

SESSION OBJECTIVES

- Discuss concepts and characteristics of energyeffective lighting design
- Outline principles and practices of good lighting maintenance
- Identify typical lighting energy conservation opportunities
- Demonstrate lighting economics calculations and relationships
- Work example lighting calculations

RR

PP

PRINCIPLES OF EFFICIENT LIGHTING DESIGN Meet target light levels Efficiently produce light Efficiently deliver light Balance efficiency with aesthetics, lighting quality, visual comfort Automatically control lighting operation

QUANTITY OF ILLUMINATION

TYPES OF LIGHT SOURCES Incandescent Low Pressure Sodium Tungsten Halogen Induction Mercury Vapor LED Fluorescent Metal Halide High Pressure Sodium Soccel

WHAT DOES A BALLAST DO? A ballast does three things: Conditions the lamp to start Applies a high voltage spike to start the gas discharge process Applies a current limiter to reduce the lamp current to a safe operating level Ballast factor Normal light output (0.85-0.95) Can specify reduced or increased light output in electronic ballasts with proportional reduction or increase in power

Category	Туре	Overall Iuminous efficacy (Im/W)	L LOUR COUDO
Combustion	candle	0.3 🕅	LIGHT SOURC
	gas mante	2 17	Efficacy
ncandescent	5 W tungsten incandescent (120 V)	5	LIFFICACI
	40 W tungsten incandescent (120 V)	12.6 🕅	
	100 W tungsten incandescent (220 V)	13.8 🕅	
	100 W tungsten glass halogen (220 V)	16.7 [10]	
	100 W tungsten incandescent (120 V)	17.5 🕅	
	2.6 W tungsten glass halogen (5.2 V)	19.2 [11]	
	quartz halogen (12-24 V)	24	
	photographic and projection lamps	35 [17]	
Fluorescent	9-26 W compact fluorescent	60-72 ^{[13][14]}	
	T12 tube with magnetic ballast	60 [19]	
	T5 tube	70-100[16]	
	T8 tube with electronic ballast	80-100 [15]	
Light-emitting diode	white LED	10-161 [17]18[19]	
Arc lamp	xenon arc lamp	30-50 POP1	
	mercury-xenon arc lamp	50-55 [20]	
Gas discharge	1400 W sulfur lamp	100	
	metal halide lamp	65-115 [22]	
	high pressure sodium lamp	150 [23]	
	low pressure sodium lamp	183-200 [23][24]	

Source: IESNA		
TYPE OF ACTIVITY	RANGE OF	
Public spaces with dark surroundings	2-3-5 fc	
Simple orientation for short temporary visits (typical hallway)	5-7%-10 fc	
Working spaces where visual tasks are only occasionally performed	10-15-20 fc	
Ambient lighting for computer use	20-25-30 fc	
Performance of visual tasks		
High contrast or large size (typical office)	20-30-50 fc	
Medium contrast or small size	50-75-100 fc	
Low contrast or very small size	100-150-200 fc	
Low contrast and very small size over a prolonged period	200-300-500 fc	
Performance of very prolonged and exacting visual tasks	500-750-1000 fc	
Performance of very special visual tasks of extremely low contrast and small size	1000-1500-2000 fc	

PHOTOMETRIC CHART

Lumens: 50,000 Mounting Surface/Pendant			Zonal Cavity Method Effective Floor Cavity Reflectance 0.20								
	RC		80			70		1	50	3	30
	RW	70	50	30	70	50	30	50	30	50	30
	1	94	91	89	91	88	86	83	81	78	77
	2	88	84	80	86	81	78	77	74	73	71
	3	83	77	72	80	75	70	71	67	67	65
~	4	78	71	65	75	69	64	66	61	63	59
RCR	5	73	65	59	70	63	58	60	56	58	54
	6	68	58	52	66	58	52	55	51	53	49
	7	63	54	48	61	53	47	51	46	49	44
	8	59	49	43	57	48	43	46	41	45	40
	9	55	45	39	53	44	38	42	37	41	36
	10	51	41	35	49	40	35	39	34	37	33

POTENTIAL LIGHTING ECMS

- Fluorescent Upgrades
- Delamping
- Incandescent Upgrades
- HID Upgrades
- Controls Upgrades
- Daylight compensation

