SBA GUIDELINE

ractical work

Learners should do TWO experiments (ONE Chemistry, ONE Physics) for SBA.
Term 3: Boyle's law.
2021 National Recovery ATP: Grade 11 Term 1: PHYSICAL SCIENCES

TERM 1 (45 days)	$\begin{gathered} \text { Week } 1 \\ 27-29 \text { Jan } \\ \text { (3 days) } \end{gathered}$	Week 2 1-5 Feb (5 days)	Week 3 8 - 12 Feb (5 days)	Week 4 15-19 Feb (5 days)	Week 5 22-26 Feb (5 days)	$\begin{gathered} \text { Week } 6 \\ 1-5 \text { March } \\ \text { (} 5 \text { days) } \end{gathered}$	Week 7 8-12 March (5 days)	Week 8 15-19 March (5 days)	Week 9 22-26 March (4 days)	Week 10 29-31 March (3 days)
CAPS Topics	MECHANICS: Vectors in two dimensions (2 hrs)	MECHANICS: Vectors in two dimensions (4 hrs)	MECHANICS: Vectors in two dimensions (2 hrs) MECHANICS: Newton's laws (2 hrs)	MECHANICS: Newton's laws (4 hrs)	MECHANICS: Newton's laws (4 hrs)	MECHANICS: Newton's laws (4 hrs)	MECHANICS: Newton's laws (4 hrs)	 MATERIAL: Atomic combinations (4 hrs)	 MATERIAL: Atomic combinations (3 hrs)	CONTROL TEST (2 hrs)
Topics /Concepts, Skills and Values	- Define a resultant. - Determine the resultant of vectors (maximum four) on a Cartesian plane, using the component method. - Sketch the vertical vector (R_{y}) and the horizontal vector (R_{x}) on a Cartesian plane.	- Calculate the magnitude of the resultant using the theorem of Pythagoras. - Determine the direction of the resultant using simple trigonometric ratios. - Determine the resultant (R) of two vectors graphically using either the tail-to-head or tail-to-tail method (parallelogram method) as well as by calculation (component method) for a maximum of four vectors in both 1-dimension and 2dimensions. - Explain the meaning of a closed vector diagram.	Vectors in two dimensions - Resolve a vector R into its horizontal (R_{x}) and vertical (R_{y}) components using $\mathrm{R}_{\mathrm{x}}=\mathrm{R} \cos \theta$ and $\mathrm{R}_{\mathrm{y}}=\mathrm{R} \sin \theta$ where θ is the angle between r and the x axis. Newton's laws - Define normal force, N . - Define frictional force, f. - Know that a frictional force: - Is proportional to the normal force - Is independent of the area of the surfaces that are in contact with each other.	- Define the static frictional force, f_{s}. - Solve problems using $f_{s}^{\max }=\mu_{s} N$ - Define the kinetic frictional force, f_{k}. - Solve problems using $\mathrm{f}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{N}$ - Draw force diagrams. - Draw free-body diagrams. Resolve a two-dimensional force, e.g. the weight of an object on an inclined plane, into its parallel ($\mathrm{F}_{1 /}$) and perpendicular (F_{\perp}) components. - Determine the resultant/net force of two or more forces. - State Newton's first law of motion. - Define inertia and state that the mass of an object is a quantitative measure of its inertia. - Discuss why it is important to wear seatbelts using Newton's first law of motion.	- State Newton's second law of motion. In symbols: $\mathrm{F}_{\text {net }}=\mathrm{ma}$ - Draw force diagrams and free-body diagrams for objects that are in equilibrium or accelerating. - Apply Newton's second law of motion to a variety of equilibrium and nonequilibrium problems including: - A single object: - Moving in a horizontal plane with or without friction - Moving on an inclined plane with or without friction - Moving in the vertical plane (lifts, rockets, etc.)	- Apply Newton's second law of motion to a variety of equilibrium and nonequilibrium problems including: - Two-body systems (joined by a light inextensible string): - Both on a flat horizontal plane with or without friction - One in a horizontal plane with or without friction, and a second hanging vertically from a string over a frictionless pulley - Both on an inclined plane with or without friction - Both hanging vertically from a string over a frictionless pulley	- State Newton's third law of motion. - Identify Newton III force pairs (actionreaction pairs) and list the properties of the force pairs (action-reaction pairs). - State Newton's law of universal gravitation. - Solve problems using $F=G \frac{m_{1} m_{2}}{d^{2}}$. - Calculate acceleration due to