

SESSION OBJECTIVES

- Discuss concepts and characteristics of energyeffective lighting design
- Outline principles and practices of good lighting maintenance
- Identify typical lighting energy conservation opportunities
- Demonstrate lighting economics calculations and relationships
- Work example lighting calculations

Principles of Efficient Lighting Design

- Meet target light levels
- Efficiently produce light
- Efficiently deliver light
- Balance efficiency with aesthetics, lighting quality, visual comfort
- Automatically control lighting operation

Factors in Successful
 Lighting Applications

- Amount of light required in Lux
- Efficacy in Lumens/watt
- Lumen output of lamps and fixtures
- Color rendition, Color Rendering Index - CRI
- Color temperature in Kelvins
- Types of light sources
- Lighting quality

Quantity of ILLUMINATION

Inverse Square Law
$\mathbf{E}=\frac{\mathbf{I}}{\mathbf{d}^{2}}$

Types of Light Sources

Incandescent	Low Pressure Sodium
Tungsten Halogen	Induction
Mercury Vapor	LED
Fluorescent	
Metal Halide	
High Pressure Sodium	

What Does a BaLlast Do?

- A ballast does three things:
- Conditions the lamp to start
- Applies a high voltage spike to start the gas discharge process
- Applies a current limiter to reduce the lamp current to a safe operating level
- Ballast factor
- Normal light output (0.85-0.95)
- Can specify reduced or increased light output in electronic ballasts with proportional reduction or increase in power

Category	Type	Overall Iuminous efficacy (lmw)	Light Source Efficacy
Contuston	cande	03 N	
	pasmarte	2^{17}	
hansbescert	5 W ungten incarsescerst (120 V)	5	
	40 W urgsten incandescert (120. $\mathrm{V}^{\text {) }}$	126 网	
	100 W tugaten incandescert(220 V)	138 m	
	100W trgsten gass taicgen [220. V)	167^{1001}	
	100 W tuggten incandescert (120 ${ }^{\text {V }}$)	17.5 m	
	26 W ungseen glass habgen (52 V)	$192{ }^{(11)}$	
	quatz habgen (12-244)	24	
	photognptic and propicion limps	$35^{[4]}$	
Furescert	-28W compact hurescert	$60-72^{[1044}$	
	T12tibe mithmognect balast	60^{189}	
	T5ube	70-100 ${ }^{16151}$	
	T8ubewith enctronic balast	$80-100^{1019}$	
Ligtemingaode	utbe LeD	10-1611094	
Arclare	reesoarc lane	30-50 Papm	
	mercant-remon arc lamp	$50-55{ }^{\text {P0 }}$	
Gandschurge	1400 w uticture	100	
	metal halicoliare	65-115 ${ }^{\text {P2] }}$	
	highpresswe sodum imip	$150^{\text {P3] }}$	
	bapressre sodumiuro	183-200 P3P4	
Section L - 10			

Amount of Light Required
 For Specific Applications

- We often use more light than is needed for many applications and tasks.
- Light levels are measured in Lux (or Footcandles, in \ddagger IP units) using an illuminance mete Lux $=$ lumens $/ \mathrm{m}^{2}$
$\mathrm{FC}=$ lumens $/ \mathrm{ft}^{2}$

Consensus standards for light levels are set by the Illuminating Engineering Society of North America (IESNA.org).

SOME TYPICAL LIGHT LEVELS NEEDED ARE:

Parking lot	20 Lux	
Hallways	100 Lux	
Factory floor	300 Lux	500 Lux
Offices	1000 Lux	
Inspection		
Operating room		

Average Rated Life

Lighting Maintenance Principles

- Average rated life of a lamp is median value of life expectancy of a group of lamps
- Light output of all lighting systems decreases over time
- Time at which 50\% have failed, 50% are
- Lighting systems are over-designed to compensate for future light loss
- Fluorescent lamps rated at 3 hours on, 20 minutes off per operating cycle
- HID lamps rated at 10 hours on, one hour off
- Improving maintenance practices can reduce light loss (depreciation) and can either: per operating cycle
- Increased frequency of switching will decrease lamp life in hours, but typically increase useful
- allow reductions in energy consumption (redesign), or calendar life
- improve light levels
- Energy savings more significant than lamp costs

Lighting System Design Methods

1. Lumen Method

- Assumes an equal lux level throughout the area.
- This method has been used frequently since it is simple.

