
DAY 1

Tuesday, 4 February 2020

Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

1. Determine all pairs (a, b) of non-negative integers such that

a+ b

2
−

p
ab = 1.

2. Amy and Bec play the following game. Initially, there are three piles, each containing

2020 stones. The players take turns to make a move, with Amy going first. Each

move consists of choosing one of the piles available, removing the unchosen pile(s)

from the game, and then dividing the chosen pile into 2 or 3 non-empty piles. A

player loses the game if they are unable to make a move.

Prove that Bec can always win the game, no matter how Amy plays.

3. Let ABC be a triangle with \ACB = 90. Suppose that the tangent line at C to the

circle passing through A,B,C intersects the line AB at D. Let E be the midpoint

of CD and let F be the point on the line EB such that AF is parallel to CD.

Prove that the lines AB and CF are perpendicular.

4. Define the sequence A1, A2, A3, . . . by A1 = 1 and for n = 1, 2, 3, . . .

An+1 =
An + 2

An + 1
.

Define the sequence B1, B2, B3, . . . by B1 = 1 and for n = 1, 2, 3, . . .

Bn+1 =
B2

n + 2

2Bn
.

Prove that Bn+1 = A2n for all non-negative integers n.

���������������������������������������������
����������������
�	��������������

The Olympiad programs receive grant funding from the Australian Government.

© 2020 Australian Mathematics Trust

2020 Australian Mathematical Olympiad



DAY 2

Wednesday, 5 February 2020

Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

5. Each term of an infinite sequence a1, a2, a3, . . . is equal to 0 or 1. For each positive

integer n,

(i) an + an+1 6= an+2 + an+3, and

(ii) an + an+1 + an+2 6= an+3 + an+4 + an+5.

Prove that if a1 = 0, then a2020 = 1.

6. Let ABCD be a square. For a point P inside ABCD, a windmill centred at P

consists of two perpendicular lines `1 and `2 passing through P , such that

• `1 intersects the sides AB and CD at W and Y , respectively, and

• `2 intersects the sides BC and DA at X and Z, respectively.

A windmill is called round if the quadrilateral WXY Z is cyclic.

Determine all points P inside ABCD such that every windmill centred at P is round.

7. A tetromino tile is a tile that can be formed by gluing together four unit square tiles,

edge to edge. For each positive integer n, consider a bathroom whose floor is in the

shape of a 2⇥ 2n rectangle. Let Tn be the number of ways to tile this bathroom floor

with tetromino tiles. For example, T2 = 4 since there are four ways to tile a 2⇥ 4

rectangular bathroom floor with tetromino tiles, as shown below.

Prove that each of the numbers T1, T2, T3, . . . is a perfect square.

8. Prove that for each integer k satisfying 2  k  100, there are positive integers

b2, b3, . . . , b101 such that

b 22 + b 33 + · · ·+ b kk = b k+1
k+1 + b k+2

k+2 + · · ·+ b 101101 .
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1. Determine all pairs (a, b) of non-negative integers such that

a+ b

2
−

√
ab = 1.

Solution 1 (Chris Wetherell)

Without loss of generality, we assume that a ≥ b. Via the AM-GM inequality, AM≥GM,

we must have
a+ b

2
−

√
ab = 1.

Doubling both sides and factorising gives

a− 2
√
ab+ b = 2

(
√
a−

√
b)2 = 2

√
a−

√
b =

√
2.

We ignore the negative root since a ≥ b.

Solving for a and rearranging gives

√
a =

√
b+

√
2 (�)

a = b+ 2
√
2b+ 2

2
√
2b = a− b− 2,

hence 2
√
2b must be a non-negative integer, equal to k ≥ 0, say.

Squaring gives 8b = k2 and it follows that k must be a multiple of 4, equal to 4n, say.

Hence 8b = (4n)2 = 16n2, so b = 2n2, where n ≥ 0.

Substituting into (�) gives

√
a =

√
2n2 +

√
2 = n

√
2 +

√
2 = (n+ 1)

√
2,

hence a = 2(n+ 1)2.

Therefore the pair {a, b} must be of the form {2(n+ 1)2, 2n2} for some integer n ≥ 0.

Finally, we verify that all such pairs do indeed have AM and GM which differ by 1:

AM =
2(n+ 1)2 + 2n2

2
= (n+ 1)2 + n2 = 2n2 + 2n+ 1,

and

GM =
√

2(n+ 1)2 × 2n2 = 2n(n+ 1) = 2n2 + 2n = AM− 1.
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Solution 2 (Mike Clapper)

Let the two integers be n+m and n−m, which have AM = n and GM =
√
n2 −m2. We

require that n− 1 =
√
n2 −m2.

Squaring both sides and rearranging, we get m2 = 2n− 1. This tells us that m is odd, so

we can choose any odd number m and we get the two numbers a = m2+1
2 +m = (m+1)2

2

and b = m2+1
2 −m = (m−1)2

2 which satisfy the required condition.

Solution 3 (Alice Devillers)

Reorganising the equation we get 2
√
ab = a+ b−2 thus after squaring: 4ab = a2+ b2+4+

2ab− 4a− 4b. Hence 0 = a2 + b2 +4− 2ab− 4a− 4b = (a− b)2 +4(1− a− b), so 4 divides

(a−b)2. It follows that a−b is even and hence 1−a−b is odd. Thus a−b = 4i+2 for some

i. Then (2i+1)2 = a+ b− 1 = 2b+4i+1, and so b = 2i2 and a = 2i2+4i+2 = 2(i+1)2.

Solution 4 (Angelo Di Pasquale)

WLOG a ≤ b. We have a+b
2 =

√
ab + 1. Hence

√
ab is rational. Since it is rational and

a, b are integers, it follows that
√
ab is an integer. Let a = m2k where k is the square-free

part of a. Then b = n2k for some positive integer n ≥ m. Putting this in yields

m2k + n2k

2
= mnk + 1 ⇔ (n−m)2k = 2.

It follows that n = m+ 1 and k = 2. So (a, b) = (2m2, 2(m+ 1)2) which works.

Solution 5 (Angelo Di Pasquale)

(Shows that a rather mechanical solution can be found)

WLOG a ≤ b so that a = b+ d for some integer d ≥ 0. Substitution yields

2a+ d

2
=

√
a(a+ d) + 1 ⇔ 8a = (d− 2)2.

Thus d is even. Put d = 2e to find 2a = (e − 1)2. Thus e is odd. Put e = 2f + 1 to find

a = 2f2 and then b = a+ d = 2(f + 1)2, which is easy to verify.

Solution 6 (Andrew Elvey Price)

Without loss of generality, a ≥ b. Squaring both sides of (a + b)/2 − 1 =
√
ab then

rearranging yields

(a− b)2 = 4a+ 4b− 4.

It follows that a−b is even, so we write a−b = 2n. Then a+b = n2+1. Since a and b have

the same parity is follows that n = 2m + 1 for some integer m. Solving these equations

for a, b in terms of m yields a = 2(m + 1)2 and b = 2m2. Finally we can check that this

satisfies the conditions of the question for all non-negative integers m.

Solution 7 (Ivan Guo)

Since
√
ab is rational, it must be an integer and ab is a perfect square. Write g = gcd(a, b).

Since g divides (a + b) − 2
√
ab = 2, we must have g = 1 or 2. If it is 1, then both a and

b are perfect squares. But this contradicts (
√
a −

√
b)2 = 2 as 2 is not a perfect square.

So g = 2. Then we can write a = 2c, b = 2d (where c and d are coprime) to obtain

1 = c+ d− 2
√
cd = (

√
c−

√
d)2. Hence c and d must be perfect squares with a difference

of 1, which lead to the required solution.
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Solution 8 (Dan Mathews)

First note that
√
ab = (a+ b)/2− 1 must be an integer or half integer; but the square root

of an integer is never a half integer, hence ab is a perfect square. If a, b have a prime factor

p > 2 in common, then it must divide
√
ab and (a + b)/2, but not 1, a contradiction. So

the only possible common prime factor of a, b is 2. As ab is a perfect square then either

a = m2, b = n2, or or a = 2m2, b = 2n2, for some non-negative m,n.

