane, and 30,000 lb of monomer. Both plastics can be produced by alternate parameter settings of the production plant, which is able to produce sheeting at the rate of 12 yards per hour. A total of 750 production plant hours are available for the next planning period. The contribution to profit on Ankalor is \$10/yard and on Beslite is \$20/yard.

The company has a contract to deliver at least 3,000 yards of Ankalor. What production plan should be implemented in order to maximize the contribution to the firm's profit from this product division."

Definition of variables:

	A = Number of	of yards	of Ank	alor prod	uced	
	B = Number of a bar	of yards	of Besl	ite produ	ced	
LP model:	1) Maximize	10 A +	20 B s	subject to		
	2)	8A +	10 B	≤80,00	0	(lbs. Polyamine available)
	3) 2	2.5 A +	1 B	$\leq 20,00$	00	(lbs. Diurethane available)
	4) 2	2A +	4 B	$\leq 30,00$	00	(lbs. Monomer available)
	5)	A +	В	≤ 9,000	C	(lbs. Plant capacity)
	6)	А		≥ 3,000	C	(Contract)
		$A \ge 0, E$	$B \ge 0$			
The LINDO solut	ion is:					
OBJE	CTIVE FUNC	TION V	ALUE			
	1) 142000.00	00				
VARI	ABLE	VA	LUE	RED	UCED CO	ST
A	A	300	0.000		0.000	
E	3	560	0.000		0.000	
ROW	SL	ACK OF	R SURP	LUS E	DUAL PRIC	ES
2)			0.00	00	2	2.000
3)			6900.00	00	C	0.000
4)			1600.00	00	(0.000
5)́			400.00	00	C	0.000
6)			0.0	00	-6	3.000

RANGES IN WHCH THE BASIS IS UNCHANGED

RANGES IN W	OBJ COEFFICIENT RANGES						
VARIAE	BLE C	URRENT	ALLOWAB		OWABLE		
		COEF	INCREAS	SE DEC	CREASE		
А		10.000	6.000		FINITY		
В		20.000	INFIN	ITY	7.500		
ROW	0	URRENT		WABLE	DE RANGES ALLOWABL	c	
ROW	C	RHS	• •== •	REASE	DECREASE		
2	80	000.000		0.000	56000.00		
3		000.000		NITY	6900.00	-	
4	30	000.000	INF	NITY	1600.00	0	
5	g	000.000	INFI	NITY	400.00	0	
6	3	000.000	2000	0.000	1333.33	3	
THE TABLEAU							
ROW	(BASIS)	А	В	SLK 2	SLK 3	SLK 4	SLK 5
1	ART	.000	.000	2.000	.000	.000	.000
2	В	.000	1.000	.100	.000	.000	.000
3	SLK 3	.000	.000	100	1.000	.000	.000
4	SLK 4	.000	.000	400	.000	1.000	.000
5	SLK 5	.000	.000	100	.000	.000	1.000
6	A	1.000	.000	.000	.000	.000	.000
ROW	SLł	(6					
1	6.	-	0.14	E+06			
2		800	5600.000)			
3		700	6900.000)			
4		200	1600.000				
5		200	400.000				
6	-1.	000	3000.000	J			

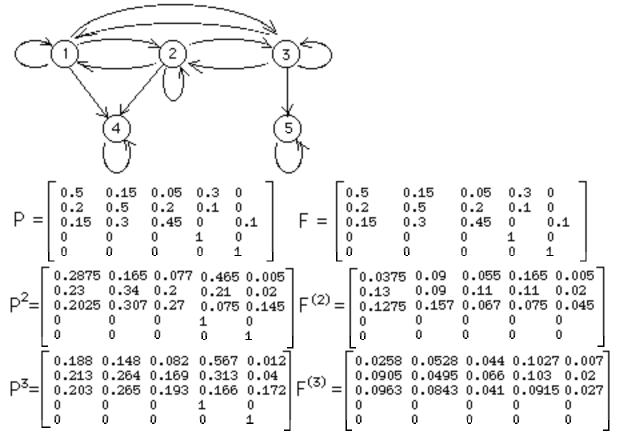
Consult the LINDO output above to answer the following questions. If there is not sufficient information in the LINDO output, answer "NSI".

