528 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 4, NO. 3, SEPTEMBER 2011

High Performance Computing for Hyperspectral
Remote Sensing

Antonio Plaza, Senior Member, IEEE, Qian Du, Senior Member, IEEE, Yang-Lang Chang, Senior Member, IEEE,
and Roger L. King, Senior Member, IEEE

Abstract—Advances in sensor and computer technology are
revolutionizing the way remotely sensed data is collected, managed
and analyzed. In particular, many current and future applications
of remote sensing in Earth science, space science, and soon in
exploration science will require real- or near real-time processing
capabilities. In recent years, several efforts have been directed
towards the incorporation of high-performance computing (HPC)
models to remote sensing missions. A relevant example of a remote
sensing application in which the use of HPC technologies (such
as parallel and distributed computing) is becoming essential is
hyperspectral remote sensing, in which an imaging spectrometer
collects hundreds or even thousands of measurements (at multiple
wavelength channels) for the same area on the surface of the
Earth. In this paper, we review recent developments in the appli-
cation of HPC techniques to hyperspectral imaging problems, with
particular emphasis on commodity architectures such as clusters,
heterogeneous networks of computers, and specialized hardware
devices such as field programmable gate arrays (FPGAs) and
commodity graphic processing units (GPUs). A quantitative
comparison across these architectures is given by analyzing
performance results of different parallel implementations of the
same hyperspectral unmixing chain, delivering a snapshot of the
state-of-the-art in this area and a thoughtful perspective on the
potential and emerging challenges of applying HPC paradigms to
hyperspectral remote sensing problems.

Index Terms—Cluster computing, FPGAs, GPUs, hardware im-
plementations, heterogeneous computing, high performance com-
puting (HPC), hyperspectral remote sensing.

I. INTRODUCTION

YPERSPECTRAL remote sensing is concerned with

the measurement, analysis, and interpretation of spectra
acquired from a given scene (or specific object) at a short,
medium or long distance by an airborne or satellite sensor [1].
The wealth of spectral information available from latest-gener-
ation hyperspectral imaging instruments, which have substan-
tially increased their spatial, spectral and temporal resolutions,

Manuscript received August 31, 2010; revised November 05, 2010; accepted
November 16, 2010. Date of publication January 06, 2011; date of current ver-
sion August 26, 2011.

A. Plaza is with the Department of Technology of Computers and Communi-
cations, Escuela Politécnica, University of Extremadura, 10003 Caceres, Spain.

Q. Du is with the Department of Electrical and Computer Engineering, Mis-
sissippi State University, Mississippi State, MS 39762 USA.

Y.-L. Chang is with the Department of Electrical Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan.

R. L. King is with the Center for Advanced Vehicular Systems, Mississippi
State University, Mississippi State, MS 39762 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2010.2095495

has quickly introduced new challenges in the analysis and
interpretation of hyperspectral data sets. For instance, the
NASA Jet Propulsion Laboratory’s Airborne Visible Infra-Red
Imaging Spectrometer (AVIRIS) [2] is now able to record the
visible and near-infrared spectrum (wavelength region from 0.4
to 2.5 p#m) of the reflected light of an area 2 to 12 kilometers
wide and several kilometers long using 224 spectral bands. The
resulting data cube (see Fig. 1) is a stack of images in which
each pixel (vector) has an associated spectral signature or
“fingerprint’ that uniquely characterizes the underlying objects,
and the resulting data volume typically comprises several Gi-
gabytes per flight. This often leads to the requirement of HPC
infrastructure to accelerate hyperspectral-related computations,
in particular, in analysis scenarios with real-time constraints
[3]. It is expected that, in future years, hyperspectral sensors
will continue increasing their spatial, spectral and temporal
resolutions (imagers with thousands of spectral bands are cur-
rently in operation or under development [4]). Such wealth of
information has opened groundbreaking perspectives in several
applications [5] (many of which with real-time processing
requirements) such as environmental modeling and assessment
for Earth-based and atmospheric studies, risk/hazard prevention
and response including wild land fire tracking, biological threat
detection, monitoring of oil spills and other types of chemical
contamination, target detection for military and defense/secu-
rity purposes, urban planning and management studies, etc.
The utilization of HPC infrastructure in hyperspectral
imaging applications has become more widespread in recent
years [6]. The idea developed by the computer science commu-
nity of using personal computers (PCs) clustered together to
work as a computational ‘team,” was a very attractive solution
for remote sensing data processing from the beginning [7]. This
strategy, often referred to as cluster computing [8], has already
offered access to greatly increased computational power at a
low cost (commensurate with falling commercial PC costs)
in a number of hyperspectral imaging applications [9]-[14].
Although most parallel techniques and systems for hyperspec-
tral image information processing employed during the last
decade have chiefly been homogeneous in nature (i.e., they
are made up of identical processing units, thus simplifying the
design of parallel solutions adapted to those systems), a recent
trend in the design of HPC systems for data-intensive problems
such as those involved in hyperspectral image analysis is to
utilize highly heterogeneous computing resources [15]-[17].
This heterogeneity is seldom planned, arising mainly as a
result of technology evolution over time and computer market
sales and trends. In this regard, networks of heterogeneous

1939-1404/$26.00 © 2011 IEEE

PLAZA et al.: HIGH PERFORMANCE COMPUTING FOR HYPERSPECTRAL REMOTE SENSING

Advanced Earth
observation
capabilities

Spectral Signature Development

SWIR color composite
from hyperspectral
data cube

25000 Enables

Target Pixel Area

The spectral signature of a pixel is a
combination of the reflected or emitted
energy from all the features that fall
within that pixel area.

Reflectance

Wavelength (nm)

Fig. 1.

PCs can realize a very high level of aggregate performance
in hyperspectral imaging applications [18], and the pervasive
availability of these resources resulted in the current notions of
grid and cloud computing, which are yet to be fully exploited
in hyperspectral imaging problems [19], [20].

Even though hyperspectral image processing algorithms gen-
erally map quite nicely to parallel systems made up of com-
modity PCs, these systems are generally expensive and diffi-
cult to adapt to on-board data processing scenarios, in which
low-weight and low-power integrated components are essential
to reduce mission payload and obtain analysis results in real-
time, i.e., at the same time as the data is collected by the sensor
[3]. In this regard, an exciting new development in the field of
commodity computing is the emergence of programmable hard-
ware devices such as field programmable gate arrays (FPGAs)
[21] and graphic processing units (GPUs) [22], which can bridge
the gap towards on-board and real-time analysis of hyperspec-
tral data [23], [24]. FPGAs are now fully reconfigurable [25],
which allows one to adaptively select a data processing algo-
rithm (out of a pool of available ones) to be applied on-board
the sensor from a control station on Earth [26]. On the other
hand, the emergence of GPUs (driven by the ever-growing de-
mands of the video-game industry) has allowed these systems
to evolve from expensive application-specific units into highly
parallel and programmable commodity components [27]. For
instance, the latest-generation GPU architectures from NVidia
(Tesla and Fermi series) now offer cards able to deliver up to

Unique Pattern or Signature

Brightness Pattern
of Speclral Bands

m//\//\—u

529

spectral and
temporal resolution

Real-time
requirements

High performance
computing infrastructure

!

An illustration of the processing demands introduced by the ever increasing dimensionality of remotely sensed hyperspectral imaging instruments.

515 Gigaflops of double-precision peak performance,! which is
several times the performance of the fastest quad-core processor
available. The ever-growing computational demands of remote
sensing applications can fully benefit from compact hardware
components and take advantage of the small size and relatively
low cost of these units as compared to clusters or networks of
computers [28], [29]. Last but not least, remote sensing appli-
cations can greatly benefit from the most recent developments
in HPC and cluster computing, including the advent of GPU
clusters (or clusters with other special add-ons and hardware
accelerators, including FPGAs) and the gradual increase in the
number of cores for each cluster node. Today, most newly in-
stalled cluster systems have such special-purpose extensions
and/or many-core nodes (even up to 48 cores, such as AMD’s
Magny-Cours?). In the near future, these systems may introduce
significant advances in the way hyperspectral data sets are pro-
cessed, stored and managed.

In this paper, we present a review of available techniques for
HPC applied to hyperspectral imaging problems and further de-
scribe our experience in efficient implementation of a standard
hyperspectral unmixing chain on four different types of par-
allel platforms: 1) commodity clusters, 2) heterogeneous net-
works of workstations, 3) FPGAs, and 4) GPUs. The descrip-
tion and comparison of several strategies for implementation
of the same data processing approach is expected to provide a

Thttp://www.nvidia.com/object/product_tesla_M2050 M2070_us.html.
2http://www.amd.com/us/products/server/processors/6000-series-platform/.

530 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 4, NO. 3, SEPTEMBER 2011

perspective on recent developments in this active research area.
The remainder of the paper is organized as follows. Section II
describes relevant previous efforts in the field, such as the evo-
lution of cluster computing in remote sensing applications, the
emergence of distributed networks of computers as a cost-ef-
fective means to solve hyperspectral remote sensing problems,
and the exploitation of specialized hardware architectures in
on-board processing scenarios. Section III describes hyperspec-
tral processing tasks and an application case study given by a
full processing chain based on spectral unmixing, a widely used
technique to analyze hyperspectral data with sub-pixel preci-
sion. Section IV discusses and inter-compares several HPC im-
plementations of the considered hyperspectral unmixing chain,
including a cluster-based parallel version, a variation of this
version specifically tuned for heterogeneous computing envi-
ronments, an FPGA-based implementation, and a GPU imple-
mentation. Section V provides an experimental comparison of
the proposed parallel implementations, using different HPC ar-
chitectures, in the context of a real application case study fo-
cused on the analysis of hyperspectral data collected by the
AVIRIS instrument over the World Trade Center area in New
York, just five days after the terrorist attacks of September 11th.
Section VI concludes with some remarks. Finally, Section VII
provides hints at plausible future research directions.

II. RELATED WORK

This section first provides an overview of the evolution of
cluster computing architectures in the context of hyperspectral
remote sensing applications, from the initial developments in
parallel systems at NASA centers to the systems currently being
employed for this purpose. Then, we give an overview of re-
cent advances in the application of heterogeneous computing
to hyperspectral imaging problems. The section concludes with
an overview of hardware-based implementations intended for
on-board processing of this type of high-dimensional data.

A. Cluster Computing in Hyperspectral Remote Sensing

Clusters [8] were originally developed with the purpose of
creating a cost-effective parallel computing system able to sat-
isfy specific computational requirements in the Earth and space
sciences community. Initially, the need for large amounts of
computation was identified for processing multi-spectral im-
agery with tens of bands [30]. As sensor instruments incor-
porated hyperspectral capabilities, it was soon recognized that
computer mainframes and mini-computers could not provide
sufficient power for effectively processing this kind of data [7].