If a = m2 and b = n2, then (a+ b)/2 =
√
ab+ 1 simplifies to (m− n)2 = 2, which has no

solution in integers.

If a = 2m2 and b = 2n2, then (a+ b)/2 =
√
ab+1 simplifies to (m−n)2 = 1, so m = n±1.

We verify that a = 2m2, b = 2(m± 1) is indeed a solution.

Solution 9 (Kevin McAvaney)

From (a+ b)/2 = 1 + 2
√
ab, we have

a2 − (4 + 2b)a+ (b− 2)2 = 0.

Solving the quadratic for a gives

a = (2 + b)±
√
8b.

Since a is an integer, b = 2c2 for any non-negative integer c, and

a = 2(c2 ± 2c+ 1) = 2(c+ 1)2or2(c− 1)2.

Solution 10 (Thanom Shaw)

Consider the line segment AC of length a + b and a point D on the line segment such

that AD = a and DC = b. Let the perpendicular to AC through D meet the circle with

diameter AC at B. We have that the radius of the circle is the arithmetic mean of a and

b, and the length of BD is the geometric mean of a and b. (This can be shown using the

similarity of triangles ABD and BCD).

Now, let the arithmetic mean be r, the radius of the circle, and the geometric mean one

less, r−1. Geometrically, this is shown in the diagram below with OB = r and BD = r−1.

Applying Pythagoras’ Theorem, we get that OD =
√
2r − 1.

O
A CD

B

r r − 1

√
2r − 1

3
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We then have that AD = a = r +
√
2r − 1 and DC = b = r −

√
2r − 1 (if a > b, say).

But a and b are integers which means (the odd number) 2r − 1 must be a perfect square.

Hence 2r − 1 = (2k + 1)2 for some integer k and so r = 2k2 + 2k + 1.

Hence, the pair of integers (2k2 + 2k + 1, 2k2 + 2k) for all integers k are the only pairs of

integers which have their arithmetic mean 1 more than their geometric mean.

Solution 11 (Ian Wanless)

(which may amount to the same thing, but feels different):

(a+ b)/2− 1 =
√
ab.

Double both sides, and square to get

a2 + b2 + 4 + 2ab− 4a− 4b = 4ab.

Hence

(a− b)2 = 4(a+ b− 1)

Considering this mod 4 we see that a− b is even. Hence a+ b is even so

(a− b)2 ≡ 4 (mod 8).

Thus a− b ≡ 2 (mod 4). Let t = a− b. Then a+ b = t2/4+1. So a = (t2/4+ t+1)/2 and

b = (t2/4− t+ 1)/2 (both of which are integers, given that t ≡ 2 (mod 4)). Moreover, it

is easy to check that a, b are solutions. So we have a parametrised family of solutions.

4
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2. Amy and Bec play the following game. Initially, there are three piles, each containing 2020

stones. The players take turns to make a move, with Amy going first. Each move consists

of choosing one of the piles available, removing the unchosen pile(s) from the game, and

then dividing the chosen pile into 2 or 3 non-empty piles. A player loses the game if they

are unable to make a move.

Prove that Bec can always win the game, no matter how Amy plays.

Solution (Angelo Di Pasquale)

Call a pile perilous if the number of stones in it is one more than a multiple of three, and

safe otherwise. Ben has a winning strategy by ensuring that he only leaves Amy perilous

piles. Ben wins because the number of stones is strictly decreasing, and eventually Amy

will be left with two or three piles each with just one stone.

To see that this is a winning strategy, we prove that Ben can always leave Amy with only

perilous piles, and that under such circumstances, Amy must always leave Ben with at

least one safe pile.

On Amy’s turn, whenever all piles are perilous it is impossible to choose one such perilous

pile and divide it into two or three perilous piles by virtue of the fact that 1 + 1 �≡ 1

(mod 3) and 1+1+1 �≡ 1 (mod 3). Thus Amy must leave Ben with at least one safe pile.

On Ben’s turn, whenever one of the piles is safe, he can divide it into two or three piles,

each of which are safe, by virtue of the fact that 2 ≡ 1 + 1 (mod 3) and 0 ≡ 1 + 1 + 1

(mod 3).

5
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3. Let ABC be a triangle with ∠ACB = 90◦. Suppose that the tangent line at C to the

circle passing through A,B,C intersects the line AB at D. Let E be the midpoint of CD

and let F be the point on the line EB such that AF is parallel to CD.

Prove that the lines AB and CF are perpendicular.

Solution 1 (Alan Offer)

Let BC and AF meet at H. Since CD and AH are parallel, triangles BCE and BHF

are similar, and so too are triangles BDE and BAF . Hence, AF/DE = BF/BE =

FH/EC = FH/DE, where the last equation holds since E is the midpoint of CD. It

follows that AF = FH.

Since ∠ACH is a right angle, the circumcircle of triangle ACH has AH as diameter and

so F as centre. Hence, FC = FH as these are both radii. It follows that triangle CFH

is isosceles, so ∠BCF = ∠BHF = ∠BCD = ∠BAC, where the second equation follows

from the alternate angle theorem and the last equation from the the alternate segment

theorem.

Letting G be the point of intersection between AB and CF , it follows that triangles ABC

and CBG are similar, as two pairs of corresponding angles are equal. Hence, ∠BGC =

∠BCA, which is a right angle, as required.

Solution 2 (Alice Devillers)

The diameter of the circumcircle is AB, and WLOG we can assume the radius is 1. So we

can set A = (−1, 0), B = (1, 0) and C = (cosα, sinα) where α ∈ (0, π) \ {π/2}. We then

successively get (some computations omitted, use parametric form of lines) D = (secα, 0),

E = (12 secα+ 1
2 cosα,

1
2 sinα), F = (cosα, cosα sinα

cosα−1 ). Hence C and F have the same first

component, and so CF is orthogonal to AB.

6
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Solution 3 (Angelo Di Pasquale)

(Trying to prove that CB bisects ∠ECF via angle bisector theorem.)

Let G be the intersection of lines AB and CF . Since E is the midpoint of CD and AF ‖
CD, it follows that lines (FD,FC;FE,FA) form a harmonic pencil. Hence (D,G;B,A)

are harmonic points. Thus the circle with diameter AB is a circle of Apollonius for points

G and D. Hence AC is the external bisector of ∠DCG. Let Z be any point on the

extension of ray DC beyond C. Using CD ‖ AF , we find

∠FCA = ∠ACZ = ∠CAF.

Hence FC = FA. Since �BED ∼ �BAF we compute

EB

BF
=

DE

FA
=

EC

FC
.

Hence by the angle bisector theorem, BC bisects ∠ECF . Let ∠BCF = ∠ECB = x.

By the alternate segment theorem we have ∠CAB = x. The angle sum in �ABC yields

∠ABC = 90◦ − x. Finally, using the angle sum in �BCG yields ∠CGB = 90◦.

Solution 4 (Angelo Di Pasquale)

Menelaus’ theorem applied to �CDG with transversal line EBF yields

GB

BD
· DE

EC
· CF

GF
= 1. (1)

Note that
CF

GF
=

CG+GF

GF
=

CG

GF
+ 1 =

DG

GA
+ =

DG+GA

GA
=

DA

GA
.

Putting this into (1), using DE = EC, and rearranging yields

GB ·DA = GA ·BD. (2)

Let O be the centre of circle ABC, and r its radius. Then (2) is equivalent to

(r −OG)(r +OD) = (r +OG)(OD − r) ⇔ OG ·OD = r2 ⇔ OG

OC
=

OC

OD
.

The last equality above implies �OGC ∼ �OCD (PAP). Hence ∠OGC = ∠OCD = 90◦.