ошриі,	answer INSI.		
<u> </u>	1. How many yards of Beslite should be	manufactured?	
	a. 3000 yards	c. 5600 yards	e. NSI
	b. 1600 yards	d. 400 yards	
<u> </u>	2. How much of the available diurethane	e will be used?	
	a. 6900 pounds	c. 13100 pounds	e. NSI
	b. 1600 pounds	d. 400 pounds	
<u>a</u>	3. How much of the available diurethane	e will be unused?	
	a. 6900 pounds	c. 13100 pounds	e. NSI
	b. 1600 pounds	d. 400 pounds	
<u>_b</u> _	4. Suppose that the company can purcha	se 2000 pounds of additional	polyamine for \$2.50 per pound. Should they
	make the purchase? a. yes b. no	c. NSI	
<u>a</u>	5. Regardless of your answer in (4), supp	ose that they do purchase 200	00 pounds of additional polyamine. This is
	equivalent to		
	a. decreasing the slack in row 2 by 2	000 d. decreasin	g the surplus in row 2 by 2000
	b. increasing the surplus in row 2 by		he above
	c. increasing the slack in row 2 by 20		
<u>d</u>	6. If the company purchases 2000 pound	ls of additional polyamine, wl	hat is the total amount of Beslite that they
	should deliver? (Choose nearest value?)		
	a. 5500 yards	d. 5800 yar	
	b. 5600 yards	e. 5900 yar	ds
	c. 5700 yards	f. NSI	
<u> </u>		0 pounds of additional polyar	nine change the quantity of diurethane used
	during the next planning period?		
	a. increase by 100 pounds	d. decrease	by 200 pounds
	b. decrease by 100 pounds	e. none of the	he above
	c. increase by 200 pounds	f. NSI	

56:171 Operations Research

Final Exam '98

Note: Purchasing an additional 2000 lbs of polyamine would force the variable SLK2 to become -2000 According to the substitution rate (-0.1) of SLK2 for SLK3, SLK3 would change in the <u>same</u> direction by the amount 0.1·2000=200 lbs which would indicate that an additional 200 lbs of diurethane is purchased. (This is, of course, conditional upon the increase of 2000 being less than the allowable increase for the RHS, which in this case is 4000.)


- <u>a</u> 8. If the profit contribution from Beslite were to decrease to \$11/yard, will the optimal solution change? a. yes b. no c. NSI
- <u>b</u> 9. If the profit contribution from Ankelor were to increase to \$15/yard, will the optimal solution change? a. yes b. no c. NSI
- <u>a</u> 10. Suppose that the company could deliver 1000 yards less than the contracted amount of Ankalor by paying a penalty of \$5/yard shortage. Should they do so? a. yes b. no c. NSI

VAVAVAV PART C VAVAVAV

1. **Discrete-Time Markov Chains I:** A baseball team consists of 2 stars, 13 starters, and 10 substitutes. For insurance purposes, the team owner must place a value on the players. The value of each player is defined to be the total value of the salary he will earn until retirement. At the beginning of each season, the players are classified into one of four categories:

- Category 1: Substitute (earns \$100,000 per year).
- Category 2: Starter (earns \$400,000 per year).
- Category 3: Star (earns \$1 million per year).
- Category 4: Retired while not a star (earns no more salary).
- **Category 5**: Retired while Star (earns no salary, but is paid \$100,000/year for product endorsements).

Given that a player is a star, starter, or substitute at the beginning of the current season, the probabilities that he will be a star, starter, substitute, or retired at the beginning of the next season are shown in the transition probability matrix P below. Also shown are a diagram of the Markov chain model of a "typical" player, several powers of P, the first-passage probability matrices, the absorption probabilities, and the matrix of expected number of visits.