gravity on Earth using $g=\frac{\mathrm{GM}}{\mathrm{r}_{\mathrm{E}}^{2}}$, and on another planet using $g=\frac{G M_{P}}{r_{P}^{2}}$, where M_{p} is the mass of the planet and r_{p} is the radius of the planet. - Explain the difference between the terms weight and mass. - Calculate weight using the $\mathrm{w}=\mathrm{mg}$. - Calculate the weight of an object on other planets with different values of gravitational acceleration. - Explain the term weightlessness	- Define a chemical bond. - Draw Lewis dot diagrams of elements. - Determine the number of valence electrons in an atom. - Explain, in terms of electrostatic forces and in terms of energy, why: - Two H atoms form an H_{2} molecule - He does not form He_{2} - Interpret the graph of potential energy versus the distance between nuclei for two approaching hydrogen atoms. - Define: a covalent bond, a molecule - Draw Lewis diagrams for simple molecules, e.g. H_{2}, $\mathrm{F}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}$, $\mathrm{HF}, \mathrm{OF}_{2}, \mathrm{HOCl}$ and molecules with multiple bonds, e.g. $\mathrm{N}_{2}, \mathrm{O}_{2}$ and HCN . - Discuss molecular shapes of H_{2} (linear) $\mathrm{H}_{2} \mathrm{O}$ (angular), NH_{3} (pyramidal), CO_{2} (linear), CH_{4} (tetrahedral). - Describe rules for bond formation. - Define a bonding pair and a lone pair. - Describe the formation of the dative covalent bond.	- Define electronegativity. - Describe, with an example, a non-polar covalent bond. - Describe, with an example, a polar covalent bond. - Show polarity of bonds using partial charges, e.g. $\mathrm{H}^{\delta^{+}} \mathrm{Cl}^{\mathrm{J}^{-}}$. - Compare the polarity of chemical bonds using a table of electronegativities. - Explain that the character of a bond varies from non-polar covalent $(\triangle \mathrm{EN}=0)$ to polar covalent ($0<\Delta \mathrm{EN}<=1,7$) to ionic ($\Delta \mathrm{EN}>1,7$). - Use difference in electronegativity and molecular shape to explain that polar bonds do not always lead to polar molecules. - Define bond energy and bond length. - Explain the relationship between bond energy and bond length. - Explain the relationship between the strength of a chemical bond and bond length, size of bonded atoms and number of bonds.	ONE PAPER (100 marks) - Vectors in two dimensions - Newton's laws - Atomic combinations

TERM 1 (45 days)		Week 1 27-29 Jan (3 days)	Week 2 1-5 Feb (5 days)	Week 3 8-12 Feb (5 days)	Week 4 15-19 Feb (5 days)	Week 5 22-26 Feb (5 days)	Week 6 1-5 March (5 days)	Week 7 8-12 March (5 days)	Week 8 15-19 March (5 days)	Week 9 22-26 March (4 days)	Week 10 29-31 March (3 days)
CAPS Topics		MECHANICS: Vectors in two dimensions (2 hrs)	MECHANICS: Vectors in two dimensions (4 hrs)	MECHANICS: Vectors in two dimensions (2 hrs) MECHANICS: Newton's laws (2 hrs)	MECHANICS: Newton's laws (4 hrs)	MECHANICS: Newton's laws (4 hrs)	MECHANICS: Newton's laws (4 hrs)	MECHANICS: Newton's laws (4 hrs)	MATTER \& MATERIAL: Atomic combinations (4 hrs)	MATTER \& MATERIAL: Atomic combinations (3 hrs)	CONTROL TEST (2 hrs)
Requisite preknowledge		- Vectors and scalars - Representation of vectors	- Vectors and scalars - Force and unit of force	- Vectors and scalars	- Equations of motion - Force and freebody diagrams - Frictional forces	- Equations of motion - Force and freebody diagrams - Frictional forces	- Equations of motion - Force and free-body diagrams - Gravitational acceleration	- Chemical bonding - Electron configuration - Writing of formulae	- Chemical bonding - Writing of formulae - Valency - Periodic Table	- Chemical bonding - Molecules - Periodic Table	N/A
Resources (other than textbook) to enhance learning		- Apparatus for experiment below - Study guides - Previous question papers - Mindset \& YouTube videos	- Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	- Apparatus for Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Apparatus for experiment below - Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	N/A
	Informal Assessment: Remediation	- Practical: Determine the resultant of three non-linear force vectors - Homework	- Homework - Informal test	- Homework	- Practical: The effect of different surfaces on the maximum static frictional force - Homework	- Homework	- Homework	- Homework - Informal test	- Homework	- Homework - Informal test	N/A