2. Point by Point Method

- The current method of design based on the Fundamental Law of Illumination.
- Requires a computer program and extensive computation.

EXAMPLE OF LUMEN METHOD
Find the number of lamps required to provide a uniform 500 Lux on the working surface in a 15×10 room. Assume two 3000 lumen lamps each per
fixture, and assume that LLF is 0.65 and CU is 70%.

$$
\mathrm{N}=\frac{500 \times 150}{3000 \times 0.65 \times 0.7}=55
$$

The number of two-lamp fixtures needed is 28.

The Coefficient of Utilization (CU)
The coefficient of utilization is a measure of how well the light coming out of the lamps and the fixture contributes to the useful light level at the work surface.

It may be given, or you may need to find it:

- Use Room Cavity Ratio (RCR) to incorporate room geometry
- Use Photometric Chart for specific lamp and fixture

Room Cavity Ratio (RCR)
RCR $=2.5 \times \mathrm{hx}$ (Room Perimeter) $/($ Room Area $)$

Where
$\mathrm{L}=$ room length
$\mathrm{W}=$ room width
$\mathrm{h}=$ height from lamp to top of working surface

EXAMPLE
Find the RCR for a 10 by 15 rectangular room with lamps mounted on the ceiling at a height of 3 metres, and the work surface is a 60 cm bench.

$$
\begin{aligned}
\mathrm{h} & =3.0-0.6 \\
& =2.4 \text { metres }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{RCR} & =2.5 \times \mathrm{h} \times(2 \mathrm{~L}+2 \mathrm{~W}) /(\mathrm{L} \times \mathrm{W}) \\
& =5 \times 2.4 \times(10+15) /(10 \times 15) \\
& =12 \times 25 / 150 \\
& =2
\end{aligned}
$$

Applications of Compact
 Fluorescent Lights

- Task lights
- Downlights
- Wallwashers
- Outdoor fixtures - even in low temperatures
- Many kinds of fixtures available
- Exit lights
- Can be dimmed - so use in conference rooms
- Can be used in refrigerators and freezers

Three Major Areas for Lighting Improvement

Much of the cost savings from new retrofit lighting can be achieved in three major areas:

1. Replace incandescent lamps with fluorescent, or compact fluorescent lamps (CFLs)
2. Upgrade fluorescent fixtures with improved components
3. Install lighting controls to minimize energy costs

Heritage Oak ICLS System (0.8 watts / square foot)

New Lighting Technology - Induction lamps

- Long life -- 100,000 hours for lamp \& ballast
- Phillips QL lamps in 55W, 85 W and 165 W
- New application with reflector to replace metal halides as sign lights for road and commercial signs. Last four times as long

- Smaller induction lamps are now available
- New sizes are 12, 23 and 40 W
- However, these smaller lamps are only rated at 30,000 hours life; and efficacies are $60-70 \mathrm{~L} / \mathrm{W}$.
- May be better choices than CFLs in some cases.
- Larger induction lamps $70-150 \mathrm{~W}$ are becoming quite a bit cheaper now.

New Induction Lamps 2009

- OSRAM/Sylvania is the other maker of long life induction lamps
- Icetron in $70 \mathrm{~W}, 100 \mathrm{~W}$ and 150 W sizes
- Also 100,000 hours
- Properties about same as QL lamp
- Efficacy around 80 L/W (150 W ICE)
- CRI 80
- Instant start, and re-start
- Operate in hot and cold environments

LED Lighting

- 80\% of all new exit lights are LED lights
- But, there are some other interesting applications
- Traffic Signals

- Green 30 cm ball	140 W to 13 W LED
- Red 30 cm ball	140 W to 11 W LED
- Life	1 year to 7
	years for LED - Cost$\$ 3$ to $\$ 75$ for LED

- Commercial Advertising Signs (Neon)
- Neon 15 mm tube $\quad 9 \mathrm{~W} /$ metre
- LED 15 mm replacement $\quad 3.1 \mathrm{~W} /$ metre

Parking Lot Example: "white" light appears brighter to eye!