In the midnineties, a team was put together at NASA’s God-
dard Space Flight Center (GSFC) to build a cluster consisting
only of commodity hardware (PCs) running Linux, which re-
sulted in the first cluster [7]. It consisted of 16 identical PCs with
central processing units (CPUs) working at clock frequency of
100 MHz, connected with 2 hub-based Ethernet networks tied
together with channel bonding software so that the 2 networks
acted like one network running at twice the speed. A similar
system, the ‘Zoo’-cluster [31], was also installed the same year
at Vrije Universiteit Amsterdam, which was at that time already
the fourth-generation. The next year Beowulf-1I, a 16-PC cluster

based on 100 MHz Pentium PCs, was built and performed about
3 times faster, but also demonstrated a much higher reliability.
In 1996, Pentium-Pro cluster at California Institute of Tech-
nology (Caltech) demonstrated a sustained performance of one
Gigaflop on a remote sensing-based application. This was the
first time a commodity cluster had shown high performance po-
tential in this context. Up until 1997, clusters were in essence
engineering prototypes, that is, they were built by those who
were going to use them. However, in 1997 a project was started
at GSFC to build a commodity cluster that was intended to be
used by those who had not built it, the HIVE (highly parallel vir-
tual environment) project [11]. The idea was to have worksta-
tions distributed among different locations and a large number
of compute nodes (the compute core) concentrated in one area.
The workstations would share the compute core as though it
was apart of each. Although the original HIVE only had one
workstation, many users were able to access it from their own
workstations over the Internet. The HIVE was also the first com-
modity cluster to exceed a sustained peak performance of 10
Gigaflops on a remote sensing data processing. Later, an evo-
lution of the HIVE was used at GSFC for hyperspectral remote
sensing data processing calculations. The system, called Thun-
derhead, was a 512-processor homogeneous cluster composed
of 256 dual 2.4 GHz Intel Xeon nodes, each with 1 Gigabyte of
memory and 80 Gigabytes of main memory.3 The total peak per-
formance of the system was 2457.6 Gigaglops. Along with the
512-processor computer core, Thunderhead has several nodes
attached to the core with 2 GHz Myrinet network connectivity.
This system has been employed in several hyperspectral image
analysis studies over the last few years [5], [13], [14], [32].

It is worth noting that NASA and the European Space
Agency (ESA) are currently supporting additional massively
parallel clusters for remote sensing applications, such as the
Columbia supercomputer at NASA Ames Research Center,
a 10,240-CPU SGI Altix supercluster, with Intel Itanium 2
processors, 20 terabytes total memory and heterogeneous inter-
connects including InfiniBand network and 10 gigabit Ethernet.
Another massively parallel system which has been exploited for
hyperspectral imaging applications is MareNostrum,5 an IBM
cluster with 10,240 GPUs, 2.3 GHz Myrinet network connec-
tivity and 20,480 GB of main memory available at Barcelona
Supercomputing Center [33]. Finally, the High Performance
Computing Collaboratory (HPC?) at Mississippi State Uni-
versity® has several supercomputing facilities that have been
used in different remote sensing studies. These machines
are illustrative of how rapidly the computing environment
is changing. The Maverick system’ debuted in 2003 and is
composed of 192 x 335 IBM nodes with each node containing
a dual 3.06 GHz Xeon processor and 2.5 GB of RAM; Raptor
came on-line in 2006 with a 2048 core cluster composed of
512 Sun Microsystems SunFire X2200 M2 servers, each with
two dual-core AMD Opteron 2218 processors (2.6 GHz) and

3http://thunderhead.gsfc.nasa.gov.
“http://www.nas.nasa.gov/Resources/Systems/columbia.html.
Shttp://www.bsc.es/plantillaA.php?cat_id=5.
Shttp://www.hpc.msstate.edu.
Thttp://www.hpc.msstate.edu/computing/maverick.

PLAZA et al.: HIGH PERFORMANCE COMPUTING FOR HYPERSPECTRAL REMOTE SENSING 531

8 GB of memory; and Talon in 2010 with a 3072 core cluster
composed of 256 IBM iDataPlex nodes, each with two six-core
Intel Westmere processors (2.8 GHz) and 24 GB of memory.

B. Heterogeneous Parallel Computing in Hyperspectral
Remote Sensing

With the commercial availability of networking hardware
at lower costs, it soon became obvious that networked groups
of machines distributed among different locations could be
used together by one single parallel remote sensing code as a
distributed-memory machine [34]. Of course, such networks
were originally designed and built to connect heterogeneous
sets of machines. As a result, heterogeneous networks of com-
puters have soon become a very popular tool for distributed
computing with essentially unbounded sets of machines, in
which the number and location of machines may not be explic-
itly known [12] as opposed to cluster computing, in which the
number and location of nodes are known and relatively fixed.
An evolution of the concept of distributed computing described
above resulted in the notion of grid computing [19], in which
the number and location of nodes is relatively dynamic and
have to be discovered at run-time.

There are currently several ongoing research efforts aimed
at efficient distributed processing of hyperspectral image data.
Perhaps the most simple example is the use of heterogeneous
versions of data processing algorithms developed for clusters,
for instance, by resorting to heterogeneous-aware variations of
homogeneous algorithms able to capture the inherent hetero-
geneity of a network of computers and to load-balance the com-
putation among the available resources [15]-[17]. This frame-
work allows one to easily port an existing parallel code devel-
oped for a homogeneous system to a fully heterogeneous en-
vironment. Another approach has been the adaptation of algo-
rithms designed to be run in a single cluster to distributed multi-
cluster environments made up of homogeneous clusters inter-
connected via wide-area network connectivity based on light
paths [35]. Another example is the use of software components,
which have been used in the framework of a plug-and-play en-
vironment for the construction of advanced processing algo-
rithms (e.g., for performing atmospheric correction of hyper-
spectral data [20]) through a set of software components that
conform to standardized interfaces. Such components encapsu-
late much of the complexity of the data processing algorithms
inside a black box and expose only well-defined interfaces (e.g.,
input and output parameters) to other components. Finally, there
have been several efforts in the recent literature oriented to-
wards adapting the notion of grid computing to hyperspectral
image processing, with the ultimate idea of providing wide ac-
cessibility (with fault tolerance achieved through careful mid-
dleware design) and efficient distribution and sharing of large
hyperspectral data collections among different research centers
[19], [20], [34].

C. Specialized Hardware for On-Board Hyperspectral Image
Processing

Over the last few years, several research efforts have been
directed towards the incorporation of specialized hardware
for accelerating hyperspectral imaging calculations on-board

airborne and satellite sensor platforms [3]. Enabling on-board
data processing introduces many advantages, such as the possi-
bility to reduce the data downlink bandwidth requirements by
both pre-processing data and selecting data to be transmitted
based upon some predetermined content-based criteria [24].
For instance, previous work has explored the possibility of
compressing the hyperspectral data before it is transmitted to
Earth, using both lossless and lossy compression strategies
[36]. It should be noted that this kind of on-board processing
also has the potential to reduce the cost and the complexity of
ground processing systems so that they can be affordable to
a larger community. Among existing hyperspectral imaging
applications that can benefit from this strategy, we can list fu-
ture planetary exploration missions (including those involving
the analysis of hyperspectral data collected over the surface
of Mars [37], for which autonomous decisions may be taken
on-board, without the need for costly and slow communications
with the ground segment.

The appealing perspectives introduced by specialized data
processing components, such as FPGAs (on-the-fly recon-
figurability [29]) and GPUs (very high performance at low
cost [28]) introduce significant advantages with regards to
traditional cluster-based systems for on-board hyperspectral
data exploitation. First and foremost, a cluster occupies much
more space than an FPGA or a GPU. This aspect significantly
limits the exploitation of cluster-based systems in on-board
processing scenarios, in which the weight (and the power con-
sumption) of processing hardware must be limited in order to
satisfy mission payload requirements [3]. If the cluster system
is distributed across different locations, the space requirements
increase. On the other hand, the maintenance of a large cluster
represents a major investment in terms of time and finance. Al-
though a cluster is a relatively inexpensive parallel architecture,
the cost of maintaining a cluster can increase significantly with
the number of nodes [13]. In turn, FPGAs and GPUs are char-
acterized by their low weight and size, and by their capacity to
provide similar computing performance at lower costs (recent
studies demonstrate that the performance increase obtained by
FPGAs [14], [23], [26], [29] and GPUs [27], [28], [38] in the
context of hyperspectral imaging applications is in the same
order of magnitude with respect to that achieved by a compute
cluster with a high number of nodes. In addition, FPGAs offer
the appealing possibility of adaptively selecting a hyperspectral
processing algorithm to be applied (out of a pool of available
algorithms) from a control station on Earth. This feature is
possible thanks to the inherent re-configurability of FPGA
devices [21], which are generally more expensive than GPU
devices [28]. In this regard, the adaptivity of FPGA systems for
on-board operation, as well as the low cost and portability of
GPU systems, open many innovative perspectives.

To conclude this section we emphasize that, despite their
appealing properties, both FPGAs and GPUs are still prone to
further developments in order to fully achieve their incorpo-
ration to future Earth observation missions. For instance, the
very fine granularity of FPGAs is still not efficient, with ex-
treme situations in which only a small percentage of available
resources are available for logic while the rest is mostly used
for interconnect and configuration. This usually results in a

532 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 4, NO. 3, SEPTEMBER 2011

penalty in terms of speed and power, which is particularly cum-
bersome in radiation-hardened FPGAs (needed for spaceborne
operation) which generally have two orders of magnitude fewer
equivalent gates than commercial FPGAs [29]. Regarding
GPUs, their high power consumption as compared to FPGAs
introduces some considerations from the viewpoint of mission
payload, although green GPUs with lower energy consump-
tion are already available.8 Further advances in the design of
radiation-hardened GPUs are also expected in future years.

III. HYPERSPECTRAL IMAGE PROCESSING TASKS

The number and variety of image processing tasks in hyper-
spectral remote sensing is enormous [5]. However, the majority
of algorithms can be organized according to the following spe-
cific tasks [39]:

* Dimensionality reduction consists of reducing the dimen-
sionality of the input hyperspectral scene in order to facil-
itate subsequent processing tasks.

» Target and anomaly detection consist of searching the
pixels of a hyperspectral data cube for “rare” (either
known or unknown) spectral signatures.

* Change detection consists of finding the “significant” (i.e.,
important to the user) changes between two hyperspectral
scenes of the same geographic region.

* Classification consists of assigning a label (class) to each
pixel of a hyperspectral data cube.

* Unmixing consists of estimating the fraction of the pixel
area covered by each material present in the scene.