	SBA (Formal)	None	None	None	None	Formal practical: Newton's second law of motion	None	None	None	None	Control test

2021 National Recovery ATP: Grade 11 - Term 2: PHYSICAL SCIENCES

TERM 2 (51 days)	$\begin{gathered} \text { Week } 1 \\ 13-16 \text { April } \\ \text { (4 days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 2 \\ 19-23 \text { April } \\ \text { (5 days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 3 \\ 28 \text { - } 30 \text { April } \\ \text { (3 days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 4 \\ 3-7 \text { May } \\ \text { (5 days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 5 \\ 10 \text {-14 May } \\ \text { (5 days) } \end{gathered}$	$\begin{gathered} \text { Week } 6 \\ 17-21 \text { May } \\ \text { (5 days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 7 \\ 24-28 \text { May } \\ \text { (5 days) } \\ \hline \end{gathered}$	Week 8 31 May - 4 June (5 days)	Week 9 7 - 11 June (5 days)	$\begin{gathered} \text { Week } 10 \\ 14 \text { - } 18 \text { June } \\ \text { (4 days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 11 \\ 21-25 \text { June } \\ \text { (} 5 \text { days) } \\ \hline \end{gathered}$
CAPS Topics	MARCH CONTROL TEST: Discussion (3 hrs)	MATTER \& MATERIAL: Intermolecular forces (4 hrs)	MATTER \& MATERIAL: Intermolecular forces (2 hrs)	CHEMICAL CHANGE: Quantitative aspects of chemical change (4 hrs)	CHEMICAL CHANGE: Quantitative aspects of chemical change (4 hrs)	CHEMICAL CHANGE: Quantitative aspects of chemical change (4 hrs)	CHEMICAL CHANGE: Quantitative aspects of chemical change (4 hrs)	ELECTRICITY \& MAGNETISM: Electrostatics (4 hrs)	ELECTRICITY \& MAGNETISM: Electrostatics (4 hrs)	ELECTRICITY \& MAGNETISM: Electrostatics (3 hrs)	Control Test (2 hrs)
Topics / Concepts, Skills and Values	- Discussion and corrections of March Control Test	- Describe the difference between intermolecular forces and interatomic forces (intramolecular forces) using a diagram of a group of small molecules \& in words. - Name and explain the different intermolecular forces (Van der Waals forces): - Mutually induced dipole forces or London forces: - - Dipole-dipole forces - Dipoleinduced dipole forces: - Hydrogen bonding: - Ion-dipole forces: Forces between ions and polar molecules	- State the relationship between intermolecular forces and molecular mass. - Explain the effect of intermolecular forces on boiling point, melting point, vapour pressure \& solubility.	- Describe the mole as the SI unit for amount of substance. - Define one mole. - Describe Avogadro's number, N_{A}, as the number of particles (atoms molecules, formula-units) present in one mole. - Define molar mass. - Calculate the molar mass of a substance given its formula. - State Avogadro's Law. - Know the molar gas volume, V_{M}, at STP is 22,4 $\mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$. - Do calculations using $n=\frac{m}{M^{\prime}}$ $\mathrm{n}=\frac{\mathrm{V}}{\mathrm{v}_{\mathrm{M}}}$ $n=\frac{\text { number of particles }}{N_{A}}$	- Interpret balanced equations in terms of volume relationships for gases. - Define concentration. - Calculate concentration, in $\mathrm{mol} \cdot \mathrm{dm}^{-3}$, using $c=\frac{n}{v}$. - Determine percentage composition of a compound. - Determine the empirical formula and molecular formula of compounds. - Do stoichiometric calculations including limiting reagents.	- Determine the percentage yield of a chemical reaction. - Determine the percentage CaCO_{3} in an impure sample of sea shells (purity or percentage composition).	- Stoichiometric calculations with explosions as reactions e.g. $2 \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow$ $2 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ $+\mathrm{O}_{2}(\mathrm{~g})$ $2 \mathrm{C}_{8} \mathrm{H}_{8}+25 \mathrm{O}_{2}$ $\rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$ - Stoichiometric calculations using reaction in airbags (sodium azide): $2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow$ $2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$	- State Coulomb's law. - Solve problems using $F=\frac{k Q_{1} Q_{2}}{r^{2}}$ for charges in one dimension (1D) restrict to three charges. - Solve problems using $F=\frac{k Q_{1} Q_{2}}{r^{2}}$ for charges in two dimensions (2D) for three charges in a right-angled formation (limit to charges at the 'vertices of a rightangled triangle').	