Solution 5 (Angelo Di Pasquale)

As in my first alternative solution, (D,G;B,A) are harmonic points. Hence lines (CD,CG;CB,CA)

form a harmonic pencil. Projecting from C onto the circle shows that ACBK is a har-

monic quadrilateral, where K is the second intersection point of line CG with the circle.

Hence CB/CA = KB/KA. Since ∠AKB = 90◦ (AB is a diameter of the circle), we have

�BCA ∼ �BKA (PAP). But since AB is common, these triangles are congruent and

thus related by a reflection in AB. Since C and K are symmetric across AB, it follows

that CK ⊥ AB, as desired.

Solution 6 (Angelo Di Pasquale)

7
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(A faster version of previous alternative solution)

As in my first alternative solution, (D,G;B,A) are harmonic points. So the polar of D

with respect to circle ABC passes through G. But it also passes through C as DC is

tangent to circle ABC at C. Hence the polar of D is the line CG. Since AB is a diameter

of circle ABC, we have AB ⊥ CG.

Solution 7 (Angelo Di Pasquale)

(Reverse reconstruction)

Let F ′ be the intersection of the line through C that is perpendicular to AB with the line

through A that is parallel to CD. Let G′ be the intersection of CF ′ and AB. By the

alternate segment theorem we have

∠DCB = ∠CAB = 90◦ − ∠G′CA = ∠BCG′.

Hence BC bisects ∠DCG′.

From the angle sum in �CDG′, we have ∠G′DC = 90◦ − 2x. And since AF ′ ‖ CD, we

have ∠DAF ′ = 90◦ − 2x. Hence ∠CAF ′ = 90◦ − x = ∠F ′CA. Thus CF ′ = AF ′.

Aiming to apply Menelaus’ theorem to �CDG′ we compute

DE

EC
· CF ′

G′F ′ ·
G′B

BD
=

AF ′

G′F ′ ·
G′B

BD
=

CD

CG′ ·
AF ′

G′F ′ = 1.

The first equality is due to DE = EC and CF ′ = AF ′, the second is due to �DCG ∼
�AF ′G′, and the last is from the angle bisector theorem in �CDG′. Hence by Menelaus’

theorem, points E, B, and F ′ are collinear. Hence F ′ = F , and G′ = G, which implies the

result.

Solution 8 (Ivan Guo)

Let AF ∩ CD be the point of infinity I. Let H = AB ∩ CF and let CF meet the circle

again at G.

Since E is a midpoint, (C,D;E, I) = −1 (cross ratio, harmonic conjugates). Projecting

them through F onto the line AB, we have (H,D;B,A) = −1. Projecting those through

C onto the circle, we have (G,C;B,A) = −1. Since AB is a diameter, C and G must be

symmetric about AB. Thus CG is perpendicular to AB as required.

Solution 9 (Angelo Di Pasquale)

Let P be the point where CF and AB meet, and let Q be the point ‘at infinity’ on the

line CD. Since E is the midpoint of CD, the range (C,D,E,Q) is harmonic. Projecting

from F , it follows that (P,D,B,A) is harmonic. Hence CF is the polar of D and so is

perpendicular to the diameter AB.

Solution 10 (Chaitanya Rao)

8
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Let O be the midpoint of AB. We firstly show that �AOF ∼ �DBC. Note that since

AF and CD are parallel, ∠OAF = ∠BDC (alternate angles) and �AFB ∼ �DEB (two

pairs of alternate angles). Then

AF

AO
=

2AF

AB
(as O is the midpoint of AB)

=
2DE

DB
(as �AFB ∼ �DEB)

=
DC

DB
(as E is the midpoint of CD).

As two sides of �AOF and �DBC have lengths in the same ratio (AF
AO = DC

DB ) and the

angles between them are equal (∠OAF = ∠BDC), �AOF and �DBC are similar.

Let FO extended meet AC at P . Then

∠CAB = ∠DCB (alternate segment theorem).

= ∠AFO (as �AOF ∼ �DBC)

= ∠AFP (by construction of P )

Next, through an angle chase we find

∠FAP = ∠FAB + ∠BAC

= ∠BDC + ∠BCE (alternate angles and alternate segment theorem)

= ∠ABC (exterior angle equals the sum of interior opposite angles of �BCD).

It follows that �ABC ∼ �FAP (two pairs of corresponding angles are equal). Therefore,

∠OPA = ∠FPA = ∠ACB = 90◦ and we conclude that OP is parallel to BC. Then

�AOP and �ABC are also similar (equal corresponding pairs of angles) and as O is the

midpoint of AB, P is the midpoint of AC.

Since altitude FP bisects side AC, �ACF is isosceles with �FAP congruent to �FCP .

Hence �ABC is additionally similar to �FCP so corresponding sides have the same angle

between them. As AC ⊥ FP it follows that AB ⊥ FC as required.

9
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4. Define the sequence A1, A2, A3, . . . by A1 = 1 and for n = 1, 2, 3, . . .

An+1 =
An + 2

An + 1
.

Define the sequence B1, B2, B3, . . . by B1 = 1 and for n = 1, 2, 3, . . .

Bn+1 =
B2

n + 2

2Bn
.

Prove that Bn+1 = A2n for all non-negative integers n.

Solution 1 (Chris Wetherell)

The proof is by induction on n. Checking n = 0, we have

B0+1 = B1 = 1 = A1 = A20 ,

so the base case is true.

Define functions

f(x) =
x+ k

x+ 1
and g(x) =

x2 + k

2x
,

so that An+1 = f(An) and Bn+1 = g(Bn). We are required to prove that

g(n)(1) = f (2n−1)(1) for all n ≥ 0.

(The base case n = 0 can be established in this setting by interpreting both f (0)(x) and

g(0)(x) as the identity function, so that both sides of the equation above equal 1.)

To apply the inductive argument which follows, we also need to establish the case n = 1:

g(1)(1) = g(1) =
12 + k

2× 1
=

1 + k

1 + 1
= f(1) = f (21−1)(1).

Next we prove that g(f(x)) = f(f(g(x))):

g(f(x)) =
f(x)2 + k

2f(x)

=

(
x+ k

x+ 1

)2

+ k

2
x+ k

x+ 1

=
(x+ k)2 + k(x+ 1)2

2(x+ k)(x+ 1)

=
(k + 1)x2 + 4kx+ k(k + 1)

2x2 + 2(k + 1)x+ 2k
,

10
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f(f(g(x)) =
f(g(x)) + k

f(g(x)) + 1

=

g(x) + k

g(x) + 1
+ k

g(x) + k

g(x) + 1
+ 1

=
(k + 1)g(x) + 2k

2g(x) + k + 1

=
(k + 1)

x2 + k

2x
+ 2k

2
x2 + k

2x
+ k + 1

=
(k + 1)x2 + 4kx+ k(k + 1)

2x2 + 2(k + 1)x+ 2k

= g(f(x)).

Applying this identity m times, for some m ≥ 1, we have

g(f (m)(x)) = g(f(f(f(· · · f︸ ︷︷ ︸
m

(x) · · · ))))

= f (2)(g(f(f(· · · f︸ ︷︷ ︸
m−1

(x) · · · ))))

= f (4)(g(f(· · · f︸ ︷︷ ︸
m−2

(x) · · · )))

= · · ·

= f2(m−1)(g(f(x))

= f (2m)(g(x)).

Finally, assume by induction that g(n)(1) = f (2n−1)(1). Then, via the above generalised

identity with m = 2n − 1 and the fact that f(1) = g(1), we have

g(n+1)(1) = g(g(n)(1))

= g(f (2n−1)(1))

= f (2(2n−1))(g(1))

= f (2n+1−2)(f(1))

= f (2n+1−1)(1).

This completes the proof.