Item	HPS	LED
Total System Wattage	300 W	141 W
Average Delivered Lumens per fixture (photopic)	19,000	8,040
Average Footcandles (photopic)	1.96	1.01
Average Delivered Lumens (scotopic)	11,780	17,206
Average Footcandles (scotopic)	1.22	2.16

Photopic vision is how the eye perceives objects and colors under bright light. Conversely, scotopic vision is how the eye perceives objects and colors under low-light conditions, such as a parking lot at night. The above measurements show that LED lights provide more perceived light at night while using much less energy.

Compare Lighting Power Density to ASHRAE/IES 90.1 VALUES					
- Example Whole Building Lighting Power Densities (W/ft2)					
		19891	1999/2001	$\underline{\text { 2004/2007 }}$	$\underline{2010}$
-	Offices	1.63	1.30	1.00	0.90
-	Education	1.79	1.50	1.20	0.99
-	Retail	2.36	1.90	1.50	1.40
-	Warehouse	0.53	1.20	0.80	0.66
		Lighting L-44			

Typical Lighting Operation

Lighting Control Technologies

- On/off snap switch, timers and control systems
- Solid-state dimmers
- Dimming electronic ballasts
- Occupancy sensors
- Daylighting level sensors
- Daylight harvesting systems
- Window treatment controls and electrochromic glass
- Facility-wide lighting dimmers for demand response
- Digital lighting control systems with control busses
- Individual occupant lighting control

ENERGY SAVINGS POTENTIAL		
WITH OCCUPANCY SENSORS		
Application	Energy Savings	
Offices (Private)	$25-50 \%$	
Offices (Open Spaces)	$20-25 \%$	
Rest Rooms	$30-75 \%$	
Corridors	$30-40 \%$	
Storage Areas	$45-65 \%$	
Meeting Rooms	$45-65 \%$	
Conference Rooms	$45-65 \%$	
Warehouses	$50-75 \%$	

CEM Exam Review Questions
The efficacy of a light source refers to the color rendering index of the lamp.
A) True
B) False
2. Increasing the coefficient of utilization of fixtures in a room will in many instances increase the number of lamps required.
A) True
B) False
3. Which HID lamp has the highest efficacy - for the same wattage?
A) Mercury vapor
B) Metal halide
C) High pressure sodium

010

5.A 25,000 square metre high bay facility is presently lit with 800 twin 400 watt mercury vapor fixtures (455 watts per lamp including ballast). What are the annual savings of replacing the existing lighting system with 800 single 400-watt high-pressure sodium fixtures (465 watts per lamp Including ballast)? Assume 8000 hours operation per year, an energy cost of $\$ 0.05$ per kWh , and ${ }^{\text {g }}$ a demand cost of $\$ 6.00$ per kW -month.

Solution

Solution

$\Delta \mathrm{kW}=(800$ fixtures $)(.455 \mathrm{~kW} / \mathrm{lamp})(2$ lamps $)-$ $(800$ fixtures $)(.465 \mathrm{~kW} /$ fixture $)=356 \mathrm{~kW}$

Demand $\$$ savings $=(356 \mathrm{~kW})(\$ 6 / \mathrm{kW}-\mathrm{mo})(12 \mathrm{mo} / \mathrm{yr})=$ \$25,632/yr

Energy \$ savings = $(356 \mathrm{~kW})(8000 \mathrm{hrs} / \mathrm{yr}))(\$ 0.05 / \mathrm{kWh})$

$$
=\$ 142,400 / \mathrm{yr}
$$

Total $\$$ savings $=(\$ 25,632+\$ 142,400) / \mathrm{yr}=\$ 168,032 / \mathrm{yr}$
Cost $=(800$ fixtures $)(\$ 400 /$ fixture $)=\$ 320,000$??

