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1. Introduction

The recent progress in deep learning helped to signifi-
cantly improve such computer vision tasks as object detec-
tion [15, 14], as well as semantic and instance segmenta-
tion [7, 9]. Whereas much of the effort in scientific com-
munity was focused on the 2D scene understanding, an ac-
curate 3D perception is indispensable for remote sensing
in such applications as robotic object manipulation, aug-
mented reality, and autonomous vehicles. In particular, ma-
jority of the modern autonomous driving systems heavily
rely on LiDAR sensors for object tracking and collision
avoidance. One of the major challenges in developing a
LiDAR-based 3D object detection system stems from the
fact that the point cloud data is irregular, unordered, and
usually sparse, which makes direct application of typical
convolution-based methods difficult [11]. Thus most of the
proposed methods either first voxelize the point clouds [20],
or project them into a bird’s eye view [19]. These ap-
proaches, however, can be very computationally expensive,
or suffer from information loss during quantization.

In this project we analyze VoteNet [10] – the recently
proposed end-to-end deep learning network that leverages
the Hough voting algorithm [8] to detect 3D objects directly
from the raw point cloud data. The model achieved state-
of-the-art results in 3D object detection tasks on two large
datasets with interior 3D scans, ScanNet [5] and SUN RGB-
D [18], relying solely of point cloud data. The VoteNet pa-
per is also a Best Paper Award Nominee in ICCV 2019 [1].

To our best knowledge, VoteNet has not yet been tested
on any outdoor point cloud data. To this end, we first test
and then adapt the VoteNet model to KITTI [6] dataset of
outdoor LiDAR point cloud data.

2. VoteNet Architecture

The VoteNet architecture, shown in Fig. 1, can be de-
composed into two subnetworks: the Vote Proposal Net-
work (VPN) that consumes the raw point cloud and pro-
duces the virtual vote points; and the Object Proposal and
Classification Network (OPCN) that operates on the vote
points to propose and classify objects in a 3D scene.

2.1. Vote Proposal Network

The raw point cloud comprised ofN points is input to the
VPN. Each point is generally characterized by 3 spatial co-
ordinates in Euclidean space and C0 optional features (e.g.
height over ground plane, RGB-triplet, LiDAR reflectance).
The VPN network learns the semantic signature of the cloud
at different contextual scales and subsamples a number of
seed points enriched with the extracted deep features. These
points are then used to suggest a set of M virtual points
with 3 spatial coordinates and CL learned features that lie
much closer to the centroids of objects to be detected. Then
the virtual vote points are grouped and aggregated into the
corresponding cluster signature vectors, which are used to
generate suggestions for the 3D bounding boxes along with
the class labels.

PointNet layer. The PointNet layer, first introduced in
Ref. [12], takes an unordered point set P = {pi}Ni=1 with
pi = [xi; fi] ∈ R(3+Cl) as an input, where xi being point
coordinates in Euclidean space with fi any additional se-
mantic features, and learns a symmetric set function g of
the following form:

g({pi}) = γ ◦MAX
pi∈P

({h(pi)}) (1)

that maps P to a single vector, where h : RCl → RDl and
γ : RDl → RCl+1 are continuous functions, implemented
with multi-layer perceptron (MLP) networks, and MAX is a
channel-wise max-pooling operator that collapses N input
vectors into a single one, i.e. RDl × · · · × RDl → RDl .
Effectively, the PointNet layer learns to extract a subset of
the most informative keypoints and encode their semantic
information as an aggregated cloud signature feature vector.

The set-abstraction module. Since a single PointNet
layer aggregates information of the whole point set, it can
not capture local spatial structures induced by the metric
space [13]. In order to encode the fine geometric patterns,
the PointNet layers are recursively applied on overlapping
local regions of progressively larger scales that are parti-
tioned by a distance metric. The idea is similar to the 2D
CNN networks, that are designed to learn the hierarchical
representations of inputs at different resolution scales.
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Figure 1. Overview of the VoteNet architecture. Taken from Ref. [10].

In particular, the hierarchical structure is implemented
by repetitive application of three steps: sampling, grouping,
and feature aggregation with PointNet layer. These three
steps together compose a set-abstraction module. The sam-
pling step relies on farthest point sampling (FPS) algorithm
to iteratively choose a subset ofK points that effectively de-
fine the spatial coordinates of neighborhood centroids. The
grouping step assigns to each centroid a maximum number
of N ′ closest points that lie within a neighborhood sphere
defined by Euclidean radius r, so that there are a total of K
local groups each having at most N ′ points with (3 + Cl)
features. Next, the PointNet layer is applied to each point
group yielding a total of K new abstracted points each with
a (3 + Cl+1) aggregated feature vector.