In this paper, we focus on hyperspectral unmixing as a case
study to demonstrate HPC implementations. No matter the spa-
tial resolution, the spectral signatures collected in natural en-
vironments are invariably a mixture of the signatures of the
various materials found within the spatial extent of the ground
instantaneous field view of the imaging instrument [40], [41].
The availability of hyperspectral instruments with a number of
spectral bands that exceeds the number of spectral mixture com-
ponents allow us to approach this problem as follows. Given a
set of spectral vectors acquired from a given area, spectral un-
mixing aims at inferring the pure spectral signatures, called end-
members [42], [43], and the material fractions, called fractional
abundances [44], at each pixel. Let us assume that a hyperspec-
tral scene with N bands is denoted by F, in which a pixel of the
scene is represented by a vector f; = [fi1, fiz, - -, fin] € RY,
where R denotes the set of real numbers in which the pixel’s
spectral response f; at sensor wavelengths k = 1,..., N isin-
cluded. Under the linear mixture model assumption [40], each
pixel vector can be modeled using the following expression
[45]:

r
fi:Zej-@j—i—n (1)
=1

where e; denotes the spectral response of an endmember, ®;
is a scalar value designating the fractional abundance of the
endmember e;, p is the total number of endmembers, and n
is a noise vector. The solution of the linear spectral mixture
problem described in (1) relies on the correct determination of a

Shttp://www.gputech.com.

set {e; }{,'):1 of endmembers and their correspondent abundance
fractions {® j}?:1 at each pixel f;. Two physical constrains are
generally imposed into the model described in (1), these are the
abundance non-negativity constraint (ANC), i.e., &; > 0, and
the abundance sum-to-one constraint (ASC), i.e., 21;21 O; =1
[44].

In this work we have considered a standard hyperspectral
unmixing chain which is available in commercial software
packages such as ITTVis Environment for Visualizing Images
(ENVI). The unmixing chain consists of two main steps:
1) endmember extraction using the pixel purity index (PPI)
algorithm [46], and 2) fully constrained (i.e. ASC-constrained
and ANC-constrained) abundance estimation [44]. The inputs
to the unmixing chain are a hyperspectral image cube F with
N spectral bands; a maximum number of projections, K; a
cut-off threshold value, v., used to select as final endmembers
only those pixels that have been selected as extreme pixels at
least v, times throughout the process; and a threshold angle, v,
used to discard redundant endmembers during the process. The
output is a set of fractional abundances {®, }1;:1 for each pixel
f; of the hyperspectral image F. The chain can be summarized
by the following steps:

1) Skewer generation. Produce a set of K randomly generated

unit vectors, denoted by {skewer; }5‘:1

2) Extreme projections. For each skewer;, all sample pixel
vectors f; in the original data set F are projected onto
skewer; via dot products of |f; - skewer;| to find sample
vectors at its extreme (maximum and minimum) projec-
tions, forming an extrema set for skewer,; which is de-
noted by Seuirema(skewer;).

3) Calculation of pixel purity scores. Define an indicator
function of a set .S, denoted by 75(f;), to denote member-
ship of an element f; to that particular set as Is(f;) = 1 if
f; € S. Using the function above, calculate the number of
times that given pixel has been selected as extreme using
the following equation:

K
17Vt7',1nes (fv) = Z [Swfrmm (skewer;) (f7) (2)

=1

4) Endmember selection. Find the pixels with value of
Niimes(f;) above v, and form a unique set of p end-
members {e; }2:1 by calculating the spectral angle (SA)
[41], [47] for all possible endmember pairs and discarding
those which result in an angle value below v,. The SA is
invariant to multiplicative scalings that may arise due to
differences in illumination and sensor observation angle
[45].

5) Fully constrained spectral unmixing. Once a set of end-
members E = {ej}lj):l has been obtained, an uncon-
strained abundance estimate in a specific pixel vector f;
can be obtained (in least squares sense) by the following
expression [47]:

AUC _ T\ 1pT
¢;"=(E'E) E'f. 3)
It should be noted that the abundance estimation in (3) does

http://www.ittvis.com.

PLAZA et al.: HIGH PERFORMANCE COMPUTING FOR HYPERSPECTRAL REMOTE SENSING 533

not satisfy the ANC and the ASC constraints usually im-
posed in the linear mixture model. An estimate satisfying
the ASC constraint can be obtained by solving the fol-
lowing optimization problem:

HliIlq;.JeA {(fz — (I)j . :E)T(fZ — (I)j . E)} R
P
subject to: A= ¢ ®; Z(I)j =13;. &

=1

Similarly, imposing the ANC constraint results in the fol-
lowing optimization problem:

ming,en {(f; — ;- E)"(f; — ®, - E)},
subject to: A = {®;|®; > 0forallj}. (5)

As indicated in [48], a non-negative constrained least
squares (NCLS) algorithm can be used to obtain a solu-
tion to the ANC-constrained problem described in (5) in
iterative fashion [49]. In order to take care of the ASC
constraint, a new endmember signature matrix, denoted
by E’, and a modified version of the abundance vector ®;,
denoted by <I>;, are introduced as follows:

6K 6
B = [1T:|’ (I);. — [1J:|

(1,1,---,1)T and & controls the impact of
——’

(6)
where 1 =

the ASC constrainz;. Using the two expressions in (6), a
fully constrained estimate can be directly obtained from
the NCLS algorithm by replacing E and ®; used in the
NCLS algorithm with E” and ®’,, respectively.

IV. PARALLEL IMPLEMENTATIONS OF THE HYPERSPECTRAL
UNMIXING CHAIN

This section first develops a parallel implementation of the
hyperspectral unmixing chain described in Section III which has
been specifically designed to be run on massively parallel, ho-
mogeneous clusters. Then, the parallel version is transformed
into a heterogeneity-aware implementation by introducing an
adaptive data partitioning algorithm specifically developed to
capture the specificities of the underlying heterogeneous net-
works of distributed workstations. Finally, both FPGA and GPU
implementations are also described.

A. Cluster-Based Implementation

To reduce code redundancy and enhance reusability, our goal
when designing the cluster-based implementation was to reuse
much of the code for the sequential algorithm. For that pur-
pose, we adopted a spatial-domain decomposition approach [50]
that subdivides the image cube into multiple blocks made up of
entire pixel vectors, and assigns each block to a different pro-
cessing element in the cluster. It should be noted that our hy-
perspectral unmixing chain is mainly based on calculations in
which pixels are always treated as entire spectral signatures.
Therefore, a spectral-domain partitioning scheme (i.e. subdi-
viding the multi-band data into sub-volumes across the spec-
tral dimension) is not appropriate in our application domain be-
cause the calculations made for each hyperspectral pixel would

need to originate from several processing elements, thus re-
quiring intensive inter-processor communication [13]. There-
fore, in our implementation a simple master-slave approach is
implemented in which the master processor distributes spatial-
domain partitions of the data to the workers and coordinates
their actions. Then, the master gathers the partial results pro-
vided by the workers and produces a global result. The parallel
algorithm is given by the following steps:

1) Data partitioning. The master processor produces a set of
W equally-sized spatial-domain partitions of the hyper-
spectral image F' and scatters all partitions by indicating
all partial data structure elements which are to be accessed
and sent to each of the workers.

2) Skewer generation. The master generates K random unit
vectors {skewer; }5‘21, and broadcasts the entire set of

skewers to all the workers.

3) Extreme projections. For each skewer;, project all
the sample pixel vectors at each local partition w onto
skewer to find sample vectors at its extreme projections,
and form an extrema set for skewer; which is denoted by

S(U’)

cwotrema (Skewer;). Now calculate the number of times

each pixel vector £/ in the local partition w is selected
as extreme using the following expression:

K
1=1

4) Candidate selection. Each worker now sends the number
of times that each pixel vector in the local partition has
been selected as extreme to the master, which forms a final
matrix of pixel purity indexes N¢;m.s by combining all the
individual matrices Nt(;fges provided by the workers.

5) Endmember selection. The master selects those pixels with
Niimes(f:) > v, and forms a unique set of p endmem-
bers {e; }i'):l by calculating the SA for all possible pixel
vector pairs and discarding those pixels which result in
angle values below v, .

6) Fully constrained spectral unmixing. The master broad-
casts the set of endmembers { e, }1?:1 to all the workers, and
each worker locally computes a fully constrained abun-
dance estimation for each pixel f,L-(w) in its local partition

w. After the workers have computed their estimations lo-
cally, the master simply gathers the individual abundance
estimation results.

To conclude this subsection, it is important to emphasize that
several steps of this algorithm are purely sequential. This means
that the master node performs some steps of the algorithm on
its own. Nevertheless, the execution time of these purely se-
quential steps is insignificant in comparison to the total execu-
tion time (i.e. less than 1%). Moreover, as shown by the algo-
rithm description, some communication steps between master
and workers are required. However, the impact of communica-
tions was not particularly significant in our application, while
most of the computations involved for endmember extraction
and abundance estimation can be performed independently at
each worker without additional memory management. In turn,
other applications of cluster computing in remote sensing appli-
cations may have different results depending upon such issues

)

534 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 4, NO. 3, SEPTEMBER 2011

as degree of parallelization, amount of communication overhead
in algorithms, and load balancing strategies used.

B. Heterogeneous Implementation

In order to balance the load of the processors in a heteroge-
neous parallel environment, each processor should execute an
amount of work that is proportional to its speed [17]. Therefore,
the parallel algorithm in Section IV-A needs to be adapted for
efficient execution on heterogeneous computing environments.
Two major goals of data partitioning in heterogeneous networks
are [18]: 1) to obtain an appropriate set of workload fractions
{ai}zl that best fit the heterogeneous environment, and 2) to
translate the chosen set of values into a suitable decomposition
of total workload L, taking into account the properties of the
heterogeneous system. In order to accomplish the above goals,
we have developed a workload estimation algorithm (WEA) for
heterogeneous networks that assumes that the workload of each
processor must be directly proportional to its local memory and
inversely proportional to its speed. Below, we provide a descrip-
tion of WEA, which replaces the data partitioning step in the
parallel algorithm described in Section IV-A. Steps 2—6 of the
parallel algorithm in Section IV-A would be executed immedi-
ately after WEA. The input to WEA is a hyperspectral data cube
F, and the output is a set of W spatial-domain heterogeneous
partitions of F:

1) Obtain necessary information about the heterogeneous
system, including the number of workers W, each pro-
cessor’s identification number {w’i}:ip and processor
cycle-times {%; }?:1

2) Seta; = [(1/t:)/ S, (1/t;)) forall i € {1,---,W}.
In other words, this step first approximates the {O/L},W:l
so that the amount of work assigned to each processing
node is proportional to its speed and «; - t; & const for all
processors.)

3) TIteratively increment some «; until the set of {()’L}qu:/l best
approximates the total workload L to be completed, i.e.,
for m = 21]:3:1%‘ to L, find & € {1,---,W} so that
tp - (o +1) = min{t; - (o; + 1)}?:1, and then set o3, =
op + 1.