Solutions

	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1	Γo	0 0	L
$A = \begin{array}{c} & 4 \\ 1 \\ 2 \\ 0.8620 \\ 3 \\ 0.7241 \end{array}$	5 3 0.068966 7 0.13793 4 0.27586	E= 2	1 2.6959 1.7555 5_1.6928	2 1.2226 3.3542 2.163	3 0.68966 1.3793 2.7586
Select the nearest av				s below.	
<u>d</u> 1. The number of a. 0	t <i>transient</i> states in c. 2	this Markov ch		g. NOTA	4
a. 0 b. 1	d. 3	с f.		g. 11011	1
<u>c</u> 2. The number of					
a. 0	c. 2	e		g. NOTA	4
b. 1	d. 3	f.			
<u>c</u> 3. The number of					
a. 0	c. 2	e		g. NOTA	1
b. 1	d. 3	f.	-	11 that applied	
	s of states in this M				
a. $\{1\}$	d. $\{4\}$ e. $\{5\}$	-	$\{1,2,3\}$	j. {3,4,5	
b. {2} c. {3}	$e. \{3\}$ f. $\{1,2\}$		{1,2,3,4} [4,5]	k. $\{2,3,4$ l. $\{1,2,3\}$	
	closed sets of states				
a. {1}	$\frac{10}{4}$		{1,2,3}	j. {3,4,5	
b. $\{2\}$	$\begin{array}{c} \mathbf{u} \cdot \left(\mathbf{+} \right) \\ \mathbf{e} \cdot \left\{ 5 \right\} \end{array}$	-	{1,2,3,4}	k. {2,3,4	-
c. {3}	$\frac{c. (3)}{f \{1,2\}}$		[4,5]	$1. \{1,2,3,4\}$	
0. (5)	1. [1,2]	1.	[1,0]	1. (1,2,3,	1,0]
Suppose that at the be	ginning of the 1998	8 season, Joe Blo	ough was a <i>Star</i>	ter (category	#2).
<u>d</u> 6. What is the pro-	obability that Joe is	a star in 1999?	(choose nearest	t answer)	
a. 5%	c. 15%	e. 25%	g. 35%	i. 45	%
b. 10%	d. 20%	f. 30%	h. 40%	j. 50'	%
\underline{d} 7. What is the product of \underline{d}	•				
a. 5%	c. 15%	e. 25%	g. 35%	i. 45	
b. 10%	d. 20%	f. 30%	h. 40%	j. 50	
<u>b</u> 8. What is the property 50%	•				,
a. 5%	c. 15%	e. 25%	g. 35%	i. 45	
b. 10%	d. 20%	f. 30%	h. 40%	j. 50' a ha ratiras? (% choose nearest answer)
$\underline{-c}$ 3. what is the pro-	Joanny mai joe ev				

2. Discrete-time Markov Chain II: (*Model of Inventory System*) Consider the following inventory system for a certain spare part for a company's 2 production lines, costing \$10 each. A maximum of four parts may be kept on the shelf. At the

g. 35%

h. 40%

g. 7 years

h. 8 years

g. 70%

h. 80%

g. 3.5

h. 4

i. 45%

j. 50%

i. 90%

i. 4.5

j. 5 or more

j. 100%

i. 9 years j. *NOTA*

a. 5%

b. 10%

a. 1 year

b. 2 years

a. 10%

b. 20%

a. .5

b. 1

c. 15%

d. 20%

c. 3 years

d. 4 years

c. 30%

d. 40%

c 1.5

d. 2

e. 25%

f. 30%

e. 5 years

f. 6 years

e. 50%

f. 60%

e. 2.5

f. 3

<u>c</u> 11. What fraction of players who achieve "stardom" retire while still a star? (choose nearest answer)

<u><u>f</u> 12. What is Joe's expected earnings (in \$millions) for the remainder of his career? (choose nearest answer)</u>

 \underline{f} 10. What is the expected length of his playing career, in years? (choose nearest answer)