The feature extraction network. Starting with the raw
point cloud (PC) as an input, several set-abstraction (SA)
modules are stacked in a hierarchical fashion with sequen-
tially increasing contextual scale [13]. Similar to a 2D CNN
segmentation network structure [16, 3], features from lower
layers are upsampled and concatenated with skip connec-
tions from higher layers in feature propagation (FP) layers
in order to pass both global and local semantic information
to the total of M output points each with it own (3 + CL)
feature vector.

The Hough voting module. Having extracted a subset
S = {si}Mi=1 comprised of points enhanced with deep se-
mantic features that take into account local geometric struc-
tures, the subset S is passed into a shared deep Hough vot-
ing module [10]. Based on each feature vector si, the vot-
ing module, that is implemented as a combination of MLP,
ReLU and batch normalization, generates a feature correc-
tion ∆si, such that vi = si + ∆si. The spatially corrected

vote points vi are no longer confined to object surfaces, but
are generally found to be closer to the centroids of the ob-
jects. The last step is important for generating accurate 3D
bounding box predictions in the subsequent OPCN network,
as a 3D object centroids are otherwise likely to be found in
an empty space far from the scanned surface point.

2.2. Object Proposal and Classification Network

The virtual vote points cluster up near object centroids
thereby effectively concentrating the encoded semantic in-
formation from different surface points of the object in its
geometric center. The vote points are grouped into regional
subsets by their spatial proximity in a similar manner to the
sampling and grouping steps in the set-abstraction module.
In that way, sampling N ′ different vote points with FPS
algorithm determines the spatial coordinates of vote group
centers. Then the vote points that lie inside the Euclidean
spheres with radii r around the established vote group cen-
ters are grouped together in N ′ groups. Finally, each of
the groups are fed into a PointNet layer, having a similar
structure as Eq. (1). This time, however, the γ function

Module (Input) Output Parameters
SA1 (PC) (2048, 3 + 128) 2048, 0.2, 64/64/128
SA2 (SA1) (1024, 3 + 256) 1024, 0.4, 128/128/256
SA3 (SA2) (512, 3 + 256) 512, 0.8, 128/128/256
SA4 (SA3) (256, 3 + 256) 256, 1.2, 128/128/256
FP1 (SA3, SA4) (512, 3 + 256) 256/256
FP2 (SA2, SA3) (1024, 3 + 256) 256/256

Table 1. Architecture of VPN. Parameters are # of clusters K, re-
ceptive field radius r (meters), MLP layer dimensions n1/n2/n3.
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bed table sofa chair toilet desk dresser nightstand bookshelf bathtub
Published [10] 83.0 47.3 64.0 75.3 90.1 22.0 29.8 62.2 28.8 74.4
Ours 84.9 50.8 64.2 75.1 87.0 24.5 28.1 62.2 32.0 78.0

Table 2. Average presision at 0.25 3D-IoU on SUN RGB-D test set. Comparison with results published in Ref. [10].

maps RD → R2+3+2H+4S+T , where the resulting vector
consists of 2 objectness scores, 3 center regression values,
H numbers for heading bins with H corresponding regres-
sion corrections, S values for box size anchors with the 3S
corresponding box size regression corrections, as well as T
values for semantic classification [10].

Finally, the entire VoteNet network is optimized end-to-
end by the multi-task hybrid regression-classification loss
function of the following structure:

L = λ0Lvote + λ1Lobj + λ2Lcls + λ3Lc−reg

+ λ4La−cls + λ5La−reg + λ6Ls−cls + λ7Ls−reg,

where λi are weights of vote, objectness, semantic classifi-
cation, center regression, heading angle class and regres-
sion, size class and regression losses, respectively. See
Ref. [10] for details.

3. Results comparison: SUN RGB-D

The first part of the project involved replicating the orig-
inal VoteNet paper results on the SUN RGB-D dataset,
which is a single-view RGB-D dataset of ∼10k interior
scans with 3D bounding box ground truth (GT) annotations
for 37 object categories. Thanks to authors publicly sharing
their VoteNet source code in PyTorch implementation on
GitHub [2], replicating the published results [10] was rather
uncomplicated. We use the same ∼50%/50% train/test split
and the same model parameters for our benchmark as the
authors of the VoteNet in Ref. [10]. We take 10 object
classes to compare our calculations (see Tab. 2). The param-
eters of the backbone feature extraction network are speci-
fied in Tab. 1. The loss weights are scaled with λ0,3,5,7 =
1.0, λ1 = 0.5, and λ2,4,6 = 0.1. The number or size
templates and classes T = S = 10, the heading angle is
binned equally in H = 12 classes. Training is performed
using Adam optimizer with scheduled learning rate (LR)
and batch norm (BN) momentum policies for 250 epochs
with the mini-batch size of 8, where each sample is ran-
domly subsampled on-the-fly to a total of 20k points that
are then also randomly augmented with uniform rotations
of±5◦ and random uniform scaling of±10%. One training
on a Nvidia K80 GPU took ∼40 hours (training on V100
reduces the training time by a factor of ∼3). Our results
are tabulated in Tab. 2, where they are also compared to the
published values. One can see that we have successfully
managed to reproduce the reported results.