4) Produce W partitions of the input hyperspectral data set, so
that the spectral channels corresponding to the same pixel
vector are never stored in different partitions. In order to
achieve this goal, we have adopted a methodology which
consists of three main steps:

a) The hyperspectral data set is first partitioned, using
spatial-domain decomposition, into a set of vertical
slabs which retain the full spectral information at the
same partition. The number of rows in each slab is set
to be proportional to the estimated values of {ai}?:l ,

and assuming that no upper bound exist on the number
of pixel vectors that can be stored by the local memory
at the considered node.

b) For each processor w;, check if the number of pixel
vectors assigned to it is greater than the upper bound.
For all the processors whose upper bounds are ex-
ceeded, assign them a number of pixels equal to
their upper bounds. Now, we solve the partitioning

problem of a set with remaining pixel vectors over
the remaining processors. We recursively apply this
procedure until all pixel vectors in the input data have
been assigned, thus obtaining an initial workload dis-
tribution for each w;. It should be noted that, with the
proposed algorithm description, it is possible that all
processors exceed their upper bounds. This situation
was never observed in our experiments. However,
if the considered network includes processing units
with low memory capacity, this situation could be
handled by allocating an amount of data equal to the
upper bound to those processors, and then processing
the remaining data as an offset in a second algorithm
iteration.

c) Iteratively recalculate the workload assigned to each
processor using the following expression:

- A i
Lh =kt Z c.,-,j(t - ; (8)

FEN(4) J

where N (i) denotes the set of neighbors of processing
node w;, and Lf denotes the workload of w; (i.e., the
number of pixel vectors assigned to this processor)
after the k-th iteration. This scheme has been demon-
strated in previous work to converge to an average
workload Z; := (Y"1 Li/ S0, t)t: [511.

The parallel heterogeneous algorithm has been implemented
using the C++ programming language with calls to standard
message passing interface (MPI)!0 library functions (also used
in our cluster-based implementation).

C. FPGA Implementation

Our strategy for implementation of the hyperspectral un-
mixing chain in reconfigurable hardware is aimed at enhancing
replicability and reusability of slices in FPGA devices through
the utilization of systolic array design [14]. Fig. 2 describes our
systolic architecture. Here, local results remain static at each
processing element, while a total of 7" pixel vectors with V
dimensions are input to the systolic array from top to bottom.
Similarly, K skewers with N dimensions are fed to the systolic
array from left to right. In Fig. 2, asterisks represent delays.
The processing nodes labeled as dot in Fig. 2 perform the
individual products for the skewer projections. On the other
hand, the nodes labeled as maz and min respectively compute
the maxima and minima projections after the dot product calcu-
lations have been completed. In fact, the max and min nodes
avoid broadcasting the pixel while simplifying the collection
of the results.

Based on the systolic array described above (which also al-
lows implementation of the fully constrained spectral unmixing
stage) we have implemented the full hyperspectral unmixing
chain using the very high speed integrated circuit hardware de-
scription language (VHDL)!! for the specification of the sys-
tolic array. Further, we have used the Xilinx ISE environment
and the Embedded Development Kit (EDK) environment!2 to

10http://www.mcs.anl.gov/mpi.
Uhttp://www.vhdl.org.
Zhttp://www .xilinx.com/ise/embedded/edk_pstudio.htm.

PLAZA et al.: HIGH PERFORMANCE COMPUTING FOR HYPERSPECTRAL REMOTE SENSING

skewerl(‘v),__ 5 skewerlt}/‘

(1)

skewer2(N),,,.,skewer2 *

skewer3(1') . skewergl)**

skewerK(N),.. ..skewer, (D *g/‘
£ K-1

Fig. 2. Systolic array architecture used in our FPGA hardware implementation.

specify the complete system. The full system has been ported to
a low-cost reconfigurable board of XUPV2P type with a single
Virtex-II PRO xc2vp30 FPGA component. For data input we
use the FPGA memory slot (of DDR2 SDRAM type) which
holds up to 2 Gigabytes, and a direct memory access (DMA)
module (controlled by a PowerPC) with a write queue to store
the pixel data. A read queue and a transmitter are also used to
send the endmembers to the FPGA via a RS232 port. A control
unit, the systolic array, and a module for random generation of
skewers are also implemented. Additional details about the con-
sidered hardware architecture are given in [29].

D. GPU Implementation

GPUs can be abstracted in terms of a stream model [22],
under which all data sets are represented as streams (i.e.,
ordered data sets). Algorithms are constructed by chaining
so-called kernels, which operate on entire streams, taking
one or more streams as inputs and producing one or more
streams as outputs. Thereby, data-level parallelism is exposed
to hardware, and kernels can be concurrently applied without
any sort of synchronization. The kernels can perform a kind
of batch processing arranged in the form of a grid of blocks,
as displayed in Fig. 3(a), where each block is composed by a
group of threads which share data efficiently through the shared
local memory and synchronize their execution for coordinating
accesses to memory. There is a maximum number of threads
that a block can contain (512 in our considered architecture,
the NVidia Tesla C1060 GPU) but the number of threads that
can be concurrently executed is much larger (several blocks

'v"___’fl(l) f2(N2___: fz(l)* f3(-'\r)

P

535

N

executed by the same kernel can be managed concurrently,
at the expense of reducing the cooperation between threads
since the threads in different blocks of the same grid cannot
synchronize with the other threads). Fig. 3(a) displays how each
kernel is executed as a grid of blocks of threads. On the other
hand, Fig. 3(b) shows the execution model in the GPU, which
can be seen as a set of multiprocesors (16 in our considered
architecture). Each multiprocessor is characterized by a single
instruction multiple data (SIMD) architecture, i.e., in each
clock cycle each processor of the multiprocessor executes the
same instruction but operating on multiple data streams. The
use of a SIMD strategy in each multiprocessor of the GPU is
in contrast with the more general multiple instruction multiple
data (MIMD) strategy exploited in all other parallel implemen-
tations discussed in this paper. Each processor has access to a
local shared memory and also to local cache memories in the
multiprocessor, while the multiprocessors have access to the
global GPU (device) memory.

In order to implement the considered hyperspectral unmixing
chain in a GPU, the first issue that needs to be addressed is how
to map a hyperspectral image onto the global GPU memory.
Since the size of hyperspectral images may exceed the capacity
of the GPU memory, in that case we split the image into
multiple spatial-domain partitions [13] made up of entire pixel
vectors. In our considered architecture, the size of the global
memory is 4 GB (more than enough to store a hyperspectral
image of standard size). Fig. 4 shows a flowchart describing
the kernels that comprise our GPU-based implementation,
which has been developed using the compute unified device

536

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 4, NO. 3, SEPTEMBER 2011

‘ Host Device ' Device

Grid 1 . ‘ Multiprocessor N

: ‘ Multi-processors ——— .

’ Kernel 1)_—.; ‘ ‘ .

Multiprocessor 2
Blocks -
per grid

Threads
per block

(a)

Schematic overview of a GPU architecture. (a) Threads, blocks and grids. (b) Execution model in the GPU.

Fig. 3.

architecture (CUDA)!3. The data partitioning kernel performs
the spatial-domain decomposition of the original hyperspectral
image. In the stream uploading kernel, the spatial-domain
partitions are uploaded as a set of tiles onto the GPU memory.
The skewer generation kernel provides the skewers, using
NVidia’s parallel implementation of the Mersenne twister
pseudo-random number generator on the GPU [52]. The re-
maining stages comprise the following kernels:

» Extreme projections. In this kernel, each computing thread
calculates the projection of all pixel vectors in the original
data set onto each randomly generated skewer.

» Candidate selection. This kernel uses as inputs the projec-
tion values generated in the previous stage, and produces a
stream for each pixel vector, containing the relative coordi-
nates of the pixels with maximum and minimum distance
after the projection onto each skewer. A complementary
kernel is then used to identify those pixels which have been
selected repeatedly during the process.

* Endmember selection. For each endmember candidate, this
kernel computes the SA with all the other candidates. It
is based on a single-pass kernel that computes the SA be-
tween two pixel vectors using the dot products and norms
produced by the previous stage. A complementary kernel is
then used to discard those candidates with SA scores below
a threshold angle.

» Spectral unmixing. Finally, this kernel uses as inputs the
final endmembers selected in the previous stage and pro-
duces fully constrained endmember fractional abundances
for each pixel.

The most time-consuming kernel in our GPU implementa-
tion is the extreme projections kernel, denoted by PPI and dis-
played in Fig. 5 for illustrative purposes. The first parameter of
the PPI kernel, (d_image), is the original hyperspectral image.

Bhttp://www.nvidia.com/object/cuda_home_new.html.

(b)

Original

Hyperspectral

L L

image

v

Data partitioning

For each spatial-domain partition

Skewer generation Stream uploading

Extreme projections

KocT dot products

Candidate selection

Endmember candidates

Endmember selection

Final endmembers

Spectral unmixing

Fig. 4. Flowchart summarizing the kernels involved in our GPU implementa-
tion.

The second parameter is a structure that contains the randomly
generated skewers. The third parameter (d_res_partial) is
the structure in which the output of the kernel will be stored.
The kernel also receives as input parameters the dimensions
of the hyperspectral image, i.e., num_lines, num_samples and
num_bands. The structure 1_rand (local to each thread) is used
to store a skewer through a processing cycle. It should be noted

PLAZA et al.: HIGH PERFORMANCE COMPUTING FOR HYPERSPECTRAL REMOTE SENSING

int *d_res partial,

537

float pemax;
float pemin;
float pe; // Scalar product

int v,d; int imax = 0; int imin = 0;

__syncthreads();

//For each pixel
for (v=0; v < N_Pixels; v++){

//Calculate dot product

pe = 0;

for (d = 0; d < nun _bands; d++){
pe =

}

//Calculate extreme values
if (pe > pemax){
imax = it*N_Pixels+v; pemax

3

if (pe < penin){
imin = it*N_ Pixels+v:; pemin
3
3

//Update d res_partial structure
d res partial[idx*2] = imax’
d_res_partial[idx*2+1] = imin;

3

__global wvoid PPI (float *d_ image, float *d_random,
int num_lines, int num_samples, int num bands)

{

int idx = blockDim.x * blockIdx.x+threadIdx.x;

// Maxirmum value of dot product
/¢ Minirmum value of dot product
pemax =
__shared float s_pixels[Tam Vector]; float 1 rand[224]:

//Copy a skewer from GPU global memory to GPU registers

for (int k=0; k < num bands; k++){
1 rand[k] = d_rgndom[idx*num_bands+k];
}
for (int it = 0; it < nunLlines*numLsamples/N_Pixels; it++) {
//Copy N Pixels pixels to shared memory
if (thregdldx.x < N Pixels){
for (int j=0; j<num_bands; J++) {
s_pixels[thrgadldx.x+N_Pixels*j] =
d_imagen[(it*N_Pixels+threadldx.x)+(num_ lines*num samples*j)]:
}
}

pe + 1 rand[d]*s_pixels[v+N_Pixels*d]:

MIN INT; pemin = MAX INT;

re;

re;’

Fig. 5. CUDA Kernel PPI developed to implement the extreme projections step of the hyperspectral unmixing chain on the GPU.

that each thread works with a different skewer and the values of
the skewer are continuously used by the thread in each iteration,
hence it is reasonable to store skewers in the local memories as-
sociated to each thread since these memories are hundreds of
times faster than the global GPU memory [see Fig. 3(b)]. The
second structure used by the kernel is s_pixels, which is shared
by all threads in the same block [see Fig. 3(a)]. Since each thread
needs to perform the dot product using the same image pixels, it
is reasonable to make use of a shared structure which can be ac-
cessed by all threads, thus avoiding that such threads access the
global GPU memory separately. In our implementation, such

shared structure is stored in the local shared memory of each
multiprocessor, as displayed in Fig. 3(b). Since the s_pixels
structure is also stored in local memory, the accesses are also
much faster. It should be noted that the local memories in a
GPU are usually quite small in order to guarantee very fast ac-
cesses, therefore the s_pixels structure can only accommodate
a blocks of b pixels. In our implementation, this value has been
set to b = 10 (the maximum number of pixels that can be allo-
cated in a local GPU memory in the NVidia Tesla C1060 GPU
[22]), hence in the following we assume that the hyperspectral
image is processed in blocks of b = 10 pixels.