UPGRADING FLUORESCENT FIXTURES
- Improved fluorescent lamps
T-8, T-10, T-12 Tri-phosphor lamps
New third generation T-5 and T-8 lamps
New Super T- 8 lamps
New induction lamps
- Electronic ballasts
Standard non-dimmable ballasts
Consider dimming ballasts
New programmable ballasts for long-life lamps
• Reflectors and new reflector fixtures - up/down
fixtures
PR

[^0]
FLUORESCENT RETROFITS

Existing System: T12 lamps with magnetic ballasts
Retrofit Alternatives:

1. T12 low wattage lamps (34W) - replace lamps only

- Less light, less energy consumption

2. T8 (32W) - replace lamps and ballasts

- Same light, less energy consumption, better color rendering, less lamp flicker, less ballast hum
- Can operate 4 lamps per ballast
- Can be tandem wired
- Electronic ballasts can be parallel wired

OR

Lighting Quality Measures

- Visual comfort probability (VCP) indicates the percent of people who are comfortable with the glare (brightness) from a fixture
- Spacing criteria (SC) refers to the maximum recommended distance between fixtures to ensure uniformity
- Color rendering index (CRI) indicates the color appearance of an object under a source as compared to a reference source

COP

FUNDAMENTAL LAW OF ILLUMINATION or Inverse Square Law

ExAMPLE
In a high bay facility, the lights are mounted on the ceiling which is 13 metres above the floor. The lighting level on the floor is 500 Lux. No use is made of the space between 7 metres and 13 metres above the floor.
where
In a theoretical sense - that is, using the fundamental law of illumination - what would be the light level in Lux directly below a lamp if the lights were dropped to 7 metres?

$$
\text { Lux }=500 \times\left(13^{2} / 7^{2}\right)=1725 \operatorname{Lux}
$$

One Lux is equal to one lumen per square metre) (One footcandle is equal to one lumen per square foot)

$$
\mathrm{E}=\frac{\mathrm{I}}{\mathrm{~d}^{2}}
$$

$\mathrm{E}=$ Illuminance in Lux
$\mathrm{I}=$ Luminous intensity in lumens
$d=$ Distance from light source to surface area of

Calculation for T-8 Example

Demand savings
$(360$ fixtures) (. $188-.112) \mathrm{kW} /$ fixture $=27.4 \mathrm{~kW}$

Total \$ savings
$(27.4 \mathrm{~kW})[(\$ 4 / \mathrm{kW}-\mathrm{mo})(12 \mathrm{mo} / \mathrm{yr})+(3640 \mathrm{hrs} / \mathrm{yr} \mathrm{x}$ $\$ 0.08 / \mathrm{kWh})]=\$ 9290 / \mathrm{yr}$

FLUORESCENT LAMP LIFE
AT VARIOUS BURN CYCLES
Lamp $\mathbf{3}$ $\mathbf{6}$ $\mathbf{1 0}$ $\mathbf{1 2}$ $\mathbf{1 8}$ $\mathbf{2 4}$ 40-w T12 pre-heat 15,000 17,500 21,250 22,500 25,000 28,125 $40-w ~ T 12$ rapid start 20,000 24,420 27,750 28,860 31,600 37,700 32-w T8 instant start 15,000 17,500 21,250 22,500 25,000 28,125 32-w T8 rapid start 20,000 24,420 27,750 28,860 31,600 37,700
Source: NALMCO Section L-65

Lighting-RELATED HVAC Energy

- How much lighting energy becomes a load on the

How much lighting energy becomes a load on the HVAC system?

- How much heat is generated by lighting?
- Where does lighting heat go?
- How does it affect the energy consumption of the HVAC system?