Solutions

end of each day, the parts in use are inspected and, if worn, replaced with one off the shelf. The probability distribution of the number replaced each day is:

n=	0	1	2
P{n}=	0.3	0.5	0.2

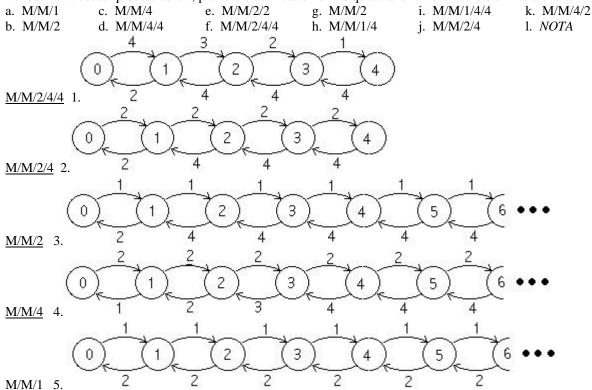
To avoid shortages, the current policy is to restock the shelf at the end of each day (after any needed spare parts have been removed) so that the shelf is again filled to its limit (i.e., 4) **if** the shelf is empty or contains a single part. The annual holding cost of the part is 20% of the value.

The inventory system has been modeled as a Markov chain, with the state of the system defined as the end-of-day inventory level (before restocking). Refer to the computer output which follows to answer the following questions: Note that in the computer output, state #1 is inventory level 0, state #2 is inventory level 1, etc.

Suppose that the shelf is full Sunday p.m. (after restocking):

		til the next s	tockout occurs? (choose nearest answer)
a. 2 c.	. 6 e.	10	g. 14 i. 18
b. 4 d.	. 8 f.	12	h. 16 j. 20 or more
<u>b</u> 2. What is the probability	ity that the shelf is t	full Wednesd	ay p.m. (before restocking) (choose nearest answer)
a. 5% c.	. 15% e.	25%	g. 35% i. 45%
b. 10% d.	. 20% f.	30%	h. 40% j. 50% or more
			t five days that the shelf is restocked? (choose nearest answer)
		1.25	g. 1.75 i. 2.25
		1.5	h. 2 j. 2.5 or more
\underline{h} 4. How frequently do s			
5		10 days	g. 14 days i. 18 days
		12 days	h. 16 days j. 20 or more
<u><u>b</u> 5. How many stockouts</u>			
	. 20 e.		g. 40 i. 50
		35	h. 45 j. 55 or more
			ar for this part? (choose nearest answer)
	. \$3 e.		g. \$7 i. \$9
		\$6	h. \$8 j. \$10 <i>or more</i>
\underline{a} 7. The number of transition			
	. 2 e.		g. None of the above
	. 3 f.		
\underline{f} 8. The number of recur			
	. 2 e.		g. None of the above
	. 3 f.		
The transition probability m P =	iairix ana iis jirsi ji	ve powers:	
1 = 0	0 0.2	0.5	0.3
0	0 0.2	0.5	0.3
0.2	0.5 0.3	0	0
0	0.2 0.5	0.3	0
0	0 0.2	0.5	0.3
$\mathbf{P}^2 =$			
0.04	0.2 0.37	0.3	0.09
0.04 0.06	0.2 0.37 0.15 0.23	0.3 0.35	0.09 0.21
0.08	0.31 0.34	0.35	0.06
0.04	0.2 0.37	0.3	0.09
$P^3 =$			
0.074	0.245 0.327	0.255	0.099
0.074	0.245 0.327	0.255	0.099
0.046	0.185 0.328	0.315	0.126
0.068	0.208 0.291	0.292	0.141
0.074 $P^4 =$	0.245 0.327	0.255	0.099
P = 0.0654	0.2145 0.309	2 0.2855	0.1254
	0.2145 0.309		0.1254
0.0001			

0.0656	0.227	0.3273	0.273	0.1071
0.0582	0.2039	0.3167	0.2961	0.1251
0.0654	0.2145	0.3092	0.2855	0.1254


 $P^{5} =$ 0.06184 0.2117 0.31657 0.2883 0.12159 0.31657 0.2883 0.06184 0.2117 0.12159 0.06546 0.21825 0.31463 0.28175 0.11991 0.06334 0.21757 0.3205 0.28243 0.11616 0.06184 0.2117 0.31657 0.2883 0.12159 $\sum_{n=1}^{5} \mathbf{P}^{n}$ 0.24124 0.8712 1.52277 1.6288 0.73599 0.24124 0.8712 1.52277 1.6288 0.73599 0.43706 1.28025 1.49993 1.21975 0.56301 0.28954 1.13947 1.7682 1.36053 0.44226 0.24124 0.8712 1.52277 1.6288 0.73599 The mean first passage time matrix: 15.7692 4.64151 3.07692 2.57143 8.36735 15.7692 4.64151 3.07692 2.57143 8.36735 12.6923 2.75472 3.15385 4 9.79592 15 3.39623 2.30769 3.51429 10.8163 15.7692 4.64151 3.07692 2.57143 8.36735