Solution 2 (Alice Devillers)

It is obvious that all An and Bn are positive rational numbers. We claim that for all n if

An = c
d then A2n = c2+2d2

2cd . This holds for n = 1 as A1 = 1 and A2 =
3
2 . Assume the claim

11
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holds for n we now show it holds for n + 1. We easily compute An+1 = c/d+2
c/d+1 = c+2d

c+d ,

A2n+1 =
c2+2d2+4cd
c2+2d2+2cd

,

A2n+2 = A2(n+1) =
3c2 + 6d2 + 8cd

2c2 + 4d2 + 6cd
=

(c+ 2d)2 + 2(c+ d)2

2(c+ 2d)(c+ d)
,

which proves the claim. It is now very easy to prove what is asked in the question, also

by induction. It is true for n = 0 as B0+1 = 1 = A20 . Assume Bn+1 = A2n = c
d , we show

it is true for n+ 1:

Bn+2 =
B2

n+1 + 2

2Bn+1
=

(c/d)2 + 2

2(c/d)
=

c2 + 2d2

2cd
= A2×2n = A2n+1

by the claim above.

Solution 3 (Angelo Di Pasquale)

We may introduce xn and yn which satisfy An = xn
yn

for all positive integers n. Using the

recurrence An+1 =
An+2
An+1 we want xn and yn to satisfy

xn+1 = xn + 2yn and yn+1 = xn + yn.

Putting xn = yn+1 − yn into the first recurrence and yn = 1
2(xn+1 − xn) into the second

recurrence and tidying up yields

xn+2 − 2xn+1 − xn and yn+2 − 2yn+1 − yn

for each positive integer n. The initial values x1 = y1 = 1, x2 = 3 and y2 = 2 get us

off the ground. Tracing the recurrence backwards to define x0 = 1 and y0 = 0 makes the

computations a bit easier, but either way using standard recurrence methods we deduce

xn =
(1 +

√
2)n + (1−

√
2)n

2
and yn =

(1 +
√
2)n − (1−

√
2)n

2
√
2

. (1)

The conclusion of the problem statement gives us a clue as to what to do next. For example

if n = 3, we hope that

B4 =
B2

3 + 2

2Bn
⇔ A8 =

A2
4 + 2

2A4
⇔ x8

y8
=

x24 + 2y24
2x4y4

.

Checking a few small values for n seems to confirm that

x2n = x2n + 2y2n and y2n = 2xnyn. (2)

It is straightforward to confirm that the equalities in (2) are true by using the equalities

in (1). It follows from (2) that

A2n =
x2n
y2n

=
x2n + 2y2n
2xnyn

=
A2

n + 2

2An
. (3)

The result now follows inductively from (3) because B1 = A20 , and if Bn = A2n−1 , then

Bn+1 =
B2

n + 2

2Bn
=

A2
2n−1 + 2

2A2n−1

= A2n ,
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as desired.

Solution 4 (Andrew Elvey Price)

Writing out the first few terms An, we recognise the numerators and denominators as the

coefficients appearing in the expansion (1 +
√
2)n, that is, (1 +

√
2)n = Bn + cn

√
2, where

An = Bn/cn. Based on this we conjecture that

An =
√
2
(1 +

√
2)n + (1−

√
2)n

(1 +
√
2)n − (1−

√
2)n

.

This can be proven by induction. The base case A1 = 1 is true. for the inductive step, we

assume the equation above and aim to prove the same equation with n replaced by n+ 1.

An + 1 and An + 2 can be calculated as follows

An + 1 =
(1 +

√
2)n+1 − (1−

√
2)n+1

(1 +
√
2)n − (1−

√
2)n

,

and

An + 2 =
√
2
(1 +

√
2)n+1 + (1−

√
2)n+1

(1 +
√
2)n − (1−

√
2)n

.

It follows that

An+1 =
An + 2

An + 1
=

√
2
(1 +

√
2)n+1 + (1−

√
2)n+1

(1 +
√
2)n+1 − (1−

√
2)n+1

,

which completes the induction.

Now it suffices to prove that

Bn =
√
2
(1 +

√
2)2

n−1
+ (1−

√
2)2

n−1

(1 +
√
2)2n−1 − (1−

√
2)2n−1

.

Again, we can prove this by induction. The base cases B1 = 1 and B2 = 3/2 can easily be

checked. For the inductive step, we assume that the equation above holds for some n ≥ 2,

and we will show that it also holds for n+1. For convenience we will write c = (1+
√
2)2

n−1
,

then we have

Bn =
√
2
c+ c−1

c− c−1
,

and we want to prove that

Bn+1 =
√
2
c2 + c−2

c2 − c−2
.

This follows immediately by substituting the formula for Bn into the equation

Bn+1 =
B2

n + 2

2Bn
.

Solution 5 (Ivan Guo)

Here is a solution motivated by noticing that both sequences converge to
√
2 and the

theory of Pell’s equation. Define the integer sequences {pn} and {qn} by

pk + qk
√
2 = (1 +

√
2)k.
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We claim that An = pn/qn for all n ≥ 1 and Bn+1 = p2n/q2n for all n ≥ 0.

Both can be proven easily by induction. The base cases are clear. For the first claim, it

suffices to note that

pk+1 + qk+1

√
2 = (pk + qk

√
2)(1 +

√
2) = (pk + 2qk) + (pk + qk)

√
2,

which implies

Ak+1 =
Ak + 2

Ak + 1
=

pk/qk + 2

pk/qk + 1
=

pk + 2qk
pk + qk

=
pk+1

qk+1
.

For the second claim, it suffices to note that

p2k + q2k
√
2 = (p2k−1 + q2k−1

√
2)2 = (p22k−1 + 2q22k−1) + 2p2k−1q2k−1

√
2,

which implies

Bk+1 =
B2

k + 2

2Bk
=

(p2k−1/q2k−1)2 + 2

2p2k−1/q2k−1

=
p2
2k−1 + 2q2k−1

2p2k−1q2k−1

=
p2k

q2k
.

Therefore Bn+1 = p2n/q2n = A2n , as required.

Solution 6 (Daniel Mathews)

We observe that the sequence An − 1 is 0/1, 1/2, 2/5, 5/12, 12/29, which leads us to

define a sequence fn by f0 = 0, f1 = 1 and fn = 2fn−1 + fn−2 for n ≥ 2. Indeed one can

then verify that An = 1 + fn−1/fn for n ≥ 1. For if we define gn = 1 + fn−1/fn, then

g1 = 0 = A1, and

(gn + 2)/(gn + 1) = (3 + fn−1/fn)/(2 + fn−1/fn)

= (3fn + fn−1)/(2fn + fn−1)

= 1 + fn/fn+1 (since fn+1 = 2fn + fn−1)

= gn+1,

so that gn and An satisfy the same recursion, hence gn = An for all n.

We can solve the linear recurrence for fn by standard methods and we find

fn = 2−3/2[(1 +
√
2)n − (1−

√
2)n].

Thus we have An as

An = 1 + [(1 +
√
2)n−1 − (1−

√
2)n−1]/[(1 +

√
2)n − (1−

√
2)n]

which simplifies to

An =
√
2[(1 +

√
2)n + (1−

√
2)n]/[(1 +

√
2)n − (1−

√
2)n].

We now show that A2n = Bn+1. For n = 1 we verify A21 = A2 = 3/2 = B2. It remains to

show that A2n satisfies the same recursion as Bn+1, i.e. that A2n+1 = (A2
2n + 2)/(2A2n).

We verify this directly: upon clearing denominators in

(A2
2n + 2)/(2A2n)
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and cancelling constant factors we obtain

[((1 +
√
2)2

n
+ (1−

√
2)2

n
)2 + ((1 +

√
2)2

n − (1−
√
2)2

n
)2]

[
√
2[(1 +

√
2)2n + (1−

√
2)2n ][(1 +

√
2)2n − (1−

√
2)2n ]]

.

The numerator simplifies using the identity (x + y)2 + (x − y)2 = 2x2 + 2y2, and the

denominator simplifies using the identity (x+ y)(x− y) = x2 − y2. We end up with

√
2[(1 +

√
2)2

n+1
+ (1−

√
2)2

n+1
]/[(1 +

√
2)2

n+1 − (1−
√
2)2

n+1
]

which is A2n+1 as desired.