Lighting-ReLated HVAC Energy

- Lighting-Related HVAC Energy (kWh) = Direct Lighting Energy (kWh)
x \% of year HVAC System Operates
x \% of light heat impacting HVAC
load
/ COP of HVAC system

Lighting-ReLated HVAC Energy EXAMPLE

- Lighting-Related HVAC Energy (kWh)	Example
$=$ Direct Lighting Energy (kWh)	1000 kWh
$\mathrm{x} \%$ of year HVAC System Operates	0.5
$\mathrm{x} \%$ of light heat impacting HVAC load	0.9
/ COP of HVAC system	3.0
$1000 \times(0.5 \times 0.9 / 3.0)=1000 \times 0.15=150 \mathrm{kWh}$	

Light Loss Factors (LLF)

- Non-recoverable
- Luminaire Ambient Temperature
- Voltage to Luminaire
- Luminaire Surface Depreciation
- Recoverable
- Lamp Burnout Factor (LBO)
- Lamp Lumen Depreciation (LLD)
- Luminaire Dirt Depreciation (LDD)
- Room Surface Dirt Depreciation (RSDD)

QP

Lighting System Life Cycle Costs

\author{

- Initial Costs
}
- Equipment
- Installation
- Wiring
- HVAC
- Energy Costs
- Maintenance Costs

LLD	T12 Spot	T12 Group	T8 Group
	0.82	0.78	0.93
	1.00	1.00	1.00
LDD	0.65	0.80	0.80
Total LLF		0.53	0.62

Source: EPA Green Lights
Total Light Loss Factor (LLF) Examples

QRe

Lighting System Life Cycle Costs

- Initial Costs
- Direct Lighting Costs
- Lighting-Related

HVAC (Indirect) Costs

- Maintenance Costs

QPO

- Energy Use (kWh) =

Lighting Power (kW)
x Operating Time (hrs)

Direct Lighting Energy Costs

- Energy Cost Savings =

Actual Avoided Costs
(based on rate schedule)

QPR

Benefits of Group ReLamping

> - Lower labor cost
> - More light
> - Fewer un-replaced burnouts
> - Less lamp stocking
> - Fewer work interruptions

Calculating Group Relamping
 Interval

Given:
1000 each 3-lamp fixtures
Annual fixture operation $=4000 \mathrm{hrs}$
Average rated lamp life $=25,000 \mathrm{hrs}$
Group replace lamps at 70% of rated life
Calculate group relamping interval:
$\mathrm{GRI}=25,000 \times 0.7 / 4000$
$=17,500 / 4000$
$=4.375$ years
$=52.5$ months

Group Relamping Example					
	Spot Relamping (on burn-out)		Group Relamping (@ 70\% of ratedlife)		\%
Relamp cycle	20,000	hours	14,000	hours	$\stackrel{\square}{\square}$
Average relamps	525	relamps/yr	750	relamps/yr	¢
Average material cost	\$1,391	/year	\$1,988	/year	
Average labor cost	\$3,150	/year	\$1,125	/year	
Average disposal cost	\$263	/year	\$375	/year	
AVG. MAINT. BUDGET	\$4,804	/year	\$3,488	/year	
Assumptions:					
Material	\$2.65	/lamp	\$2.65	/lamp	
Labor (relamp \& clean)	\$6.00	/lamp	\$1.50	/lamp	
Disposal (recycle)	\$0.50	/lamp	\$0.50	/lamp	
Operation	3,500	hours/yr	3,500	hours/yr	
Fixtures	1,000	lensed troffers	1,000	lensed troffers	
Lamps/fixture	3	F32T8		F32T8	

Lighting Maintenance Action Checklist

- Group relamp to reduce lumen depreciation and maintenance costs
- Clean fixtures at the time of relamping, more often in dirty locations
- Write a lighting maintenance policy
- Design your lighting projects to incorporate effective maintenance
- Get help when needed from lighting management companies, consultants, distributors, manufacturers, etc.

Source: EPA Energy Star / Greenlights

Assumptions for Examples

Average energy cost: $\$ 0.07 / \mathrm{kWh}$

Four lamps in a fixtue
Annual fixture operation: 3500 hrs
Lamp life: $28,860 \mathrm{hrs}$

- Labor to replace lamps: $\$ 6 / \mathrm{lamp}$

System life: 15 years
No inflation or time value of money

EXAMPLE 1 -
 Annual Operating Cost

EXAMPLE 1 -
 Annual Operating Cost

Given: Case A
Fixture Power: 144 W
Lamp Cost: $\$ 1.50$ each

Case B
Fixture Power: 101 W
Lamp Cost: $\$ 3.00$ each
Given: Case A
Fixture Power: 144 W
Lamp Cost: $\$ 1.50$ each