- Describe an electric field as a region in space in which an electric charge experiences a force. - Draw electric field patterns for the following configurations: - A single point charge - Two point charges (one negative, one positive OR both positive OR both negative) A charged sphere (Restrict to charges identical in magnitude.) - Define the electric field at a point. $\left(E=\frac{F}{Q}\right)$. - Solve problems using the equation $E=\frac{F}{Q}$.	- Calculate the electric field at a point due to a number of point charges, using the equation $\mathrm{E}=\frac{\mathrm{kQ}}{\mathrm{r}^{2}}$ to determine the contribution to the field due to each charge. Restrict to three charges in a straight line.	ONE PAPER 100 marks - Intermolecular forces - Quantitative aspects of chemical change - Electrostatics
Requisite preknowledge	- Atoms and molecules	- Molecules theory and phases of matter	- Molecules - Kinetic molecular theory and phases of matter	- Mole concept - Molar mass, molar volume - Concentration - Writing of formulae	- Mole concept - Molar mass, molar volume - Concentration - Writing of formulae and balanced equations	- Mole concept - Molar mass, molar volume - Concentration - Writing of formulae and balanced equations	- Mole concept - Molar mass, molar volume - Concentration - Writing of formulae and balanced equations	- Positive \& negative charges - Electrostatic forces - Vectors and scalars	- Positive \& negative charges - Electrostatic forces - Vectors and scalars	- Positive \& negative charges - Electric field - Vectors and scalars	N/A
Resources (other than textbook) to enhance learning	- March question paper	- Molecular models - Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	- Study guides - Previous question papers - Mindset \& YouTube videos	- Study guides - Previous question papers - Mindset \& YouTube videos	- Study guides - Previous question papers - Mindset \& YouTube videos	- Study guides - Previous question papers - Mindset \& YouTube videos	- Study guides - Previous question papers YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	N/A

2021 Grade 11 Physical Sciences Recovery ATP

TERM 2 (51 days)	$\begin{gathered} \text { Week } 1 \\ 13-16 \text { April } \\ \text { (4 days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 2 \\ 19-23 \text { April } \\ \text { (5 days) } \end{gathered}$	$\begin{gathered} \text { Week } 3 \\ 28 \text { - } 30 \text { April } \\ \text { (3 days) } \end{gathered}$	Week 4 3-7 May (5 days)	$\begin{gathered} \text { Week } 5 \\ 10 \text {-14 May } \\ \text { (5 days) } \end{gathered}$	$\begin{aligned} & \text { Week } 6 \\ & 17-21 \text { May } \\ & \text { (5 days) } \end{aligned}$	$\begin{gathered} \text { Week } 7 \\ 24-28 \text { May } \\ \text { (5 days) } \end{gathered}$	Week 8 31 May - 4 June (5 days)	Week 9 7 - 11 June (5 days)	Week 10 14-18 June (4 days)	Week 11 21 - 25 June (5 days)
Informal \& Assessment: Remediation	- Corrections - Homework	- Homework	- Homework - Informal test	- Homework	- Practical: standard solution - Homework	- Homework	- Homework - Informal test	- Homework	Homework	Homework Informal test	N/A
$\begin{aligned} & \text { SBA } \\ & \text { (Formal) } \end{aligned}$	None	Control Test									

TERM 3 (52 days)	$\begin{gathered} \text { Week } 1 \\ 13 \text { - } 16 \text { July } \\ \text { (4 days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 2 \\ 19-23 \text { July } \\ \text { (5 days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 3 \\ 26 \text { - } 30 \text { July } \\ \text { (5 days) } \\ \hline \end{gathered}$	Week 4 2-6 Aug (5 days)	$\begin{gathered} \text { Week } 5 \\ 10-13 \text { Aug } \\ \text { (4 days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 6 \\ 16-20 \text { Aug } \\ \text { (} 5 \text { days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 7 \\ 23-27 \text { Aug } \\ \text { (5 days) } \\ \hline \end{gathered}$	Week 8 30 Aug - 3 Sept (5 days)	$\begin{gathered} \text { Week } 9 \\ 6 \text { - } 10 \text { Sept } \\ \text { (5 days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 10 \\ 13-17 \text { Sept } \\ \text { (5 days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 11 \\ 20-23 \text { Sept } \\ \text { (4 days) } \\ \hline \end{gathered}$