Solution 7 (Alan Offer)

Define the sequences p1, p2, . . . and q1, q2, . . . by p1 = q1 = 1, pn+1 = pn + 2qn and

qn+1 = pn + qn. Then A1 = p1/q1. Furthermore, if An = pn/qn then

An+1 =

pn
qn

+ 2
pn
qn

+ 1
=

pn + 2qn
pn + qn

=
pn+1

qn+1
.

It follows by mathematical induction that An = pn/qn for all n ≥ 1.

Similarly, define sequences u1, u2, . . . and v1, v2, . . . by u1 = v1 = 1, un+1 = u2n + 2v2n and

vn+1 = 2unvn. Then B1 = u1/v1. Furthermore, if Bn = un/vn then

Bn+1 =

(
un
vn

)2
+ 2

2un
vn

=
u2n + 2v2n
2unvn

=
un+1

vn+1
.

It follows by mathematical induction that Bn = un/vn for all n ≥ 1.

Let A =

(
1 2

1 1

)
. We claim that An =

(
pn 2qn
qn pn

)
for n ≥ 1. This certainly holds for

n = 1. Suppose the claim holds for some n. Then

An+1 = A ·An =

(
1 2

1 1

)(
pn 2qn
qn pn

)
=

(
pn + 2qn 2qn + 2pn
pn + qn 2qn + pn

)
=

(
pn+1 2qn+1

qn+1 pn+1

)
.

Thus the claim is true by mathematical induction.

We also claim that A2n =

(
un+1 2vn+1

vn+1 un+1

)
for all n ≥ 0. This certainly holds for n = 0.

Suppose the claim holds for some n. Then

A2n+1
=

(
A2n

)2
=

(
un+1 2vn+1

vn+1 un+1

)(
un+1 2vn+1

vn+1 un+1

)

=

(
u2n+1 + 2v2n+1 4un+1vn+1

2un+1vn+1 2v2n+1 + u2n+1

)

=

(
un+2 2vn+2

vn+2 un+2

)
.

Thus the claim is true by mathematical induction.
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Therefore, for all non-negative integers n, we have

Bn+1 =
un+1

vn+1
=

p2n

q2n
= A2n .

Solution 8 (Chaitanya Rao)

After writing initial terms we derive a recurrence that defines the numerator and denomi-

nator of An and that leads us to the following conjecture:

The solution to the recurrence for An is

cn :=
√
2
αn + βn

αn − βn

where α = (1 +
√
2) and β = (1−

√
2). To prove this, for n = 1,

c1 =
√
2
α1 + β1

α1 − β1
=

√
2

2

2
√
2
= 1

and

cn + 2

cn + 1
= 1 +

1

cn + 1

= 1 +
1

√
2αn+βn

αn−βn + 1

= 1 +
αn − βn

√
2(αn + βn) + (αn − βn)

=

√
2(αn + βn) + (αn − βn) + αn − βn

√
2(αn + βn) + (αn − βn)

=

√
2
[
(1 +

√
2)αn + (1−

√
2)βn)

]

(1 +
√
2)αn − (1−

√
2)βn

=
√
2
αn+1 + βn+1

αn+1 − βn+1

= cn+1.

Hence cn satisfies the first order recurrence as An with the same initial value and we

conclude cn = An for n = 1, 2, 3 . . .. Next we note that

A2n =
√
2
α2n + β2n

α2n − β2n

=
√
2
(αn + βn)2 + (αn − βn)2

2(αn + βn)(αn − βn)

=
√
2

αn + βn

2(αn − βn)
+

αn − βn

√
2(αn + βn)

=
An

2
+

1

An

=
A2

n + 2

2An
.

It follows that A2n =
A2

2n−1+2

2A2n−1
. If we define dn = A2n−1 for n = 1, 2, . . . we find that

d1 = A1 = 1 and dn+1 = d2n+2
2dn

. This is the same recurrence that defines Bn and we

conclude that Bn+1 = dn+1 = A2n for non-negative integers n.
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Solution 10 (Ian Wanless)

Let X(n) = (1 +
√
2)n and Y (n) = (1 −

√
2)n. We first prove by induction that An =√

2(X(n) + Y (n))/(X(n) − Y (n)). In the base case of n = 1, our formula holds since√
2(X(1) + Y (1))/(X(1) − Y (1)) =

√
2(2)/(2

√
2) = 1 = A1. Now suppose that our

formula hold for n = k. Then

Ak+1 =
Ak + 2

Ak + 1
=

√
2X(k)+Y (k)
X(k)−Y (k) + 2

√
2X(k)+Y (k)
X(k)−Y (k) + 1

=
(
√
2 + 2)X(k) + (

√
2− 2)Y (k)

(
√
2 + 1)X(k) + (

√
2− 1)Y (k)

=
√
2
(1 +

√
2)X(k) + (1−

√
2)Y (k)

(1 +
√
2)X(k)− (1−

√
2)Y (k)

=
√
2
X(k + 1) + Y (k + 1)

X(k + 1)− Y (k + 1)

which means that our formula holds when n = k + 1. By induction the formula holds for

all positive integers n.

Next we use another induction to show that Bn+1 = A2n . The base case, n = 0, works

because we are told that B1 = A1. Assuming that Bk+1 = A2k , we find that

Bk+2 =
(Bk+1)

2 + 2

2Bk+1
=

(A2k)
2 + 2

2A2k
=

(√
2X(2k)+Y (2k)
X(2k)−Y (2k)

)2
+ 2

2
√
2X(2k)+Y (2k)
X(2k)−Y (2k)

=
(X(2k) + Y (2k))2 + (X(2k)− Y (2k))2√

2(X(2k) + Y (2k))(X(2k)− Y (2k))

=
2X(2k)2 + 2Y (2k)2√
2(X(2k)2 − Y (2k)2)

=

√
2(X(2k+1) + Y (2k+1))

X(2k+1)− Y (2k+1)
= A2k+1 .

The required result follows by induction.
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5. Each term of an infinite sequence a1, a2, a3, . . . is equal to 0 or 1. For each positive integer

n,

(i) an + an+1 �= an+2 + an+3, and

(ii) an + an+1 + an+2 �= an+3 + an+4 + an+5.

Prove that if a1 = 0, then a2020 = 1.

Solution 1 (Jamie Simpson)

We show that a2020 = 1.

We will call ai + ai+1 �= ai+2 + ai+3 and ai + ai+1 + ai+2 �= ai+3 + ai+4 + ai+5 rules A and

B, respectively. By Rule A we cannot have 4 consecutive terms of the sequence equal to

each other, so the sequence must begin 0, 1 or 0, 0, 1 or 0, 0, 0, 1.

Suppose first that a0 = 0 and a1=1. Since the sequence begins 0, 1 Rule A means that a3
and a4 are equal. Suppose first that they both equal 0, so the sequence begins 0, 1, 0, 0.

Rule A implies the next members are 0 then 1 so the sequence begins 0, 1, 0, 0, 0, 1; but

this is impossible by Rule B.

We conclude that the sequence begins 0, 1, 1, 1. Next must come 0 by rule A then 0 by

rule B giving 0, 1, 1, 1, 0, 0. Then 0 and then 1 by rule A giving 0, 1, 1, 1, 0, 0, 0, 1. Then 1

by Rule B, then 1 by rule A giving 0, 1, 1, 1, 0, 0, 0, 1, 1, 1. Now the process can be repeated

so that

ai, ai+1, ai+2, ai+3, ai+4, ai+5 = 1, 1, 1, 0, 0, 0

whenever i ≡ 2 mod 6. Since 2018 ≡ 2 mod 6 we have a2018, a2019, a2020 = 1, 1, 1. So

a2020 = 1.