4. Adapting VoteNet to outdoor scenes

Up to now VoteNet has only been tuned and tested
on RGB-D datasets with indoor 3D scenes: ScanNet and
SUN RGB-D. In order to adapt the model to a different
dataset, we have first implemented a custom input pipeline
to optimally preprocess and feed the KITTI point cloud
data into the VoteNet network. We have also partially re-
implemented and adjusted the VoteNet architecture in order
to properly account for the characteristics of the KITTI out-
door point clouds.

4.1. Preprocessing and training scheme

An official KITTI benchmark for 3D object detection [6]
contains 7481 annotated training scenes and 7518 testing
scenes without GT annotations. We utilize the frequently
used train/validation split (e.g. [4, 17]) to divide the anno-
tated part of the dataset into a train split of 3712 scenes and
an validations split of 3769 scenes. Each scene includes a
Velodyne point cloud, an RGB image of front-facing cam-
era, a set of calibration matrices for various plane projec-
tions, and (in case of training scenes) GT bounding box an-
notations and class labels. See Fig. 4 (b) and (c).

As the 3D bounding box GT annotations are available
only in the view field region of the front facing camera,
we first project the 360-degree LiDAR data onto the image
plane and extract the point cloud that lie inside the result-
ing frustum, see Fig. 4 (a). This step reduces the average
number on points per scene from ∼110k to 16,384. For
each scene we randomly subsample 16,384 points, and for
scenes with fewer points, we randomly copy the points up
to a total of 16,384. The scenes are furthermore augmented
on-the-fly with random flips in horizontal plane, random
uniform rotations along up-axis in ±5◦ range, and random
uniform scaling of ±10%. In addition to three Euclidean
coordinates for each point, we also include up to two addi-
tional features: the provided laser reflection intensities, and
a height estimate for each point. The latter is estimated as a
1% percentile of all point positions along the up-axis.

We perform training on three most abundant classes of
the KITTI dataset: car, pedestrian, and cyclist with 14357,
2207, and 734 bounding boxes across all scenes in train
split, respectively. We choose one size template per class,
and 12 bins for the heading angle. We train with a batch
size of 16 and incorporate a scheduled learning policy with
a starting LR of 0.001 and LR-decays by 0.1 at 60, 90, and
120 epochs, as well as an exponential BN momentum de-
cay. We use same loss function as in SUN RGB-D case.
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Module (Input) Output dimensions Clusters K MSG Radii MLP layers
SA1 (PC) (4096, 3 + 96) 2048 0.1, 0.5 16/16/32, 32/32/64
SA2 (SA1) (1024, 3 + 256) 1024 0.5, 1.0 64/64/128, 64/96/128
SA3 (SA2) (512, 3 + 512) 512 1.0, 2.0 128/196/256, 128/196/256
SA4 (SA3) (64, 3 + 512) 256 2.0, 4.0 256/256/512, 256/384/512
FP1 (SA3, SA4) (512, 3 + 512) — — 512/512
FP2 (SA2, SA3) (1024, 3 + 512) — — 512/512

Table 3. Enhanced architecure of VPN with two MSG radii of receptive fields r1,2 (meters), and MLP parameters for each MSG group.

4.2. Network Architecture

Since the VoteNet architecture was previously tuned only
for indoor point cloud data, we adapt the network to the
distinct characteristics of the outdoor LiDAR scenes. For
example, the typical scales of the KITTI scenes are signif-
icantly larger than those of indoor scans, with depth fields
reaching beyond 70 meters along forward-axis. In order to
adequately reflect this in the network architecture, we adapt
the receptive field radii and increase the number of clusters
for feature aggregation. Moreover, the LiDAR point cloud
has strongly varying density and is generally more sparse
than the point clouds produced from the RGB-D imagery.
Point features extracted from sparse regions may generalize
poorly to dense regions, and vice versa. In order to capture
fine details of point cloud and, at the same time, mitigate the
corruption of local patterns due to sampling deficiency in
sparse cloud regions, we enhance the set-abstraction mod-
ules of the backbone network with multi-scale grouping
(MSG) layers, which, as illustrated on Fig. 2, concatenate
features at different scales before feeding them into the fea-
ture aggregation layer. This results in a robust feature learn-
ing under non-uniform sampling density.

Figure 2. Illustration
of multi-scale group-
ing (MSG) layer.