Steady-state distribution:

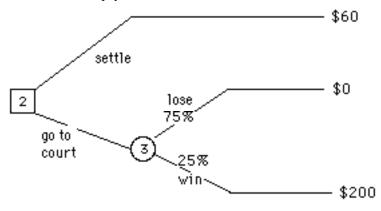
State	<u>i</u>	<u>P{i}</u>
SOH=0	1	0.0634146
SOH=1	2	0.215447
SOH=2	3	0.317073
SOH=3	4	0.284553
SOH=4	5	0.119512

3. Birth/Death Model of a Queue:

For each birth/death process below, pick the classification of the queue and write it in the blank to the left:

Customers arrive at a grocery checkout lane in a Poisson process at an average rate of one every two minutes if there are 2 or fewer customers already in the checkout lane, and one every four minutes if there are already 3 in the lane. If there are already 4 in the lane, no additional customers will join the queue. The service times are exponentially distributed, with an average of 1.5 minutes if there are fewer than 3 customers in the checkout lane. If three or four customers are in the lane,

another clerk assists in bagging the groceries, so that the average service time is reduced to 1 minute. The average arrival rate at this checkout lane is 0.46/minute.


6. Draw the diagram for this birth/death process, indicating the birth & death rates.

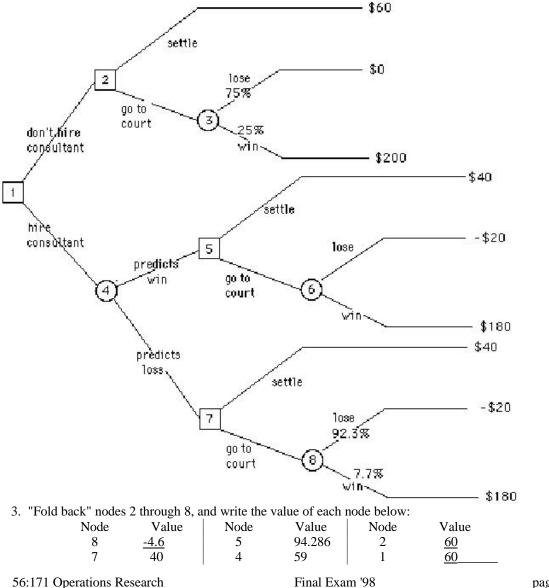
	$0 \qquad 1 \\ \lambda 0 = \lambda 1 = \lambda 2 = 0.5/\text{minute}$)	
	$\mu 1 = \mu 2 = 2/3$ per minute, μ	•			
	7. Write the expression w				
	$\frac{1}{p_0} = 1 + \frac{1/2}{2/3} + \left(\frac{1/2}{2/3}\right)^2$				
	=1 + 0.75 + (0	$(.75)^2 + (0.75)^2$	$(0.5) + (0.75)^2 (0)$	(0.25) = 2.66	54
b	8. What fraction of the time				
_	a. 10%	c. 20%	e. 30%	g. 40%	
	b. 15%	d. 25%	f. 35%	h. 45% or mo	ore
_ <u>g_</u>	9. What fraction of the time	will this checkout	t lane be empty? (Cha	oose nearest value.)
	a. 5%	c. 15%	e. 25%	g. 35%	i. 45%
	b. 10%	d. 20%	f. 30%	h. 40%	j. 50% or more
<u>e</u>	10. What is the average num	nber of customers	waiting at this check	out lane (not includ	ling the customer being served)?
	(Choose nearest value.)				
	a. 0.1	c. 0.3	e. 0.5	g. 0.7	i. 0.9
	b. 0.2		f. 0.6		5
<u>_d</u> _			customer spends wa	iting at this checko	ut lane (not including the time
	being served)? (Choose near				
	a. 0.25	c. 0.75	e. 1.25	g. 1.75	
	b. 0.5	d. 1	f. 1.5	h. 2 or more	2