RR

Section L - 29

THREE MAJOR AREAS FOR LIGHTING IMPROVEMENT

Much of the cost savings from new retrofit

- lighting can be achieved in three major areas: 1. Replace incandescent lamps with fluorescent, or compact
 - fluorescent lamps (CFLs)
 - 2. Upgrade fluorescent fixtures with improved components
 - 3. Install lighting controls to minimize energy costs

nee

Section L - 3]

Applications of Compact Fluorescent Lights

- Task lights
- Downlights
- Wallwashers
- Outdoor fixtures even in low temperatures
- Many kinds of fixtures available
- Exit lights
- Can be dimmed so use in conference rooms
- Can be used in refrigerators and freezers

Heritage Oak Control Classroom (New Construction at 1.75 watts / sq foot)

Heritage Oak ICLS System (0.8 watts / square foot)

- OSRAM/Sylvania is the other maker of long life induction lamps
- Icetron in 70W, 100W and 150W sizes
- Also 100,000 hours
- ${\color{black}\circ}$ Properties about same as QL lamp
 - Efficacy around 80 L/W (150 W ICE)
 - CRI 80
 - Instant start, and re-start
 - Operate in hot and cold environments

Parking Lot Example: "white" light appears brighter to eye!

Item	HPS	LED
Total System Wattage	300 W	141 W
Average Delivered Lumens per fixture (photopic)	19,000	8,040
Average Footcandles (photopic)	1.96	1.01
Average Delivered Lumens (scotopic)	11,780	17,206
Average Footcandles (scotopic)	1.22	2.16

Photopic vision is how the eye perceives objects and colors under bright light. Conversely, scotopic vision is how the eye perceives objects and colors under low-light conditions, such as a parking lot at night. The above measurements show that LED lights provide more perceived light at night while using much less energy.

T5ł	HO and High E	Bays	
NO. 16.1 (0) (0) (0) (0) (0)	ligh Bay & Fluores it's not just for HI		Section L - 42
	Lamp and B	allast *	L - 42
Lamp	Maintained Light	Wattage	
4 - T5/HO Lamps	19,000 Lumens	242 watts	
1 - MVR250/U	13,500	293	
1 - MVR250/Pulse	17,000	288	
6 - T5/HO Lamps	28,500 Lumens	363 watts	
1 - MVR400/U	23,500	458	
1 - MVR400/Pulse	33,000	456	
* (Impact of I	Fixture Design on Performance	NOT included)	
AND: Insta	nt on, dimmable, choice no color shift	of colors,	
CCCC.			

COMPARE LIGHTING POWER DENSITY TO ASHRAE/IES • Example Whole Building Lighting Power Densities (W/ft2) <u>1989</u> <u>1999/2001</u> <u>2004/2007</u> 2010 1.30 1.00 0.90 1.501.200.99 1.90 1.501.401.200.80 0.66

Lighting L - 44

Building Type	Annual Hours of Operation
Assembly	2760
Avg. Non-Residential	3500
Education	2605
Food Sales	5200
Food Service	4580
Health Care	7630
Lodging	8025
Mercantile	3325
Office	2730
Warehouse	3295

LIGHTING CONTROL TECHNOLOGIES On/off snap switch, timers and control systems Solid-state dimmers Dimming electronic ballasts Occupancy sensors Daylighting level sensors Daylight harvesting systems Window treatment controls and electrochromic glass Facility-wide lighting dimmers for demand response Digital lighting control systems with control busses Individual occupant lighting control

RR

ENERGY SAVINGS POTENTIAL WITH OCCUPANCY SENSORS

Application	Energy Savings	Sect
Offices (Private)	25-50%	Section L -
Offices (Open Spaces)	20-25%	47
Rest Rooms	30-75%	
Corridors	30-40%	
Storage Areas	45-65%	
Meeting Rooms	45-65%	
Conference Rooms	45-65%	
Warehouses	50-75%	
RE		

15

T-8 EXAMPLE

Example: T-8 Fluorescent System Retrofit

Old System: Office lighting crossing of 360 fluorescent 2x4' fixtures; operating hours:14 hrs/day, 5 days/week (3640 hrsy); each fixture draws 188 watts with 4 standard cool white 40-watt fluorescent lamps (@ \$2) and 2 standard magnetic ballasts

New System: Each fixture now draws 112 watts with 4 tri-phosphor F40T8 32watt fluorescent lamps and 1 electronic T-8 instant-start mode ballast*