Since the original VoteNet im-
plementation was quite inflexi-
ble with many hard-coded net-
work parameters, we have par-
tially re-implemented the back-
bone feature extractor network
in order to easily configure all
network parameters in a sepa-
rate config-file to allow iterating
rapidly through various network
hyper-parameters. The best found
set of backbone network parame-
ters are specified in Tab. 3, where
four MSG-based SA layers are
used to subsample the inputs to
4096, 1024, 256, and 64 points,
respectively, whereupon the last

two FP layers upsample the points back to 1024 points, each
enhanced with additional 512 deep features. See Tab. 3 for
details. Finally, we also enlarge the receptive field radius of
the vote aggregation layer to 0.7 meters.

5. Results

The evolution of average precision (AP) metrics for dif-
ferent variant of VoteNet architecture evaluated on KITTI
validation split is shown on Fig. 3. All variants were trained
for 150 epochs. The original VoteNet model has essentially
the same network parametrization as used for SUN RGB-
D dataset previously. The tuned VoteNet network has the
model parameters adjusted specifically for the characteris-
tics of KITTI outdoor scenes. Finally, as can be seen on the
figure, the best performance was archived with the tuned
VoteNet network that has been enhanced with MSG layers.

A representative output of the network is visualized in
Fig. 4 (d), where the bounding box and corresponding class
predictions are shown in red. We see that in cases when
objects are relatively close to the LiDAR, we generally get
better results since the number of foreground points is rel-
atively large. The model also manages to predict well the
oriented amodal 3D boxes of partially occluded objects, e.g.
parked cars. The common mode of failure is, however, re-
lated to the distant objects, where the number of foreground
points is substantially smaller (sometimes resulting in less

Figure 3. The average precision (AP) with 3D IoU threshold of
0.25 evaluated on original, tuned, as well as both tuned and en-
hanced with MSG layers VoteNet architectures.
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Figure 4. Visualization of KITTI scenes (validation split) and the corresponding VoteNet results: (1) Velodyne point clouds and their
projections onto the image plane; (2) the subsampled LiDAR point cloud and the annotated 3D bounding boxes (green), labels: V -
car/vehicle, P - person, C - cyclist; (3) the GT bounding boxes projected onto image plane; (4) VoteNet results in form of 3D bounding
boxes and the corresponding class label (red); the seed PC (blue) and the corresponding votes (red) are also shown.

than a few vote points). Furthermore, as seen on Fig. 4 (2-
d), the model sometimes wrongly labels such narrow tall
objects like trees as pedestrian, but gets the cyclist correctly
predicted on the same scene. It also appears challenging for
the model to correctly labels multiple instances of the same
object packed close to each other, e.g. Fig. 4 (1-d).

We also note that vote points, shown as red dots on Fig. 4
(d), do not generally tend to cluster up near centroids of
the objects, as expected. We do observe clustering in some
KITTI scenes (e.g. Fig. 4 (1-d)), but that is not the case in
the majority of cases. This is most likely due to the fact
that, whereas the point clouds extracted from the depth im-
ages (RGB-D) are rather dense, the much more sparse Li-
DAR point cloud data might pose a complication for the
OPCN network, since the signal-to-noise ratio (rate of posi-
tive votes to negative votes) is much lower. So, for example,
the ratio of positive seeds to all seed point is about 0.5%.

The final average precision results are shows in Tab. 4.
We see that tuning the model architecture parameters to the
characteristics of the dataset resulted in a significant boost
to the performance of the model, elevating the evaluation
metrics for car by 10.2 AP, for pedestrian by 16.6 AP,
and cyclist by 13.6 AP points. Another huge improvement
came from enhancing SA module with MSG layers, which
brought a total improvement of 34.2 AP, 19.9 AP, and 20.5
AP for car, pedestrian, and cyclist categories, respectively.
The recall score for the three considered classes are 66.4,

Car Pedestrian Cyclist
Original 21.0 11.3 0.5
Tuned 31.2 27.9 14.1
Tuned + MSG 55.2 31.2 21.0

Table 4. Final AP scores on KITTI validation split, IoU at 0.25.

47.6, and 42.8, respectively. Although that the performance
gain, relative to the original model, is quite substantial, the
overall AP score, if compared to the current state-of-the-art
results of KITTI 3D object detection benchmark, is still rel-
atively modest.

6. Outlook
Despite the shown performance gains brought by im-

proving VoteNet model to optimally capture the character-
istics of LiDAR outdoor point cloud, we have identified
a major issue that still needs to be addressed in order to
achieve results comparable with current state-of-the-art in
the KITTI 3D object detection benchmark. Namely, in or-
der to mitigate the poor signal-to-noise ratio in such large-
scale outdoor scenes as KITTI, one could implement a kind
of point filtering or foreground pre-segmentation step. In
the latter case, a variation of the VoteNet model would be
to predict foreground scores for each point and weight point
features by the predicted scores, thereby weighting the fore-
ground point with larger contributions to the votes.
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