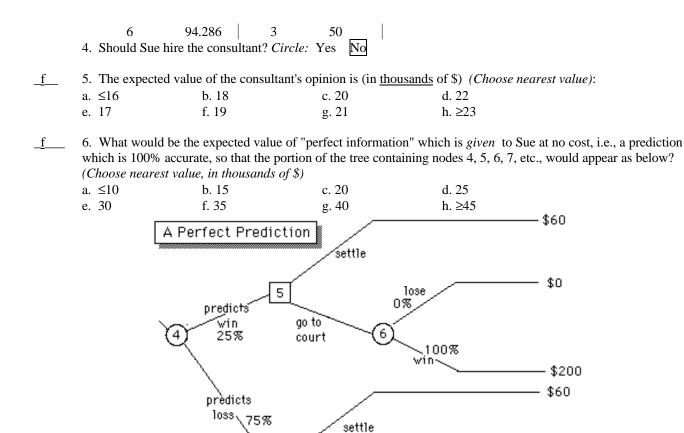
The steadystate distribution (and the <u>C</u>umulative <u>D</u>istribution <u>F</u>unction) is

i	$m{\pi}_{ m i}$	<u>CDF</u>
0	0.3753	0.3753
1	0.2815	0.6569
2	0.2111	0.8680
3	0.1056	0.9736
4	0.0264	1.0000

4. Decision Trees: General Custard Corporation is being sued by Sue Smith. Sue can settle out of court and win 60,000, or she can go to court. If she goes to court, there is a 25% chance that she will win the case (*event W*) and a 75% chance she will lose (*event L*). If she wins, she will receive \$200,000, and if she loses, she will net \$0. A decision tree representing her situation appears below, where payoffs are in thousands of dollars:

<u>a</u> 1. What is the decision which maximizes the expected value?


a. settle b. go to court


For \$20,000, Sue can hire a consultant who will predict the outcome of the trial, i.e., either he predicts a loss of the suit (*event PL*), or he predicts a win (*event PW*). The consultant predicts the correct outcome 80% of the time.

2. Complete the following blanks

P{W} (prior probability)	<u>0.25</u>
P{L} (prior probability)	<u>0.75</u>
$P\{PW \mid W\}$	<u>0.8</u>
$P\{PL \mid W\}$	<u>0.2</u>
$P\{PW \mid L\}$	<u>0.2</u>
$P\{PL \mid L\}$	<u>0.8</u>
P{PW}	$\underline{0.35} = P\{PW \mid W\} P\{W\} + P\{PW \mid L\} P\{L\} = (0.8)(0.25) + (0.2)(0.75)$
P{PL} P{W PW}	$\frac{0.65}{0.5714}$ according to Bayes' theorem: $\frac{P\{PW \mid W\} P\{W\}}{P\{PW\}} = \frac{(0.8)(0.25)}{0.35} = \frac{2}{0.35}$

The decision tree below includes Sue's decision as to whether or not to hire the consultant. *Note that the consultant's fee has already been deducted from the "payoffs" on the far right.*

7

go to

court

5. Dynamic Programming. *Match Problem.* Suppose that there are 15 matches originally on the table, and you are challenged by your friend to play this game. Each player must pick up either 1, 2, 3, or 4 matches, with the player who picks up the last match paying \$1.

8

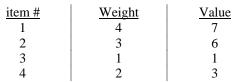
lose

100 %

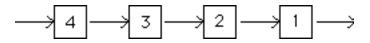
0% ∨in∕

Define F(i) to be the **minimal cost** to you (either \$1 or \$0) if

- it is your turn to pick up matches, and
- i matches remain on the table.


Thus, F(1) = 1, since you are forced to pick up the last match; F(2) = 0 (since you can pick up one match, forcing your opponent to pick up the last match), etc.