If the sequence begins 0, 0, 1 then similar reasoning means that

ai, ai+1, ai+2, ai+3, ai+4, ai+5 = 1, 1, 1, 0, 0, 0

whenever i ≡ 3 mod 6. Since 2019 ≡ 3 mod 6 we have a2019, a2020, a2021 = 1, 1, 1. So

again a2020 = 1. And if the sequence begins 0, 0, 0, 1 then

ai, ai+1, ai+2, ai+3, ai+4, ai+5 = 1, 1, 1, 0, 0, 0

whenever i ≡ 4 mod 6. Since 2020 ≡ 4 mod 6 we have a2020, a2021, a2022 = 1, 1, 1 and

once again a2020 = 1.

Solution 2 (Alice Devillers)

I first proved a few lemmas, all of which quite easy to prove using rules A and B. Lemma

1: no 4 consecutive of the same digit (immediate by A). Lemma 2: no 101 and no 010 (by

contradiction, use A 3 times then B). Lemma 3: no 1001 and no 0110 (immediate by A).

Then it follows that once you get to 1 in the sequence, it must go 111000 with a period 6.

At the start we get either 1,2, or 3 zeros, then 111000 and repeat. Thus in all three cases,

the sequence has a period of 6. Since 2020 ≡ 4 (mod 6), a2020 is the same as a4 and in all

three cases a4 = 1.
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Solution 3 (Angelo Di Pasquale)

Define Rule 1 : ai + ai+1 �= ai+2 + ai+3, and Rule 2 : ai + ai+1 + ai+2 �= ai+3 + ai+4 + ai+5.

The subsequence 010 is forbidden because tracing it forward (or backward) using rule 1

yields 010001 which violates rule 2. Since the transformation x → 1− x preserves rules 1

and 2, it follows that the subsequence 101 is also forbidden.

Also the subsequences 0110, 1001, 1111 and 0000 are forbidden by rule 1.

Since there must be 1 somewhere near the middle of the sequence (to avoid 0000), it must be

part of 111. To avoid the six forbidden subsequences, the 111 subsequence uniquely extends

in each direction as a subsequence of the doubly infinite sequence . . . 000111000111000111 . . .

until we reach a1 and a2020. So the sequence has antiperiod 3. As 3 | 2019, we have

a1 �= a2020, from which the result follows.

Solution 4 (Angelo Di Pasquale)

As in alternative solution 1, the six subsequences 010, 101, 0110, 1001, 1111 and 0000 are

forbidden.

There is no way to replace the symbols u and v in 1uv1 or in 0uv0 without it containing

one of the six forbidden subsequences. This shows that the sequence has antiperiod 3, and

we conclude as in solution 1.

Solution 5 (Andrew Elvey Price)

We start by showing that there is no consecutive sequence 010. Suppose for the sake of

contradiction that such a sequence occurs in the first 2010 terms. Then by successive

applications of rule A, the following three terms of the sequence must be 001, but this

contradicts rule B. Similarly, if the sequence 010 occurs in the last 20 terms, it must be

preceeded by 100, which again contradicts rule B.

Note that by symmetry there is no sequence 101.

Now we will show that two terms of the sequence with exactly two terms separating them

must be different i.e., ai+3 = 1 − ai. Suppose for the sake of contradiction that they are

the same. WLOG we assume that they are both 0’s, so we have a sequence 0??0. By rule

A the two numbers denoted by ? must be different, however this contradicts rule C.

We have proven that ai+3 = 1− ai for all i. Hence,

a2020 = 1− a2017 = a2014 = . . . = 1− a1 = 1.

Solution 6 (Ivan Guo)

We first prove that ai �= ai+3 by contradiction. WLOG, they are both 0 (otherwise we can

take bi = 1− ai and argue the same way) and i+ 6 ≤ 2020 (otherwise we can reverse the

sequence). Then there are four possibilities for the terms ai, . . . , ai+3:

0000, 0110, 0100, 0010.

The first two are clearly bad by rule A. If we have 0100, the next two are forced by rule A

to be 010001, but then this violates rule B. If we have 0010, the next three are forced by
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rule A to be 0010001 which again violates rule B. So we have the required contradiction.

Hence the sequence alternates every 3 terms. Therefore a2020 = 1− a2017 = 1− a1 = 0 as

2017 is 1 mod 6.

Solution 7 (Daniel Mathews)

First, there can never be three consecutive terms 0,1,0. For if there were, then the next

term must be 0 (else 0+1=0+1), then 0 (else 1+0=0+1), then 1 (Else 0+0=0+0). But

then we have six consecutive terms 0,1,0,0,0,1, a contradiction since 0+1+0=0+0+1.

The same argument with 0s and 1s reversed shows there can never be any three consecutive

terms 1,0,1.

Consider the sequence as consisting of a block of 0s, then a block of 1s, then a block of 0s,

and so on. If a block (other than the first) has size 1, then we have 3 consecutive terms

101 or 010, a contradiction. If a block (other than the first) has size 2, then we have 4

consecutive terms 0110 or 1001, a contradiction since 0+1=1+0 and 1+0=0+1. And if a

block has size 4 or more, then we have 4 consecutive terms 0000 or 1111, a contradiction

since 0+0=0+0 and 1+1=1+1.

Thus the first block has length at most 3, and every subsequent block has length exactly

3. Accordingly, for all i, ai+3 is different from ai. Since 2020 - 1 = 2019 is an odd multiple

of 3, a1 is different from a2020. So a1 = 0 implies a2020 = 1.

Solution 8 (Kevin McAvaney)

Assume a2020 = 0. Then, using the given rules and working backwards from a2020, we

have the following sequence endings up to a2020. The question marks indicate no possible

term. In cases 2, 4, 6, the sequence 111000 recurs backwards.

1. ?0001000

2. 111000111000

3. ?000100

4. 11100011100

5. ?00010

6. 1110001110

Since 2020 = 6*336 + 4, sequence 2 starts with 1000111000 · · · , sequence 4 starts with

11000111000 · · · , sequence 6 starts with 111000111000 · · · . In each case a1 = 1, a contra-

diction.

Solution 9 (Alan Offer)

Refer to the two conditions as (1) and (2).

With the intention of arriving at a contradiction, suppose ai+3 = ai. Then ai+1 �= ai+2

by (1), so ai+1+ai+2 = 1. Hence ai+3+ai+4 �= 1, so by (1) again, we have ai+4 = ai+3 = ai.

As exactly one of ai+1 and ai+2 is equal to ai, while both of ai+3 and ai+4 are equal to ai,

it follows from (2) that ai+5 = ai as well.
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Now exactly two of ai+1, ai+2 and ai+3 are equal to ai, while both of ai+4 and ai+5 are

equal to ai, so again by (2), it follows that ai+6 = ai.

But ai+3 = ai+4 = ai+5 = ai+6 is contrary to (1). Thus the original assumption is false.

Hence ai+3 �= ai. In particular, the terms a1, a4, a7, a10, . . . alternate, with ai = a1 for

i ≡ 1 (mod 6) and ai �= a1 for i ≡ 4 (mod 6). As 2020 ≡ 4 (mod 6) and a1 = 0, it follows

that a2020 = 1.

Solution 10 (Thanom Shaw)

I think it’s somehow easier to see everything in a tree diagram, so I’ve drawn one up to

help see the solution to this problem.

The tree diagram below shows the options for each term in the sequence starting with

a1 = 0. A 0 or 1 in red indicates that that term breaks one of the given conditions and so

such a sequence is would not be valid.

From the tree diagram we can see the only valid sequences begin:
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0, 0, 0, 1, 1, 1, 0, 0, 0, . . .

0, 0, 1, 1, 1, 0, 0, 0, . . .

0, 1, 1, 1, 0, 0, 0, . . .

Finally, note that a sequence containing the six consecutive terms 1, 1, 1, 0, 0, 0 can only

continue repeating this sequence 1, 1, 1, 0, 0, 0.

Hence the only sequences satisfying both conditions begin with one, two, or three 0s, and

then repeating 1, 1, 1, 0, 0, 0.