538 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 4, NO. 3, SEPTEMBER 2011

TABLE 1
SPECIFICATIONS OF PROCESSORS IN A HETEROGENEOUS NETWORK OF COMPUTERS

Processor Architecture Cycle-time Memory Cache

number Specification (seconds/megaflop) (MB) (KB)

wy Free BSD — i386 Intel Pentium 4 0.0058 2048 1024

Wy, W, Wy Linux — Intel Xeon 0.0102 1024 512

ws Linux — AMD Athlon 0.0026 7748 512

Wy, We, Wy, Py Linux — Intel Xeon 0.0072 1024 1024

wig SunOS — SUNW UltraSparc-5 0.0451 512 2048

Wy — Wig Linux — AMD Athlon 0.0131 2048 1024

Once a skewer and a group of & = 10 pixels are stored in the TABLE 11

local memory associated to a thread, the next step is to perform
the dot product between each pixel vector and the skewer. For
this purpose, each thread uses two variables pemin and pemax
which store the minima and maxima projection values, respec-
tively, and other two variables imin and imax which store the
relative index of the pixels resulting in the maxima and minima
projection values. Once the projection process is finalized for a
group of b = 10 pixels, another group is loaded. The process
finalizes when all hyperspectral image pixels have been pro-
jected onto the skewer. Finally, the d_res_partial structure
is updated with the minima and maxima projection values. This
structure is reshaped into a matrix of pixel purity indexes by
simply counting the number of times that each pixel was se-
lected as extreme during the process and updating its associ-
ated score with such number, this producing a final structure
d_res_total that stores the final values of Nyjp,es(f;) for a
given pixel f;.

V. EXPERIMENTAL RESULTS

This section is organized as follows. In Section V-A we
describe the parallel computing architectures used for exper-
iments. Section V-B describes the hyperspectral data set that
will be used for demonstration purposes. Section V-C compares
several different implementations of the considered hyperspec-
tral unmixing chain in terms of sub-pixel analysis accuracy,
using the hyperspectral data set described in Section V-B.
Section V-D provides a technique comparison in terms of
computational performance using the same hyperspectral data
set. Finally, Section V-E provides an overall discussion in terms
of both the achieved parallel efficiency and the time and effort
spent in the creation of HPC solutions for each of the presented
platforms.

A. Parallel Computing Architectures

Four different parallel computing platforms have been used

in experiments:

* A cluster called Thunderhead at NASA’s Goddard Space
Flight Center in Maryland, composed of 256 dual 2.4 GHz
Intel Xeon nodes, each with 1 GB of memory and 80 GB
of main memory, interconnected with 2 GHz optical fibre
Myrinet.

* A heterogeneous network which consists of 16 different
workstations and four different communication segments.

CAPACITY OF COMMUNICATION LINKS (IN TIME IN MILLISECONDS
TO TRANSFER A ONE-MEGABIT MESSAGE) IN A HETEROGENEOUS
NETWORK OF COMPUTERS

Processor | wy; —w, | wy —wg | wg — Wiy | Wy — Wig
Wy — Wy 19.26 48.31 96.62 154.76
Wy — Wg 48.31 17.65 48.31 106.45
Wy — Wyg 96.62 48.31 16.38 58.14
Wi — Wig 154.76 106.45 58.14 14.05

Table I shows the properties of the 16 heterogeneous work-
stations, where processors {wi}f:l are attached to com-
munication segment 7, processors { w; }§:5 communicate
through s9, processors { wi}gg are interconnected via s3,
and processors {“"i};‘ﬁn share the communication seg-
ment $4. For illustrative purposes, Table II also shows the
capacity of all point-to-point communications in the het-
erogencous network, expressed as the time in milliseconds
to transfer a one-megabit message between each processor
pair (w;, w;) in the heterogeneous system.

* A low-cost reconfigurable board with a single Virtex-II
PRO xc2vp30 FPGA component, a DDR SDRAM DIMM
memory slot with 2 Gigabytes of main memory, a RS232
port, and some additional components not used by our im-
plementation.

* An NVidia Tesla C1060 GPU, which features 240 pro-
cessor cores operating at 1.296 GHz, with single precision
floating point performance of 933 Gigaflops, double
precision floating point performance of 78 Gflops, total
dedicated memory of 4 GB, 800 MHz memory (with
512-bit GDDR3 interface) and memory bandwidth of
102 GB/sec!4. The GPU is connected to an Intel core i7
920 CPU at 2.67 GHz with 8 cores, which uses a mother-
board Asus P6T7 WS SuperComputer.

B. Hyperspectral Data Set

The image scene used for experiments in this work was col-
lected by the AVIRIS instrument, which was flown by NASA’s
Jet Propulsion Laboratory over the World Trade Center (WTC)
area in New York City on September 16, 2001, just five days
after the terrorist attacks that collapsed the two main towers and

L4http://www.nvidia.com/object/product_tesla_c1060_us.html.

PLAZA et al.: HIGH PERFORMANCE COMPUTING FOR HYPERSPECTRAL REMOTE SENSING 539

Fig. 6. AVIRIS hyperspectral image collected over the World Trade Center (left). Location of thermal hot spots in the World Trade Center complex (right).

TABLE III

COMPARISON OF AREA ESTIMATION (IN SQUARE METERS) FOR EACH THERMAL HOT SPOT BY DIFFERENT PARALLEL IMPLEMENTATIONS OF THE HYPERSPECTRAL
UNMIXING CHAIN (USGS REFERENCE VALUES AND THE RESULTS OBTAINED USING ENVI SOFTWARE ARE ALSO INCLUDED)

Thermal Latitude Longitude Temperature Area Area Area Area Area Area

hot spot (North) (West) (Kelvin) (USGS) (ENVI) (Cluster) (Heterogeneous) (FPGA) (GPU)
‘A 40942¢47.18“ 74°0041.43¢ 1000 0.56 0.53 0.53 0.53 0.53 0.53
‘B’ 40°42¢47.14% 74°00'43.53¢ 830 0.08 0.06 0.06 0.10 0.06 0.06
‘< 40°42¢42.89“ 74°00°48.88% 900 0.80 0.78 0.78 0.78 0.78 0.78
‘D’ 40°42¢41.99¢ 74°00'46.94¢ 790 0.80 0.81 0.81 0.81 0.83 0.83
‘E 40°42¢40.58“ 74°00‘50.15% 710 0.40 0.55 0.55 0.59 0.57 0.57
‘F 40°42¢38.74%“ 74°00°46.70¢ 700 0.40 0.36 0.36 0.31 0.36 0.38
‘G’ 40°42¢39.94“ 74°00‘45.37% 1020 0.04 0.05 0.05 0.05 0.05 0.05
‘H’ 40°4238.60“ 74°00¢43.51¢ 820 0.08 0.12 0.12 0.09 0.07 0.11

other buildings in the WTC complex. The full data set selected
for experiments consists of 614 x 512 pixels, 224 spectral bands
and a total size of (approximately) 140 MB. The spatial resolu-
tion is 1.7 meters per pixel. The leftmost part of Fig. 6 shows
a false color composite of the data set selected for experiments
using the 1682, 1107 and 655 nm channels, displayed as red,
green and blue, respectively. Vegetated areas appear green in
the leftmost part of Fig. 6, while burned areas appear dark gray.
Smoke coming from the WTC area (in the red rectangle) and
going down to south Manhattan appears bright blue due to high
spectral reflectance in the 655 nm channel.

Extensive reference information, collected by U.S. Geolog-
ical Survey (USGS), is available for the WTC scene!’. In this
work, we use a USGS thermal map!® which shows the target
locations of the thermal hot spots at the WTC area, displayed
as bright red, orange and yellow spots at the rightmost part of
Fig. 6. The map is centered at the region where the towers col-
lapsed. Further information available from USGS about the tar-
gets (including location, estimated size, and temperature) is re-
ported in Table III. As shown by Table III, all the targets are
sub-pixel in size since the spatial resolution of a single pixel is
1.7 square meters.

5http://speclab.cr.usgs.gov/wtc.
16http://pubs.usgs.gov/of/2001/0fr-01-0429/hotspot.key.tgif.gif.

C. Comparison of Techniques in Terms of Sub-Pixel Accuracy

Before empirically investigating the parallel performance of
the proposed algorithms, we first evaluate their endmember ex-
traction and spectral unmixing accuracy in the context of the
considered application. Prior to a full examination and discus-
sion of results, it is important to outline parameter values used
for the considered unmixing chain. In all our considered imple-
mentations, the number of endmembers to be extracted was set
to p = 30 after estimating the dimensionality of the data using
the virtual dimensionality concept [48]. In addition, the number
of skewers was set to K = 10* (although values of K = 103
and K = 10° were also tested, we experimentally observed that
the use of K = 103 resulted in the loss of important endmem-
bers, while the endmembers obtained using K = 10° were es-
sentially the same as those found using K = 10%). Finally, the
threshold angle parameter was set to v, = 5°, which is a reason-
able limit of tolerance for this metric, while the cut-off threshold
value parameter v, was set to the mean of Ny, scores ob-
tained after K = 10? iterations. These parameter values are in
agreement with those used before in the literature [42].