- 1. What is the value of F(3)? ____
- 2. What is the value of F(4)? ____
- 3. What is the value of F(6)? ____
- 4. What is the value of $F(15)? _0$ ____
- <u>a</u>5. If you are allowed to decide whether you or your friend should take the first turn, what is your optimal decision? a. You take first turn c. You are indifferent about this choice
 - b. Friend takes first turn
- d. You refuse to play the game


\$0

\$200

Consider the following zero-one knapsack problem, with a capacity of 8 units of weight:

The Dynamic Programming approach used to solve this problem imagines that the items are considered in the order: first the decision is made whether to include item 4, second-- whether to include item 3, etc. (although the computations are done in a backward fashion, starting with item 1(stage 1) and ending with item 4 (stage 4)):

Dynamic programming output for this problem is given below:

	s	×:	0	1	State	Optimal Values	Optimal Decisions	Resulting State
Stage 1	0 1 2 3 4 5		.00 .00 .00 .00 .00	-992.00 -992.00 -992.00 -992.00 7.00 7.00	0 1 2 3 4 5	.00 .00 .00 .00 7.00 7.00	0 0 0 1 1	0 1 2 3 0 1
	6 7		.00 .00	7.00 7.00	6	7.00 7.00	1	2 3
	8		.00	7.00	8	7.00	1	3 4
	l					0	0.11	
	s١	x:	0	1	State	Optimal Values	Optimal Decisions	Resulting State
!	6		.00	-993.00	0	.00	0	0
l N	ĭ		.00	-993.00	1	.00	ō	1
	2		.00	-993.00	2	.00	0	2
Stage	3		.00	6.00	3	6.00	1	0
÷	4		7.00	6.00	4	7.00	0	4
Ĩ	5		7.00	6.00	5	7.00	0	5
i	6		7.00	6.00	6	7.00	0	6
	7		7.00	13.00	7	13.00	1	4
	8		7.00	13.00	8	13.00	1	5
						Optimal	Optimal	Resulting
	s ` 	× × :	0	1	State	Values	Decisions	State
ł	0		.00	-998.00	0	.00	0	0
ų	1		.00	1.00	1	1.00	1	0
မီ	2 3		.00	1.00	2 3	1.00	1	1
-Stage	3		6.00	1.00	3	6.00	0	3
Ϋ́	4		7.00	7.00	4	7.00	0	4
	5		7.00	8.00			1	3
	6		7.00	8.00	5	8.00	1	4
	7		13.00	8.00	6	8.00	1	5
	8		13.00	14.00	7	13.00	0	7
					8	14.00	1	7

	s \ :	c: 0	1	State	Optimal Values	Optimal Decisions	Resulting State
е 4 -	0 1 2	.00 1.00 1.00	-996.00 -996.00 3.00	0 1 2	.00 1.00 3.00	0 0 1	0 1 0
Stage	2 3 4 5 6 7	1.00 6.00 7.00 8.00 8.00 13.00	3.00 4.00 4.00 9.00 a 11.00	4567	3.00 6.00 7.00 9.00 b 13.00	0 0 1 C 0	9 3 4 3 d 7
	8	14.00	11.00	8	14.00	0	8

6. Complete the blank entries in Stage 4, that is, if there is a capacity of 6 pounds,

• what is the value which can be obtained if item 4 is included in the knapsack? $\mathbf{a} = 6 = 3 + f3(6-2) = 3+7 = 10$

• what is the maximum value which can be obtained if there is a capacity of 6 pounds? $\mathbf{b} = 10$

• what is the optimal decision at stage 4, if the remaining capacity available to be filled is 6 pounds? c = 1 units of item #4

• If 6 pounds of capacity remains available in the knapsack and **c** units of item #4 are included, the remaining capacity is $\mathbf{d} = 4$ pounds.

- 7. Actually, there is an available capacity of 8 pounds when we are at stage 4 (i.e., considering whether or not to include item #4). Trace your way through the tables above to obtain the optimal solution:
 - Maximum value possible is \$ <u>14.00</u>
 - Include <u>1</u> units of item #1,
 - 1 units of item #2,
 - $\underline{1}$ units of item #3,
 - $\underline{0}$ units of item #4