Consider now the 2020th term. Since

2020− 1 ≡ 2019 ≡ 3 mod 6,

2020− 2 ≡ 2018 ≡ 2 mod 6,

2020− 3 ≡ 2017 ≡ 1 mod 6,

the 2020th term is the 3rd, 2nd, or 1st term of the repeating sequence 1, 1, 1, 0, 0, 0, and

hence is a 1.
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6. Let ABCD be a square. For a point P inside ABCD, a windmill centred at P consists of

two perpendicular lines �1 and �2 passing through P , such that

� �1 intersects the sides AB and CD at W and Y , respectively, and

� �2 intersects the sides BC and DA at X and Z, respectively.

A windmill is called round if the quadrilateral WXY Z is cyclic.

Determine all points P inside ABCD such that every windmill centred at P is round.

Solution 1 (Norman Do)

Since ∠WBX = ∠WPX = 90◦, we know that the quadrilateral WBXP is cyclic. Simi-

larly, since ∠Y DZ = ∠Y PZ = 90◦, we know that the quadrilateral Y DZP is cyclic.

Suppose that the quadrilateral WXY Z is cyclic. Then we have the following equal angles.

∠ABP = ∠WBP = ∠WXP = ∠WXZ = ∠ZYW = ∠ZY P = ∠ZDP = ∠ADP

Therefore, triangles ABP and ADP share the common side AP , have the equal sides AB =

AD, and have the equal angles ∠ABP = ∠ADP . It follows that either ∠APB = ∠APD

or ∠APB + ∠APD = 180◦. In the first case, triangles ABP and ADP are congruent,

so P must lie on the segment AC. In the second case, P must lie on the segment BD.

Therefore, P lies on one of the diagonals of the square ABCD.

A

B C

D

X

Z

Y

W

P

Conversely, suppose that P lies on one of the diagonals of the square ABCD. In fact, we

may assume without loss of generality that P lies on AC. Then the triangles ABP and

ADP are congruent and we have the following equal angles.

∠WXZ = ∠WXP = ∠WBP = ∠ABP = ∠ADP = ∠ZDP = ∠ZY P = ∠ZYW

Since ∠WXZ = ∠ZYW , it follows that the quadrilateral WXY Z is cyclic.

Solution 2 (Alice Devillers)
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Assume P has the property. Then in particular the quadrilateral with � horizontal is

cyclic. Let PW = a, PZ = b and the square have side L. Then tan(∠WZP ) =

a/b, tan(∠Y ZP ) = (L − a)/b, so tan(∠Y ZW ) = bL
b2−a(L−a)

. Similarly tan(∠WXY ) =
(L−b)L

(L−b)2−a(L−a)
. Since WXY Z is cyclic, the two angles must add up to 180, so the tan-

gents must be opposite numbers. Hence bL
b2−a(L−a)

= − (L−b)L
(L−b)2−a(L−a)

, which simplifies to

L(a− b) = a2 − b2, so either a = b and P is on AC, or a = L− b and P is on BD.

Conversely, assume P is on a diagonal, WLOG say AC. Because of the two right angles the

two quadrilaterals WAZP and XCY P are cyclic. It follows that ∠WZP = ∠WAP = 45,

so the right-angled triangle WZP is isosceles, and PZ = PW . Similarly PY = PX. It

follows that the triangles PY Z and PXW are congruent, and ∠Y ZP = 90 − ∠PXW .

Now we see that ∠Y ZW + ∠Y XW = ∠Y ZP + ∠PZW + ∠Y XP + ∠PXW = (90 −
∠PXW ) + 45 + 45 + ∠PXW = 180. Thus the quadrilateral WXY Z is cyclic.

Solution 3 (Angelo Di Pasquale)

The following is an alternative to the “hard part” of the problem only.

If WXY Z is cyclic, then we deduce as in the official solution that ∠ABP = ∠ADP . Then

the sine rule in triangles ABP and ADP yields

AD

sin∠APD
=

AP

sin∠ADP
=

AP

sin∠ABP
=

AB

sin∠APB
.

Since AB = AD we obtain either ∠APB = ∠APD or ∠APB + ∠APD = 180◦, then

continue as in the official solution.

Solution 4 (Angelo Di Pasquale)

The following is an alternative to the “hard part” of the problem only.

If P does not lie on the diagonal BD, then without loss of generality, P lies inside triangle

ABD. If WXY Z is cyclic, then we deduce as in the official solution that ∠ABP =

∠ADP = α, say. Thus we also have ∠PBD = ∠PDB = 45◦ − α. Therefore, triangle

PDB is isosceles with PD = PB. Hence P lies on the perpendicular bisector of BD —

that is, P lies on AC. Thus if WXY Z is cyclic, then P must lie on one of the diagonals.

Solution 6 (Ivan Guo)

Set A(1, 1), B(1,−1), C(−1,−1), D(−1, 1) and P (a, b). Let the gradient of WY be m, then

very quickly you can work out the following:

PW 2 = (1+m2)(1−a)2, PY 2 = (1+m2)(1+a)2, PX2 = (1+m2)(1+b)2, PY 2 = (1+m2)(1−b)2.

By power of a point, WXY Z is necessarily cyclic if and only if

(1− a2)2 = (1− b2)2.

Since both a, b are between −1 and 1, the solution of this equation is a = ±b which

corresponds to the diagonals of the square.
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Solution 6 (Kevin McAvaney)

Let P be any point inside the square ABCD, where A = (0, s), B = (s, s), C = (s, 0),

and D = (0, 0). Suppose that all of the quadrilaterals WXY Z are cyclic and consider

the quadrilateral for which XZ is horizontal and WY is vertical. Let P have coordinates

(a, b) and note that the triangles XPY and WPZ are similar. This leads to the equation
b
a = s−a

s−b . Hence, we obtain s(a− b) = a2− b2, which yields a = b or a = s− b. Either way,

P lies on a diagonal of ABCD.

The converse is the same as in the official solution.
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7. A tetromino tile is a tile that can be formed by gluing together four unit square tiles, edge

to edge. For each positive integer n, consider a bathroom whose floor is in the shape of a

2× 2n rectangle. Let Tn be the number of ways to tile this bathroom floor with tetromino

tiles. For example, T2 = 4 since there are four ways to tile a 2× 4 rectangular bathroom

floor with tetromino tiles, as shown below.

Prove that each of the numbers T1, T2, T3, . . . is a perfect square.

Solution 1 (Sean Gardiner)

Let Fn denote the Fibonacci sequence, defined by F0 = 1, F1 = 1 and Fn+1 = Fn + Fn−1

for n ≥ 1. We will prove that Tn = F 2
n .

Consider a tiling of a 2 × 2n rectangle with tetrominoes, where n ≥ 2. Consider the

behaviour of the tiling in the leftmost column of the rectangle. Exactly one of the following

three cases must arise.

� The leftmost column is covered by a 2 × 2 square, whose removal leaves one of the

Tn−1 tilings of the 2× 2(n− 1) rectangle.

� The leftmost column is covered by two 1× 4 rectangles, whose removal leaves one of

the Tn−2 tilings of the 2× 2(n− 2) rectangle.

� The leftmost column is covered by an L-tetromino and resembles one of the following

diagrams, or their reflections in a horizontal axis. The areas outlined by dashed lines

are tiled with 1×4 rectangles. (Observe that there may actually be any non-negative

integer number of 1 × 4 rectangles appearing in the diagram.) The top case occurs

when the area covers a number of columns that is 0 modulo 4, while the bottom case

occurs when the area covers a number of columns that is 2 modulo 4. The removal

of these areas leaves one of the Tn−k tilings of the 2 × 2(n − k) rectangle, where

k = 2, 3, . . . , n. The case k = n leaves zero columns, so we set T0 = 1 to allow for

this case.

Hence, we have shown that the following recursion holds for n ≥ 2.

Tn = Tn−1 + Tn−2 + 2(T0 + T1 + · · ·+ Tn−2).

Using this equation, one can directly verify that for n ≥ 3,

Tn − 2Tn−1 − 2Tn−2 + Tn−3 = 0.
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Now observe that

F 2
n + F 2

n−3 = (Fn−1 + Fn−2)
2 + (Fn−1 − Fn−2)

2 = 2F 2
n−1 + 2F 2

n−2.