Table III evaluates the accuracy of the four considered par-
allel implementations in the task of estimating the sub-pixel
abundance of fires in the WTC scene, taking advantage of ref-
erence information about the area covered by each thermal hot

540 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 4, NO. 3, SEPTEMBER 2011

TABLE IV
TIMES (SECONDS) MEASURED AFTER PROCESSING THE AVIRIS WORLD TRACE CENTER HYPERSPECTRAL SCENE
ON THE THUNDERHEAD CLUSTER AND ON THE HETEROGENEOUS NETWORK OF COMPUTERS

Thunderhead cluster Heterogeneous network
CPUs 1 4 16 36 100 144 196 256 16
Sequential computations | 1163.05 1.63 1.26 1.12 1.19 1.06 0.84 0.91 0.58 1.69
Parallel computations 0 292.09 7324 3046 1544 8.76 5.08 3.18 1.91 79.56
Communications 0 2.20 2.41 2.39 221 2.46 2.65 2.32 2.49 3.56
Total time* 1163.05 29592 76.91 3397 1884 1238 8.57 6.41 4.98 83.05
Speedup - 3.93 1512 3423 61.73 93.89 135.67 181.34 233.45 13.23

* The total time consumed by our FPGA implementation was 31.23 seconds, while our GPU implementation took 17.59 seconds

spot available from USGS. Since each pixel in the AVIRIS data
has a size of 1.7 square meters, thermal hot spots are sub-pixel
in nature and hence require a spectral unmixing step as the last
one provided in our hyperspectral unmixing chain. Experiments
in Table III demonstrate that the parallel algorithms can pro-
vide accurate estimations of the area covered by thermal hot
spots, which can lead to good characterization results (similar
to those obtained using the unmixing chain available in ENVI
software). In particular, the estimations for the thermal hot spots
with higher temperature (labeled as “A” and “G” in the table)
were almost perfect, and identical for the four considered im-
plementations.

It is important to note that the output produced by all parallel
methods in Table III was verified using not only our own serial
implementations, but the implementation of the considered hy-
perspectral unmixing chain available in the commercial version
4.5 of ENVI software available from ITTVis (using the same
parameters in both cases). The endmembers found by our par-
allel implementations were exactly the same as the ones found
by our serial implementations of the respective original algo-
rithms. To arrive to this conclusion, we made sure that the same
set of random skewers was used to guarantee that both the serial
and parallel versions were exactly the same. It should be noted,
however, that our parallel implementations produced slightly
different endmembers than those found by ENVI’s implementa-
tion. However, we experimentally tested that the spectral angle
scores between the endmembers that were different between the
original and parallel algorithms were always very low (below
0.85%), a fact that reveals that the final endmembers sets were
almost identical in spectral sense.

D. Comparison of Techniques in Terms of Parallel
Performance

Table IV shows the total time spent by the parallel imple-
mentation in communications and computations in the Thun-
derhead cluster and on the heterogeneous network. The time
taken by an optimized serial implementation of the processing
chain on a single Thunderhead node is also reported. Two types
of computation times were analyzed, namely, sequential (those
performed by the root node with no other parallel tasks active
in the system), and parallel (the rest of computations, i.e., those
performed by the root node and/or the workers in parallel). The
latter includes the times in which the workers remain idle. In ad-
dition, Table IV also displays the communication times, the total

execution times, and the speedups (number of times that the par-
allel implementation was faster than the serial implementation
[14]). The total execution time measured for the serial version
on a single Thunderhead processor was 1163.05 seconds, while
the same code executed on the fastest processor of the hetero-
geneous network was 1098.63 seconds.

It can be seen from Table IV that the times for sequential
computations were always very low when compared to the
time for parallel computations, which indicates high parallel
efficiency of the developed implementations on both the cluster
and the heterogeneous network, even for a high number of
processors. On the other hand, it can also be seen from Table IV
that the impact of communications was not particularly signifi-
cant. Interestingly, the speedup achieved in the heterogeneous
network (16 CPUs) is similar to that achieved in the cluster
with the same number of CPUs. To further explore the issue
of load balance (which is particularly crucial in heterogeneous
platforms), we have calculated the imbalance scores achieved
by our heterogeneous implementation based on the WEA algo-
rithm in the considered heterogeneous network. The imbalance
is simply defined as D = R0,/ Riin, Wwhere Ry, g, and R ip
are respectively the maxima and minima processor run times
measured across the set of heterogeneous processors. There-
fore, perfect balance is achieved when 2 = 1. In our study,
we measured the imbalance considering all processors, D,;;,
and also considering all processors but the master, D, ys-
The values measured were, respectively, D,; = 1.19 and
D yinus = 1.05. These values indicate that our implementation
is well balanced, and also that the workload assigned to the
master node is balanced with regards to that assigned to the
workers. Similar values (D, = 1.04 and D, inus = 1.01)
were measured on the homogeneous cluster for 256 processors.
In this case, the total processing time for the full unmixing
chain was 4.98 seconds. It should be noted that this result is
in real time since the cross-track line scan time in AVIRIS, a
push-broom instrument, is quite fast (8.3 milliseconds to collect
512 full pixel vectors). This introduces the need to process the
considered scene (614 x 512 pixels) in approximately 5.09
seconds to fully achieve real time performance. Both types of
parallel computing architectures (cluster and heterogeneous
network) are very appealing for information extraction from
hyperspectral data already transmitted to Earth; it is estimated
that a significant portion of hyperspectral image data sets
collected by airborne/satellite instruments are never processed

PLAZA et al.: HIGH PERFORMANCE COMPUTING FOR HYPERSPECTRAL REMOTE SENSING 541

GPU Time (Total)

0.00% 9.93% 19.86% 29.79% 39.71% 49.64% 59.57% 69.50% 79.43% 89.36% 99.28%
PPI(1)
RandomGPU (1)
memcpyHtoD (2)
memcpyDtoH (1)
0.00% 2.93% 19.86% 29.79% 39.71% 49.64% 59.57% 69.50% 79.43% 89.36% 99.28%

Fig. 7. Summary plot describing the percentage of the total time consumed by different kernels after processing the AVIRIS World Trade Center hyperspectral

scene in the NVidia Tesla C1060 GPU.

but directly stored in databases, hence these systems offer an
unprecedented opportunity for efficient information mining
from large data repositories. However, these systems cannot be
adapted to on-board processing scenarios in which low-weight,
compact hardware devices are needed. In contrast, specialized
hardware devices such as FPGAs and GPUs are more appealing
for on-board processing.

Our implementation of the hyperspectral unmixing chain on
the considered FPGA board was able to achieve a total pro-
cessing time for the considered AVIRIS scene of 31.23 seconds
(approximately the same as the one achieved using 36 Thun-
derhead processors) utilizing approximately 76% of the avail-
able hardware resources in the considered board. This FPGA
has a total of 13696 slices (out of which 10423 were used by
our implementation). An interesting feature of the considered
design is that it can be scaled without significantly increasing the
delay of the critical path (the clock cycle remained constant at
187 MHz). It should also be noted that in our implementation he
have paid special attention to the impact of communications. In
previous designs [14], [25], the module for random generation
of skewers was situated in an external processor. Hence, fre-
quent communications between the host (CPU) and the device
(FPGA) were needed. However, in our implementation the hard-
ware random generation module is implemented internally in
the FPGA board. This approach significantly reduced the com-
munications, leading to increased parallel performance.

Finally, the execution time for the parallel hyperspectral
unmixing chain implemented on the NVidia C1060 Tesla GPU
was 17.59 seconds (approximately the same as the one achieved
using 64 Thunderhead processors and closer to real-time per-
formance than the FPGA implementation). In our experiments
on the Intel Core i7 920 CPU, the hyperspectral unmixing
chain took 1078.03 seconds to process the considered AVIRIS
scene (using just one of the available cores). This means that
the speedup achieved by our GPU implementation with regards
to the serial implementation in one core was approximately
61.28. For illustrative purposes, Fig. 7 shows the percentage of
the total execution time consumed by the PPI kernel described
in Fig. 5, which implements the extreme projections step of
the unmixing chain, and by the RandomGPU kernel, which
implements the skewer generation step in the chain. Fig. 7 also
displays the number of times that each kernel was invoked (in
the parentheses). These values were obtained after profiling
the implementation using the CUDA Visual Profiler tooll7. In
the figure, the percentage of time for data movements from
host (CPU) to device (GPU) and from device to host are also
displayed. It should be noted that two data movements from

7http://developer.nvidia.com/object/cuda_3 1 downloads.html.

host to device are needed to transfer the original hyperspectral
image and the skewers to the GPU, while only one movement
from device to host (final result) is needed. As shown by Fig. 7,
the PPI kernel consumes about 99% of the total GPU time,
while the RandomGPU kernel compraratively occupies a much
smaller fraction. Finally, the data movement operations are not
significant, which indicates that most of the GPU processing
time is invested in the most time-consuming operation, i.e.,
the calculation of skewer projections and identification of
maxima and minima projection values leading to endmember
identification.

To conclude this section, we emphasize that our imple-
mentation of the unmixing chain has been fully optimized
for the considered GPU platform. This statement is based on
our utilization of NVidia CUDA’s occupancy calculator,!8 a
programmer tool that allows one to compute the multiprocessor
occupancy of a GPU by a given CUDA kernel in terms of the
number of active threads per multiprocessor, the number of ac-
tive thread blocks per multiprocessor, and the total occupancy
of each multiprocessor. The configuration adopted for our GPU
implementation resulted in 100% occupancy according to this
tool. This result was also confirmed by run-time experiments
using NVidia CUDA’s visual profiler tool!9.

E. Discussion

Through the detailed analysis of a full hyperspectral un-
mixing chain, we have illustrated different parallel systems
and strategies to increase computational performance of hyper-
spectral imaging algorithms. Two of the considered techniques,
i.e., commodity cluster-based parallel computing and hetero-
geneous parallel computing, seem particularly appropriate for
efficient information extraction from very large hyperspectral
data archives. In this regard, we have provided a discussion on
the scalability of the unmixing chain on a NASA cluster and
also studied the performance on a heterogeneous system made
up of different workstations and communication links. Our
study reveals that the combination of the (readily available)
computational power offered by clusters and heterogeneous
networks with the recent advances in sensor technology is
ready to provide advanced exploration and mining capabilities
for exploiting the sheer volume of Earth and planetary remotely
sensed data which is already available in data repositories.
These data, often never processed but simply stored in a data-
base, can provide parameters and indicators useful to analyses
related with other areas and/or analysis scenarios.

18http://news.developer.nvidia.com/2007/03/cuda_occupancy .html.
9http://developer.nvidia.com/object/cuda_3 2 toolkit_rc.html.

542 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 4, NO. 3, SEPTEMBER 2011

To fully address the time-critical constraints introduced by
many remote sensing applications, we have also developed an
FPGA and a GPU-based implementation of the hyperspectral
unmixing chain intended for on-board analysis (before the hy-
perspectral data is transmitted to Earth). A major goal is to over-
come an existing limitation in many remote sensing and obser-
vatory systems: the bottleneck introduced by the bandwidth of
the downlink connection from the observatory platform. Exper-
imental results demonstrate that our hardware implementations
make appropriate use of computing resources in the considered
FPGA and GPU architectures, and further provide a response in
(near) real-time which is believed to be acceptable in most re-
mote sensing applications. The reconfigurability of FPGA sys-
tems on the one hand, and the low cost of GPU systems on the
other, open many innovative perspectives from an application
point of view, ranging from the appealing possibility of being
able to adaptively select one out of a pool of available data pro-
cessing algorithms (which could be applied on the fly aboard
the airborne/satellite platform, or even from a control station
on Earth), to the possibility of providing a response in appli-
cations with real-time constraints. Although the experimental
results presented for the considered unmixing chain are encour-
aging, further work is still needed to arrive to optimal parallel
design and implementations for other more sophisticated hy-
perspectral processing algorithms such as advanced supervised
classifiers (e.g., support vector machines) which do not exhibit
regular patterns of computation and communication [5].