CAPS Topics	JUNE CONTROL TEST: Discussion (3 hrs)	ELECTRICITY \& MAGNETISM: Electromagnetism (4 hrs)	ELECTRICITY \& MAGNETISM: Electromagnetism (4 hrs)	ELECTRICITY \& MAGNETISM: Electric circuits (4 hrs)	ELECTRICITY \& MAGNETISM: Electric circuits (3 hrs)	ELECTRICITY \& MAGNETISM: Electric circuits (4 hrs)	MATTER AND MATERIAL: Ideal gases and thermal properties (4 hrs)	MATTER AND MATERIAL: Ideal gases and thermal properties (4 hrs)	CHEMICAL CHANGE: Energy and chemical change (4 hrs)	CHEMICAL CHANGE: Types of reaction (4 hrs)	CONTROL TEST (2 hrs)
Topics /Concepts, Skills and Values	Discussion and corrections of the June control Test.	- Magnetic field near a current carrying wire - Use the Right Hand Rule to determine the direction of the magnetic field associated with: (i) A straight current carrying wire (ii) A current carrying loop (single) of wire (iii) A solenoid - Draw the magnetic field lines around: (i) A straight current carrying wire (ii) A current carrying loop (single) of wire (iii) Solenoid - Discuss qualitatively the environmental impact of overhead electrical cables	- State Faraday's Law. - Use words and pictures to describe what happens when a bar magnet is pushed into or pulled out of a solenoid connected to a galvanometer. - Use the Right Hand Rule to determine the direction of the induced current in a solenoid when the north or south pole of a magnet is inserted or pulled out.	- State Ohm's law in words. - Interpret data/graphs on the relationship between current, potential difference and resistance at constant temperature. - State the difference between ohmic and non-ohmic conductors and give an example of each. - Solve problems using $R=\frac{v}{l}$ for circuits containing resistors that are connected in series and/or in parallel (maximum four resistors).	- Define power. - Solve problems using $P=\frac{W}{\Delta t}$. - Recall that $\mathrm{W}=\mathrm{VQ}$ and by substituting $Q=I \Delta t$ and $V=I R$, the following are obtained: $\mathrm{W}=\mathrm{V} I \Delta \mathrm{t}$, $W=I^{2} R \Delta t$ $W=\frac{V^{2} \Delta t}{R}$ - Deduce, by substituting $P=\frac{W}{\Delta t}$. into above equations, the following equations: $\mathrm{P}=\mathrm{VI}, \mathrm{P}=\mathrm{I}^{2} \mathrm{R}$ and $P=\frac{V^{2}}{R}$ - Solve problems using $\mathrm{P}=\mathrm{VI}$, $P=I^{2} R$ and $P=\frac{v^{2}}{R}$. - Solve circuit problems involving the concepts of power and electrical energy.	- Deduce that the kilowatt-hour (kWh) refers to the use of 1 kilowatt of electricity for 1 hour. - Know that 1 kWh is an amount of electrical energy known as one unit of electricity. - Calculate the cost of electricity usage given the power specifications of the appliances used, the duration and the cost of 1 kWh .	- Describe the motion of individual molecules i.e. - collisions with each other and the walls of the container - molecules in a sample of gas move at different speeds - Explain the idea of 'average speeds' in the context of molecules of a gas. - Describe an ideal gas in terms of the motion of molecules. - Explain how a real gas differs from an ideal gas. - State the conditions under which a real gas approaches ideal gas behaviour.	- Describe the relationship between volume and pressure for a fixed amount of gas at constant temperature (Boyle's law): - Practically - By interpreting table of results Using graphs - Using symbols (' \propto ') and the words 'inversely proportional' - Writing a relevant equation - Explain the temperature of a gas in terms of the average kinetic energy of the molecules of the gas - Explain the pressure exerted by a gas in terms of the collision of the molecules with the walls of the container	- Define heat of reaction $(\Delta \mathrm{H})$. - Define an exothermic reaction. - Define and endothermic reaction. - Classify, with reason, reactions as exothermic or endothermic. - State the sign of $\Delta \mathrm{H}$ for exothermic and endothermic reactions. - Define activation energy. - Define an activated complex. - Draw or interpret fully labelled sketch graphs (potential energy versus course of reaction graphs) of catalysed and uncatalysed endothermic and exothermic reactions.	