We can check that Tn = F 2
n for small values of n and then use these two matching recursions

to deduce that Tn = F 2
n for all positive integers n.

Solution 2 (Norman Do)

We use the known fact that a tiling of a 1× n rectangle with unit squares and dominoes

is enumerated by the Fibonacci number Fn, as defined in the official solution. Therefore,

the number of tilings of a 2 × n rectangle with unit squares and horizontal dominoes is

simply F 2
n . We will provide a bijection between the tilings of a 2× n rectangle with unit

squares and horizontal dominoes and the tilings of a 2× 2n rectangle with tetrominoes.

Consider a tiling of a 2 × n rectangle with unit squares and horizontal dominoes. Divide

it into pieces by cutting along all vertical lines that do not pass through a domino.

� If a piece consists of two unit squares on top of each other, then we replace it with a

2× 2 rectangle.

� If a piece consists of two dominoes on top of each other, then we replace it with two

1× 4 rectangles on top of each other.

� Otherwise, the piece must resemble one of the following diagrams, or theire reflefc-

tions in a horizontal axis. The areas outlined by dashed lines are tiled with dominoes.

(Observe that there may actually be any positive integer number of dominoes appear-

ing in the diagram.) In this case, we replace the diagram with the respective diagrams

from the official solution.

The construction gives the necessary bijection between the tilings of a 2×n rectangle with

unit squares and horizontal dominoes and the tilings of a 2×2n rectangle with tetrominoes.

Therefore, we conclude that Tn = F 2
n .

Solution 3 (Jamie Simpson)

Say that Tn is the number of ways of using n tetrominoes to make a 2n× 2 rectangle, Un

the number of ways using n tetrominoes to make a shape ending in a length 2 upper prong

(as kindly illustrated by Norman) and Ln the number of ways of making a shape ending

in a lower prong. We can make a 2 × (n + 1) rectangle by adding a 2× 2 square to an n

tetromino rectangle, by adding two 4× 1 tetrominoes to an n− 1 tetromino rectangle, by
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adding an L-shaped tetromino to an n tetromino shape ending in an upper prong or an n

tetromino shape ending in a lower prong. This means we have

Tn+1 = Tn + Tn−1 + Un + Ln.

An n+ 1 tetromino upper prong shape can be made be adding an L shaped tetromino to

an n tetromino rectangle or by adding a 1 × 4 tetromino to an n tetromino lower prong

shape. This gives

Un+1 = Tn + Ln.

Similarly, by considering making lower prong shapes we get

Ln+1 = Tn + Un.

It’s easily checked that

T1 = 1 U1 = 1 L1 = 1

T2 = 4 U2 = 2 L2 = 2.

Then using the recurrence equations we get

n Tn Un Ln

1 1 1 1

2 4 2 2

3 9 6 6

4 25 15 15

This suggests that Tn = F 2
n+1, Un = FnFn+1 and Ln = FnFn+1 where Fn is the nth

Fibonacci number. We use induction to prove this. From the table we see it holds for low

values of n. Assume it holds for n. Then

Tn+1 = Tn + Tn−1 + Un + Ln

= F 2
n+1 + F 2

n + 2FnFn−1

= (Fn + Fn+1)
2

= F 2
n+2.

Un+1 = Tn + Ln.

= F 2
n+1 + FnFn+1

= Fn+1(Fn+1 + Fn)

= Fn+1Fn+2.

Since Un = Ln the result follows by induction and we see that Tn+1 is a perfect square for

all n.

Solution 4 (Ian Wanless)
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Alternative way to get from the first recurrence of the official solution to the answer:

F 2
n = (Fn−1 + Fn−2)

2 = F 2
n−1 + F 2

n−2 + 2Fn−1Fn−2

= F 2
n−1 + F 2

n−2 + 2Fn−2(Fn−2 + Fn−3)

= F 2
n−1 + 3F 2

n−2 + 2(Fn−3 + Fn−4)Fn−3

= F 2
n−1 + 3F 2

n−2 + 2F 2
n−3 + 2Fn−3Fn−4

...

= F 2
n−1 + 3F 2

n−2 + 2F 2
n−3 + 2F 2

n−4 + · · ·+ 2F0
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8. Prove that for each integer k satisfying 2 ≤ k ≤ 100, there are positive integers b2, b3, . . . , b101
such that

b 22 + b 33 + · · ·+ b kk = b k+1
k+1 + b k+2

k+2 + · · ·+ b 101101 .

Solution 1 (Angelo Di Pasquale)

Lemma. Consider the equation

xk =
n∑

i=1

xkii , (1)

where k, k1, . . . , kn are given positive integers. If gcd(k, ki) = 1 for i = 1, . . . , n, then

equation (1) has a solution in positive integers x, x1, . . . , xn.

Proof. Let d =
∏n

i=1 ki, and let xi = y
d
ki for some positive integer variable y. Equation

(1) becomes

xk = nyd. (2)

Let y = nz and x = nw for some positive integer variables z and w. Equation (2) becomes

nkw = ndz+1 ⇒ kw = dz + 1. (3)

Since gcd(k, d) = 1, by the Euclidean algorithm, (3) has solutions in positive integers w

and z.

We use the lemma extensively in the problem at hand..

If k ≥ 52, then let b100 = b99 = · · · = bk+1 = bk = bk−1 = · · · = b2k−99 = 1. It remains to

solve b101101 =
∑2k−100

i=2 bii. Since 101 is prime, and all the superscripts on the right are less

than 101, we may apply the lemma to dispose of this case.

If k = 51, then let bi = 1 for all 2 ≤ i ≤ 101.

If 11 ≤ k ≤ 50, then at most 8 of the terms on the RHS have superscripts that are multiples

of 11. Thus we may set all bi on the LHS equal to 1 except for b11, and the same number

of bi on the RHS equal to 1, and making sure that all bi with 11 | i on the RHS are set

equal to 1. What is left is an equation of the form b1111 =
∑

bjiji where none of the ji are

divisible by 11. Hence we may apply the lemma to dispose of this case.

If 3 ≤ k ≤ 10, let bi = 1 for every i > k with 3 | i (there are at least 30 and at most 32 of

such i). Also let b1 = 6. Set the remaining bi on the LHS equal to 1 except for b3 and the

correct number of remaining bi on the RHS equal to 1 so that what is left is an equation

of the form b33 =
∑

bjiji where none of the ji are divisible by 3. Hence we may apply the

lemma to dispose of this case.

Finally, if k = 2, then let b1 = 11, b3 = b4 = 2, and bi = 1 for 5 ≤ i ≤ 101.

Hence we have covered all required k.

Solution 2 (Andrew Elvey Price)

Let x and ρ be positive integers to be determined later and set

� b2 = xρ
100!
2

� b101 = ρ
100!+1
101
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� bj = ρ
100!
j for 3 ≤ j ≤ 100.

Then the equation that we want to solve becomes

x2ρ100! + ρ100! + . . .+ ρ100! = ρ100! + . . .+ ρ100! + ρ100!+1.

which, dividing by ρ100! is equivalent to

x2 + k − 2 = 100− k + ρ.

This evidently has many solutions, for example we can set x = 10 and ρ = 2k − 2.

Solution 3 (Ivan Guo)

Consider the equation

b22 + · · ·+ bkk − bk+1
k+1 − · · · − b100100 = L.

First choose b2, . . . , b100 arbitrarily so that L is positive (e.g., by making b2 very big). Since

101 is coprime to 100!, there exists positive integers c, d such that 100!c + 1 = 101d (in

fact, by Wilson’s theorem, c = 1 works). The multiplying both sides by L100!c, we have

(b2L
100!c/2)2+ · · ·+(bkL

100!c/k)k−(bk+1L
100!c/(k+1))k+1−· · ·−(b100L

100!c/100)100 = (Ld)101,

as required.
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