Finally it is important to discuss the design effort needed for
the creation of HPC solutions for each of the considered plat-
forms. Compared to a C++ code developed for conventional
CPUs, all solutions require additional design efforts. Specially
since designers must learn different design paradigm and devel-
opment environments, and also take into account several imple-
mentation low-level details. After comparing the design effort
complexity of the options that we have implemented, we be-
lieve that the simplest implementation is the one developed for
clusters, since the MPI calls can be integrated in the C++ code
in a relatively straightforward manner. The adaptation of such
codes for heterogeneous platforms involves the design of an ad-
ditional module for ensuring load balance (WEA algorithm). In
turn, the effort needed for designing the specialized hardware
implementations is higher due to the closer relationship between
the software and the hardware (i.e. the software designs needs
to be tailored to the specific hardware architecture). With this
in mind, probably the FPGA design is a little bit more complex
than the GPU design due to two main reasons. On the one hand,
in the FPGA implementation the platform needs to be designed
whereas in the GPU implementation the platform just needs to
be used. On the other hand, for large FPGA designs hardware
debugging is a complex issue. However, we believe that, in both
cases, the performance achievements are more significant than
the increase in the design complexity.

VI. CONCLUSIONS

In this paper, we have reviewed the state-of-the-art in the
application of HPC techniques and practices to hyperspectral

remote sensing problems, and further explored different strate-
gies to increase the performance of a hyperspectral unmixing
chain on different parallel computing architectures. Techniques
discussed include a commodity cluster-based implementation,
a heterogeneity-aware parallel implementation developed for
heterogeneous networks of workstations, an FPGA-based im-
plementation, and a GPU-based implementation. Our study re-
veals that computational power offered by clusters and hetero-
geneous networks is ready to introduce substantial benefits from
the viewpoint of exploiting large volumes of data already avail-
able in repositories, thus making a better use of hyperspectral
data sets which have never been processed after being collected.
These data exhibit the potential to provide relevant parameters
that may be useful in other domains. To address the time-critical
constraints introduced by several hyperspectral remote sensing
applications, we have also developed FPGA and GPU-based im-
plementations of the considered hyperspectral unmixing chain
intended for on-board analysis.

VII. FUTURE DIRECTIONS

The presented work is part of a much larger strive to bring
the benefits of high performance and distributed computing to
the hyperspectral imaging community. Future work should in-
clude the development of techniques to overcome the bottle-
neck introduced by the bandwidth of the downlink connection
from the observatory platform. In this regard, both the recon-
figurability of FPGA systems and the low cost and portability
of GPU systems open many innovative perspectives. Radia-
tion-tolerance and power consumption issues for these hardware
devices should be explored in future developments. Further, ad-
ditional hyperspectral imaging techniques should be considered
for detailed analysis of parallelization strategies. For example,
some more advanced endmember extraction algorithms, such as
Winter’s N-FINDR [53], are very popular and their parallel im-
plementations will be investigated. In turn, the algorithms used
in this paper to perform spectral unmixing are pixel-based and
do not take into account the inter-pixel correlation. In this case,
the parallelization framework is very simple and the data can be
easily divided into a number of subsets whose number is equal to
the number of available processors. An endmember extraction
algorithm using both spectral and spatial information (e.g., [54])
presents more complex patterns of computation and communi-
cation and therefore bring new challenges for efficient parallel
implementation. Other techniques of this kind are kernel-based
methods, e.g., kernel-based anomaly detection using the RX al-
gorithm [55] needs additional inter-processor communications
in order to produce the inverse of the covariance matrix required
for the overall computation. Future work should also comprise
an investigation of SIMD versus MIMD strategies for parallel
implementation of hyperspectral imaging algorithms.

REFERENCES

[1] A.F.H.Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spec-
trometry for Earth remote sensing,” Science, vol. 228, pp. 1147-1153,
1985.

[2] R. O. Green et al., “Imaging spectroscopy and the airborne visible/
infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ., vol.
65, no. 3, pp. 227-248, 1998.

[3] A. Plaza, “Special issue on architectures and techniques for real-time
processing of remotely sensed images,” J. Real-Time Image Process.,
vol. 4, pp. 191-193, 2009.

[4] L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Chung, W. Wolf, T.

King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spec-

tral emissivity from hyperspectral instruments,” /EEE Trans. Geosci.

Remote Sens., vol. 46, pp. 328-333, 2008.

A. Plaza, J. A. Benediktsson, J. Boardman, J. Brazile, L. Bruzzone, G.

Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, J. Gualtieri, M. Mar-

concini, J. C. Tilton, and G. Trianni, “Recent advances in techniques

for hyperspectral image processing,” Remote Sens. Environ., vol. 113,

pp. 110-122, 2009.

[6] A. Plaza and C.-1 Chang, High Performance Computing in Remote
Sensing. Boca Raton, FL: CRC Press, 2007.

[7] J. Dorband, J. Palencia, and U. Ranawake, “Commodity computing
clusters at goddard space flight center,” J. Space Commun., vol. 3, p.
1, 2003.

[8] R. Brightwell, L. Fisk, D. Greenberg, T. Hudson, M. Levenhagen, A.
Maccabe, and R. Riesen, “Massively parallel computing using com-
modity components,” Parallel Comput., vol. 26, p. 243266, 2000.

[9] K. Itoh, “Massively parallel fourier-transform spectral imaging and hy-
perspectral image processing,” Opt. Laser Technol., vol. 25, p. 202,
1993.

[10] S. Kalluri, Z. Zhang, J. JaJa, S. Liang, and J. Townshend, “Charac-
terizing land surface anisotropy from AVHRR data at a global scale
using high performance computing,” Int. J. Remote Sens., vol. 22, pp.
2171-2191, 2001.

[11] T. El-Ghazawi, S. Kaewpijit, and J. L. Moigne, “Parallel and adaptive
reduction of hyperspectral data to intrinsic dimensionality,” Cluster
Comput., vol. 1, pp. 102-110, 2001.

[12] S. Tehranian, Y. Zhao, T. Harvey, A. Swaroop, and K. Mckenzie, “A
robust framework for real-time distributed processing of satellite data,”
J. Parallel Distrib. Comput., vol. 66, pp. 403—418, 2006.

[13] A. Plaza, D. Valencia, J. Plaza, and P. Martinez, “Commodity cluster-
based parallel processing of hyperspectral imagery,” J. Parallel Dis-
trib. Comput., vol. 66, no. 3, pp. 345-358, 2006.

[14] A.Plazaand C.-I Chang, “Clusters versus FPGA for parallel processing
of hyperspectral imagery,” Int. J. High Perform. Comput. Applicat.,
vol. 22, no. 4, pp. 366-385, 2008.

[15] A. Plaza,]J. Plaza, and D. Valencia, “Impact of platform heterogeneity
on the design of parallel algorithms for morphological processing of
high-dimensional image data,” J. Supercomput., vol. 40, no. 1, pp.
81-107, 2007.

[16] A. Plaza, D. Valencia, and J. Plaza, “An experimental comparison of
parallel algorithms for hyperspectral analysis using homogeneous and
heterogeneous networks of workstations,” Parallel Comput., vol. 34,
no. 2, pp. 92-114, 2008.

[17] A. Lastovetsky and J. Dongarra, High-Performance Heterogeneous
Computing. New York: Wiley, 2009.

[18] D. Valencia, A. Lastovetsky, M. O’Flynn, A. Plaza, and J. Plaza, “Par-
allel processing of remotely sensed hyperspectral images on heteroge-
neous networks of workstations using HeteroMPL,” Int. J. High Per-
form. Comput. Applicat., vol. 22, no. 4, pp. 386—407, 2008.

[19] W. Rivera, C. Carvajal, and W. Lugo, “Service oriented architecture
grid based environment for hyperspectral imaging analysis,” Int. J. Inf.
Technol., vol. 11, no. 4, pp. 104-111, 2005.

[20] J. Brazile, R. A. Neville, K. Staenz, D. Schlaepfer, L. Sun, and K. 1.
Itten, “Cluster versus grid for operation generation of ATCOR’s MOD-
TRAN-based look up table,” Parallel Comput., vol. 34, pp. 32-46,
2008.

[21] S. Hauck, “The roles of FPGAs in reprogrammable systems,” Proc.
IEEE, vol. 86, pp. 615-638, 1998.

[22] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: A unified graphics and computing architecture,” IEEE Micro,
vol. 28, pp. 39-55, 2008.

[23] U. Thomas, D. Rosenbaum, F. Kurz, S. Suri, and P. Reinartz, “A new
software/hardware architecture for real time image processing of wide
area airborne camera images,” J. Real-Time Image Process., vol. 5, pp.
229-244, 2009.

[24] Q. Du and R. Nekovei, “Fast real-time onboard processing of hyper-
spectral imagery for detection and classification,” J. Real-Time Image
Process., vol. 22, pp. 438448, 2009.

[25] M. Hsueh and C.-I Chang, “Field programmable gate arrays (FPGA)
for pixel purity index using blocks of skewers for endmember extrac-
tion in hyperspectral imagery,” Int. J. High Performance Comput. Ap-
plicat., vol. 22, pp. 408423, 2008.

[5

[}

PLAZA et al.: HIGH PERFORMANCE COMPUTING FOR HYPERSPECTRAL REMOTE SENSING 543

[26] E. El-Araby, T. El-Ghazawi, J. L. Moigne, and R. Irish, “Reconfig-
urable processing for satellite on-board automatic cloud cover assess-
ment,” J. Real-Time Image Process., vol. 5, pp. 245-259, 2009.

[27] J. Setoain, M. Prieto, C. Tenllado, and F. Tirado, “GPU for parallel
on-board hyperspectral image processing,” Int. J. High Performance
Comput. Applicat., vol. 22, no. 4, pp. 424437, 2008.

[28] A. Paz and A. Plaza, “Clusters versus GPUs for parallel automatic
target detection in remotely sensed hyperspectral images,” EURASIP
J. Advances in Signal Process., vol. 915639, pp. 1-18, 2010.

[29] C. Gonzalez, J. Resano, D. Mozos, A. Plaza, and D. Valencia, “FPGA
implementation of the pixel purity index algorithm for remotely
sensed hyperspectral image analysis,” EURASIP J. Advances in Signal
Process., vol. 969806, pp. 1-13, 2010.