He instant-start mode ballast: Results: 40% energy savings; 2% reduction in light level; improved color rendering; 50% fewer ballasts to replace; 25% less lamp life using instant-start mode ballasts

Savings: Demand savings: 27.4 kW; energy savings: 99,600 kWhVyr; dollar savings @ \$4/kW/mo and \$0.08/kWh:

sting \$9,280/yr; relamping savings: materials <\$612/yr>; labor <\$437/yr>

Net Savings: \$8,231/yr Cost: Material: 1440 F32T8 fluorescent lamps @ \$3,25; 360 T-8 instant-start mode electronic ballast @ \$31; labor: 360 installations @ \$20 Section L

- 63

Total Project Cost: \$23,040 Payback: \$23,040/\$8,231/yr = 2.8 yrs (with 10% a/c factor, payback becomes 2.5 yrs)

*Building codes in some states do not allow all four lamps to be operated by a single ballast. In such cases, two adjacent fixtures can share two ballasts that are wired to leave the two-level switching intact. Assume an additional \$15 wiring cost per fixture. The payback period increases to 3.5 years.

Lamp	3	6	10	12	18	24
40-w T12 pre-heat	15,000	17,500	21,250	22,500	25,000	28,125
40-w T12 rapid start	20,000	24,420	27,750	28,860	31,600	37,700
32-w T8 instant start	15,000	17,500	21,250	22,500	25,000	28,125
32-w T8 rapid start	20,000	24,420	27,750	28,860	31,600	37,700

RR

- How much lighting energy becomes a load on the HVAC system?
 - How much heat is generated by lighting?
 - Where does lighting heat go?
 - How does it affect the energy consumption of the HVAC system?

Section L - 67

LIGHTING-RELATED HVAC ENERGY • Lighting-Related HVAC Energy (kWh) = ė Direct Lighting Energy (kWh) x % of year HVAC System Operates x % of light heat impacting HVAC load COP of HVAC system / PP

LIGHTING-RELATED HVAC ENERGY EXAMPLE

Location	Cooling Loads	Heating Loads	•
		Large Building	•
Tampa, FL Phoenix, AZ	-33%	0%	0% 0%
New Orleans, LA	-30% -29%	0% 1%	0% 2%
Los Angeles, CA	-29%	1%	2%
Knoxville, TN	-23%	4%	11%
Philadelphia, PA	-21%	4%	18%
Denver, CO	-17%	7%	22%
San Francisco, CA	-16%	1%	22 %
Detroit. MI	-14%	8%	23%
Providence, RI	-13%	7%	23%
Seattle, WA	-7%	4%	13%

19

Lighting System Life Cycle Costs

à

- Initial Costs
- Energy Costs

 Direct Lighting Costs
 Lighting-Related
 HVAC (Indirect) Costs
- Maintenance Costs

nee

Direct Lighting Energy Costs Energy Use (kWh) = Lighting Power (kW) x Operating Time (hrs) Energy Cost Savings = Actual Avoided Costs (based on rate schedule)

CALCULATING ANNUAL LAMP REPLACEMENTS

• Given:

RR

- 1000 each 3-lamp fixtures
- Annual fixture operation = 4000 hrs
- Average rated lamp life = 25,000 hrs
- Calculate average annual lamp replacements: ALR = (1000 x 3) x 4,000 / 25,000 = 3000 x 0.16 = 480

CALCULATING GROUP RELAMPING INTERVAL

LIGHTING MAINTENANCE ACTION CHECKLIST

- Group relamp to reduce lumen depreciation and maintenance costs
- Clean fixtures at the time of relamping, more often in dirty locations
- Write a lighting maintenance policy
- Design your lighting projects to incorporate effective maintenance

ASSUMPTIONS FOR EXAMPLES Average energy cost: \$0.07/kWh Four lamps in a fixtue

- · Annual fixture operation: 3500 hrs
- Lamp life: 28,860 hrs
- · Labor to replace lamps: \$6/lamp
- System life: 15 years
- No inflation or time value of money

Cee

-83

- 22

EXAMPLE 1 – ANNUAL OPERATING COST

Given: Case A Fixture Power: 144 W Lamp Cost: \$1.50 each

> Case B Fixture Power: 101 W Lamp Cost: \$3.00 each

nee

-85