Case B
Fixture Power: 101 W
Lamp Cost: \$3.00 each

QQP

EXAMPLE 1

Find: Annual Energy Cost (AEC) Annual Material (lamps) Cost (AMC)
Annual Labor Cost (ALC)
Total Annual Operating Cost (AOC)

Example 1A

Solution: AEC(A) $=0.144 \mathrm{~kW} \times 3500 \mathrm{hrs} / \mathrm{yr} \times \$ 0.07 / \mathrm{kWh}$ $=\$ 35.28 / \mathrm{yr}$
$\mathrm{AMC}(\mathrm{A})=4$ lamps $\mathrm{x} \quad 3500 \mathrm{hrs} / \mathrm{yr} \mathrm{x}$
\$1.50/lamp
$28860 \mathrm{hrs} / \mathrm{lamp}$
$=0.485$ lamps $/ \mathrm{yr} \times \$ 1.50 / \mathrm{lamp}=\$ 0.73 / \mathrm{yr}$
$\operatorname{ALC}(\mathrm{A})=0.485 \mathrm{lamps} / \mathrm{yr} \times \$ 6 / \mathrm{lamp}=\$ 2.91 / \mathrm{yr}$
$\mathrm{AOC}(\mathrm{A})=\mathrm{AEC}(\mathrm{A})+\mathrm{AMC}(\mathrm{A})+\operatorname{ALC}(\mathrm{A})$
$=\$ 35.28+\$ 0.73+\$ 2.91$
$=\$ 38.92 / \mathrm{yr}$
QPQ

EXAMPLE 1B

```
Solution: AEC(B)=0.101 kW x 3500 hrs/yr x $0.07/kWh
    = $24.74/yr
    AMC(B) = 4 lamps x 3500 hrs/yr_x
        28860 hrs/lamp
            = 0.485 lamps/yr x $3.00/lamp = $1.46/yr
    ALC(B) = 0.485 lamps/yr x $6/lamp = $2.91/yr
    AOC(B) = AEC(A) + AMC(A) + ALC(A)
        =$24.74 + $1.46 + $2.91
        = $29.11/yr
\$3.00/lamp \(28860 \mathrm{hrs} / \mathrm{lamp}\)
\(=0.485 \mathrm{lamps} / \mathrm{yr} \times \$ 3.00 / \mathrm{lamp}=\$ 1.46 / \mathrm{yr}\)
\(\mathrm{ALC}(\mathrm{B})=0.485 \mathrm{lamps} / \mathrm{yr} \times \$ 6 / \mathrm{lamp}=\$ 2.91 / \mathrm{yr}\)
\(\mathrm{AOC}(\mathrm{B})=\mathrm{AEC}(\mathrm{A})+\mathrm{AMC}(\mathrm{A})+\mathrm{ALC}(\mathrm{A})\) \(=\$ 29.11 / \mathrm{yr}\)
```


Example 2 - Life Cycle Cost

Given: Initial Cost(A): $\$ 50$
Initial Cost(B): \$100
Discount Rate: 5\%

Find: Life Cycle Cost (LCC)

EXAMPLE 2

```
Solution: LCC = IC + [P/A,5%,15] (AEC + AMC + ALC)
LCC(A) = $50 + 10.380 ($35.28 + $0.73 + $2.91)
    = $50 + $366.21 + $7.58 + $30.21
    = $454.00
LCC(B) = $100 + 10.380 ($24.74 + $1.46 + $2.91)
    = $100 + $256.80 + $15.16 + $30.21
    = $402.17
```


[^0]: 3. T10 (42W) - replace lamps only

 - More light, same energy consumption

 4. T10 (42W) - replace lamps and ballasts

 - Much more light, same energy consumption, same benefits as T8's

 5. T5 (28W) - replace lamps and ballasts

 - Same light, less energy consumption than T8's

 6. New 28 W and 30W T8's now available

 Super T8s with 3100 lumens (32W)
 7. New 25,000 and 30,000 hour life lamps available, with use of programmable start ballasts matched to lamps