[30] D. A. Landgrebe, Signal Theory Methods in Multispectral Remote
Sensing. New York: Wiley, 2003.

[31] A. S. Tanenbaum, Structured Computer Organization. Englewood
Cliffs, NJ: Prentice-Hall, 2001.

[32] J. C. Tilton, W. T. Lawrence, and A. Plaza, “Utilizing hierarchical seg-
mentation to generate water and snow masks to facilitate monitoring
of change with remotely sensed image data,” GISci. Remote Sens., vol.
43, no. 1, pp. 39-66, Mar. 2006.

[33] J. Plaza, A. Plaza, D. Valencia, and A. Paz, “Massively parallel pro-

cessing of hyperspectral images,” in Proc. SPIE, 2009, vol. 7455, pp.

1

[34] A.Plaza,]. Plaza, and A. Paz, “Parallel heterogeneous CBIR system for
efficient hyperspectral image retrieval using spectral mixture analysis,”
Concurrency and Computation: Practice and Experience, vol. 22, no.
9, pp. 1138-1159, 2010.

[35] F. Liu, F. Seinstra, and A. Plaza, “Parallel hyperspectral image pro-
cessing on multi-cluster systems,” IEEE Geosci. Remote Sens. Lett.,
2010, submitted for publication.

[36] Q. Du and J. E. Fowler, “Low-complexity principal component anal-
ysis for hyperspectral image compression,” Int. J. High Performance
Comput. Applicat., vol. 22, pp. 273-286, 2009.

[37] M. Parente, J. L. Bishop, and J. F. Bell, “Spectral unmixing for mineral
identification in pancam images of soils in Gusev crater, Mars,” Icarus,
vol. 203, pp. 421-436, 2009.

[38] Y. Tarabalka, T. V. Haavardsholm, I. Kasen, and T. Skauli, “Real-time
anomaly detection in hyperspectral images using multivariate normal
mixture models and gpu processing,” J. Real-Time Image Process., vol.
4, pp. 1-14, 2009.

[39] G. Shaw and D. Manolakis, “Signal processing for hyperspectral image
exploitation,” /EEE Signal Process. Mag., vol. 19, pp. 12—16, 2002.

[40] J. B. Adams, M. O. Smith, and P. E. Johnson, “Spectral mixture mod-
eling: A new analysis of rock and soil types at the Viking Lander 1
site,” J. Geophys. Res., vol. 91, pp. 8098-8112, 1986.

[41] N. Keshava and J. F. Mustard, “Spectral unmixing,” /EEE Signal
Process. Mag., vol. 19, no. 1, pp. 44-57, 2002.

[42] A. Plaza, P. Martinez, R. Perez, and J. Plaza, “A quantitative and
comparative analysis of endmember extraction algorithms from hy-
perspectral data,” [EEE Trans. Geosci. Remote Sens., vol. 42, no. 3,
pp. 650-663, 2004.

[43] Q. Du, N. Raksuntorn, N. H. Younan, and R. L. King, “End-member
extraction for hyperspectral image analysis,” Appl. Opt., vol. 47, pp.
77-84, 2008.

[44] D. Heinz and C.-I Chang, “Fully constrained least squares linear
mixture analysis for material quantification in hyperspectral imagery,”
IEEE Trans. Geosci. Remote Sens., vol. 39, pp. 529-545, 2000.

[45] C.-I1 Chang, Hyperspectral Data Exploitation: Theory and Applica-
tions. New York: Wiley, 2007.

[46] J. W. Boardman, F. A. Kruse, and R. O. Green, “Mapping Target Sig-
natures Via Partial Unmixing of Aviris Data,” in Proc. JPL Airborne
Earth Science Workshop, 1995, pp. 23-26.

[47] C.-I Chang, Hyperspectral Imaging: Techniques for Spectral Detec-
tion and Classification. New York: Kluwer Academic/Plenum Pub-
lishers, 2003.

[48] Q. Du and C.-I Chang, “Estimation of number of spectrally distinct
signal sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 3, pp. 608—619, 2004.

[49] C.-I Chang and D. Heinz, “Constrained subpixel target detection for
remotely sensed imagery,” IEEE Trans. Geosci. Remote Sens., vol. 38,
pp. 1144-1159, 2000.

[50] F. Seinstra and D. Koelma, “User transparency: A fully sequential pro-
gramming model for efficient data parallel image processing,” Concur-
rency and Computation: Practice and Experience, vol. 16, no. 6, pp.
611-644, 2004.

544 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 4, NO. 3, SEPTEMBER 2011

[51] R. Elsasser, B. Monien, and R. Preis, “Diffusion schemes for load bal-
ancing on heterogeneous networks,” Theory of Computing Systems,
vol. 35, pp. 305-320, 2002.

[52] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimen-
sionally equidistributed uniform pseudorandom number generator,”
ACM Trans. Modeling and Computer Simulation, vol. 8, no. 1, pp.
3-30, 1998.

[53] M. E. Winter, “N-FINDR: An algorithm for fast autonomous spectral
end-member determination in hyperspectral data,” in Proc. SPIE Image
Spectrometry V, 2003, vol. 3753, pp. 266-277.

[54] A. Plaza, P. Martinez, R. Perez, and J. Plaza, “Spatial/spectral end-
member extraction by multidimensional morphological operations,”
IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 2025-2041, 2002.

[55] L Reed and X. Yu, “Adaptive multiple-band cfar detection of an optical
pattern with unknown spectral distrihution,” /IEEE Trans. Acoustics,
Speech Signal Process., vol. 38, pp. 1760-1770, 1990.

Antonio Plaza (M’05-SM’07) received the M.S. and
Ph.D. degrees in computer engineering from the Uni-
versity of Extremadura, Caceres, Spain.

He was a Visiting Researcher with the Remote
Sensing Signal and Image Processing Laboratory,
University of Maryland Baltimore County, Bal-
timore, with the Applied Information Sciences
Branch, Goddard Space Flight Center, Greenbelt,
MD, and with the AVIRIS Data Facility, Jet Propul-
sion Laboratory, Pasadena, CA. Since 2000, he has
been an Associate Professor with the Department of
Technology of Computers and Communications, University of Extremadura,
Caceres, Spain, where he is the Head of the Hyperspectral Computing Labo-
ratory (HYPERCOMP). He is the Coordinator of the Hyperspectral Imaging
Network (Hyper-I-Net), which is a European project designed to build an inter-
disciplinary research community focused on hyperspectral imaging activities.
He has been a Proposal Reviewer with the European Commission, the European
Space Agency, and the Spanish Government. He is the author or coauthor
of more than 250 publications on remotely sensed hyperspectral imaging,
including more than 40 Journal Citation Report papers, book chapters, and
conference proceeding papers. His research interests include remotely sensed
hyperspectral imaging, pattern recognition, signal and image processing, and
efficient implementation of large-scale scientific problems on parallel and
distributed computer architectures.

Dr. Plaza has co-edited a book on high-performance computing in remote
sensing and guest-edited four special issues on remotely sensed hyperspec-
tral imaging for different journals, including the IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE SENSING (for which he currently serves as As-
sociate Editor on hyperspectral image analysis and signal processing), the
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND
REMOTE SENSING, the International Journal of High Performance Computing
Applications, and the Journal of Real-Time Image Processing. He has served as
a reviewer for more than 230 manuscripts submitted to more than 40 different
journals. He was a recipient of the recognition of Best Reviewers of the IEEE
Geoscience and Remote Sensing Letters in 2009.

Qian Du (S’98-M’00-SM’05) received the Ph.D.
degree in electrical engineering from the University
of Maryland Baltimore County in 2000.

She was with the Department of Electrical Engi-
neering and Computer Science, Texas A&M Univer-
sity, Kingsville, from 2000 to 2004. She joined the
Department of Electrical and Computer Engineering
at Mississippi State University in Fall 2004, where
she is currently an Associate Professor. Her research
interests include remote sensing image analysis, pat-
tern classification, data compression, and neural net-

Dr. Du currently serves as Co-Chair for the Data Fusion Technical Committee
of IEEE Geoscience and Remote Sensing Society. She also served as Guest
Editor for the special issue on Spectral Unmixing of Remotely Sensed Data in
TIEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, and Guest Editor
for the special issue on High Performance Computing in Earth Observation and
Remote Sensing in IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH
OBSERVATIONS AND REMOTE SENSING (JSTARS). Dr. Du is a member of SPIE,
ASPRS, and ASEE.

Yang-Lang Chang (M’05-SM’08) received the
B.S. degree in electrical engineering from Chung
Yuan Christian University, Taiwan, in 1987, the
M.S. degree in computer engineering from Syracuse
University, New York, in 1993, and the Ph.D. degree
in computer science and information engineering
from the National Central University, Taiwan, in
2003.

He started his career with NDC IBM Taiwan as a
Hardware Design Engineer before joining Alcatel as
a Software Development Engineer. He presently is
an Associate Professor in the Department of Electrical Engineering, National
Taipei University of Technology. His research interests are in remote sensing,
high performance computing and hyperspectral image analysis.

Dr. Chang is a member of SPIE, the Phi Tau Phi Scholastic Honor Society,
the Chinese Society of Photogrammetry and Remote Sensing, and the Chinese
Society of Image Processing and Pattern Recognition. He has been a Conference
Program Committee member and Session Chair for several international confer-
ences. He is a member of the Editorial Advisory Board of Open Remote Sensing
Journal. Currently, he serves as a General Secretary of the Taipei Chapter of the
IEEE Geoscience and Remote Sensing Society.

Roger L. King (M’73-SM’95) received the B.S.
degree from West Virginia University, Morgantown,
WYV, in 1973, the M.S. degree from the University
of Pittsburgh, Pittsburgh, PA, in 1978 in electrical
engineering. He received the Ph.D. in engineering
from the University of Wales, Cardiff, U.K., in 1988.

He began his career with Westinghouse Electric
Corporation, and soon moved to the U.S. Bureau
of Mines Pittsburgh Mining and Safety Research
Center. Upon receiving the Ph.D. in 1988, he ac-
cepted a position in the Department of Electrical and
Computer Engineering at Mississippi State University where he now holds the
position of Giles Distinguished Professor. At Mississippi State University, he
presently serves as the Director of the Center for Advanced Vehicular Systems.

Dr. King has received numerous awards for his leadership in research in-
cluding the Department of Interior’s Meritorious Service Medal and serves as
an Honorary Professor at the Cardiff University in the United Kingdom. He
served as the Co-Technical Chair for IGARSS 09 in Cape Town, South Africa.
He is currently serving as an Associate Editor for the IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing. He has published
over 250 journal and conference publications and holds four patents. Over the
last 30 years, he has served in a variety of leadership roles with the IEEE In-
dustry Applications Society, Power Engineering Society, and Geosciences and
Remote Sensing Society.