- Write names and formulae of common acids: hydrochloric acid, nitric acid, sulphuric acid and ethanoic acid (acetic acid). - Write names and formulae of common bases: ammonia, sodium carbonate (washing soda), sodium hydrogen carbonate, sodium hydroxide (caustic soda) and potassium hydroxide - Define acids and bases according to the Arrhenius \& Bronsted-Lowrey theories. - Identify conjugate acid-base pairs for given compounds. - Describe the term amphiprotic or ampholyte. - Write equations to show how an amphiprotic substance can act as acid or base. Write reaction equations for the dissolution of acids and bases in water. - Write the overall equations for the reactions of acids with metal hydroxides, metal oxides and metal carbonates.	ONE PAPER (100 marks) - Electromagnetism - Electric circuits - Ideal gases and thermal properties - Energy and chemical change
Requisite preknowledge	N/A	- Positive \& negative charges	- Magnetic field - Current, potential difference	- Magnetic fields around currentcarrying conductors	- Current, potential difference,	- Current, potential difference,	- Molecules - Kinetic molecular theory	- Molecules - Kinetic molecular theory and phases of matter	- Exothermic and endothermic reactions	- Writing of formulae and balanced equations	N/A

	TERM 3 (52 days)	Week 1 13 - 16 July (4 days)	$\begin{gathered} \text { Week } 2 \\ 19-23 \text { July } \\ \text { (5 days) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 3 \\ 26 \text { - } 30 \text { July } \\ \text { (} 5 \text { days) } \\ \hline \end{gathered}$	Week 4 2-6 Aug (5 days)	$\begin{gathered} \text { Week } 5 \\ 10-13 \text { Aug } \end{gathered}$ (4 days)	$\begin{aligned} & \text { Week } 6 \\ & 16-20 \text { Aug } \\ & \text { (} 5 \text { days) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Week } 7 \\ 23-27 \text { Aug } \\ \text { (5 days) } \\ \hline \end{gathered}$	Week 8 30 Aug - 3 Sept (5 days)	Week 9 6-10 Sept (5 days)	Week 10 13-17 Sept (5 days)	$\begin{gathered} \text { Week } 11 \\ 20-23 \text { Sept } \end{gathered}$ (4 days)
CAPS Topics		JUNE CONTROL TEST: Discussion (3 hrs)	ELECTRICITY \& MAGNETISM: Electromagnetism (4 hrs)	ELECTRICITY \& MAGNETISM: Electromagnetism (4 hrs)	ELECTRICITY \& MAGNETISM: Electric circuits (4 hrs)	ELECTRICITY \& MAGNETISM: Electric circuits (3 hrs)	ELECTRICITY \& MAGNETISM: Electric circuits (4 hrs)	MATTER AND MATERIAL: Ideal gases and thermal properties (4 hrs)	MATTER AND MATERIAL: Ideal gases and thermal properties (4 hrs)	CHEMICAL CHANGE: Energy and chemical change (4 hrs)	CHEMICAL CHANGE: Types of reaction (4 hrs)	CONTROL TEST (2 hrs)
			- Electrostatic force - Electric field - Vectors and scalars		- Current, potential difference, resistance	resistance, power - Electric circuits	resistance, power - Electric circuits	and phases of matter		- Exo- and endothermic reactions - Writing formulae		
Resources (other than textbook) to enhance learning		- June control test question paper	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Apparatus for experiment listed below - Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Apparatus for experiment listed below - Study guides - Previous question papers - Mindset \& YouTube videos - pHET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers - Mindset \& YouTube videos - Simulations	- Apparatus: Boyle's law - Study guides - Previous question papers - Mindset \& YouTube videos - phet simulations	- Study guides - Previous question papers; - Mindset \& YouTube videos - Simulations	- Study guides - Previous question papers; YouTube videos - Simulations	N/A
	Informal Assessment: Remediation	- Homework - Corrections	- Homework - Informal test	- Practical: magnetic fields around currentcarrying conductors - Homework	- Practical: Induced current in a coil by moving a magnet in and out of the coil (demo) - Homework - Informal test	- Homework	- Homework - Practical: Ohm's law	- Homework	- Homework - Informal test	- Homework	- Homework	N/A
	SBA (Formal)	None	Formal practical: Boyle's law	None	None	Control test						

2021 National Recovery ATP: Grade 11 - Term 4: PHYSICAL SCIENCES

TERM 4 (47 days)		Week 1 5-8 Oct (4 days)	$\begin{gathered} \text { Week } 2 \\ 11-150 \mathrm{ct} \\ \text { (5 days) } \end{gathered}$	$\begin{gathered} \text { Week } 3 \\ 18-22 \text { Oct } \\ (5 \text { days }) \\ \hline \end{gathered}$	$\begin{gathered} \text { Week4 } \\ 25-29 \text { Oct } \\ \text { (} 5 \text { days) } \\ \hline \end{gathered}$	Week 5 $1-5$ Nov (5 days)	$\begin{gathered} \text { Week } 6 \\ 8-12 \text { Nov } \\ \text { (5 days) } \end{gathered}$	$\begin{gathered} \text { Week } 7 \\ 15-19 \text { Nov } \\ \text { (} 5 \text { days) } \end{gathered}$	Week 8 -10 22 Nov - 8 Dec (13 days)
CAPS Topics		SEPTEMBER CONTROL TEST: Discussion (2 hrs) CHEMICAL CHANGE: Types of reaction (1 hr)	CHEMICAL CHANGE: Types of reaction (4 hrs)	CHEMICAL CHANGE: Types of reaction (4 hrs)	CONSOLIDATION AND REVISION (4 hrs)	CONSOLIDATION AND REVISION (4 hrs)	CONSOLIDATION AND REVISION (4 hrs)	CONSOLIDATION AND REVISION (4 hrs)	FINAL EXAMINATION P1: 2 hrs P2: 2 hrs
Topics /Concepts, Skills and Values		- Discussion and corrections of control test Acid-base reactions - Describe an acidbase indicator as a weak acid, or a weak base, which colour changes as the H^{+} ion or the OH^{-}ion concentration in a solution changes. - Know the colours of litmus, methyl orange, phenolphthalein and bromothymol blue in acids and in bases.	Acid-base reactions - Identify the acid and the base needed to prepare a given salt and write an equation for the reaction. - Write down neutralisation reactions of common laboratory acids and bases. Redox reactions - Explain the meaning of oxidation number. - Assign oxidation numbers to atoms in various ions and molecules, e.g. $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{CH}_{4}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$, and HOCl by using oxidation number guidelines or rules.	Redox reactions - Describe a redox (oxidationreduction) reaction as involving an electron transfer. - Describe a redox (oxidationreduction) reaction as always involving changes in oxidation numbers. - Identify a redox reaction and apply the correct terminology to describe all the processes i.e. oxidation, reduction, reducing agent, oxidising agent - Balance redox reactions by using half-reactions from the Table of Standard Reduction Potentials	- All topics	All topics	All topics	All topics	Physics Paper 1 (100 marks) - Vectors in two dimensions - Newton's laws - Electrostatics - Electromagnetism - Electric circuits Chemistry Paper 2 (100 marks) - Atomic combinations - Intermolecular forces - Ideal gases and thermal properties - Quantitative aspects of chemical change - Energy and chemical change - Types of reaction
Requisite preknowledge		Acid and base properties	Writing of formulae and balanced equations	Writing of formulae and balanced equations	N/A	N/A	N/A	N/A	N/A
Resources (other than textbook) to enhance learning		- September control test question paper - Acid-base indicators	- Apparatus for practical below. - Study guides - Previous question papers; - Mindset \& YouTube videos - Simulations	- Table of Standard Reduction potentials - Study guides - Previous question papers; - Mindset \& YouTube videos - Simulations	- Study guides - Previous question papers; - Mindset \& YouTube videos - Simulations	- Study guides - Previous question papers; - Mindset \& YouTube videos - Simulations	- Study guides - Previous question papers; - Mindset \& YouTube videos - PhET simulations	- Study guides - Previous question papers; - Mindset \& YouTube videos - PhET simulations	N/A
	Informal Assessment: Remediation	- Homework	- Practical: Acid-base titration - Homework	- Homework - Informal test	- Homework - Informal test	- Informal test - Homework	- Informal test - Homework	- Informal test - Homework	N/A
	SBA (Formal)	None	Final Examination						

