2014 Raytheon MATHCOUNTS National Competition Friday May 9, 2014 - Washington, D.C.

Rank	Student	State	Grade
1	Swapnil Garg	CA	8
2	Kevin Liu	IN	7
S	Daniel Zhu	MD	7
S	Alan Peng	MO	8
Q	Nicholas Sun	IL	8
Q	Hongyi Chen	CO	8
Q Q	Colin Tang	WA	7
Q	Vinjai Vale	ΤX	8
Р	Freddie Zhao	MI	7
Р	Jun-Hee Lee	IA	8
Р	Graham O'Donnell	FL	8
Р	Akshaj Kadaveru	VA	8
13	Elbert Du	IL	8
14	Andy Xu	SC	7
15	Daniel Kim	NJ	8
16	Franklyn Wang	VA	8
17	Kevin Feng	ΤX	8
18	Vincent Huang	ΤX	7
19	Alexander Gu	IN	7
20	Jason Lee	MD	7
21	Brian Reinhart	FL	8
22	Daniel Liu	WA	8
23	Zack Lee	NC	8
24	Raymond Feng	NY	7
25	Jeffrey Chang	MA	8
26	Chang Yu	ΤN	8
27	Allen Ryu	MS	7
28	Joseph Feffer	PA	8

Rank Team

1	California
2	Maryland

- Maryland
 Virginia
- 4 New York
- 5 Pennsylvania
- 6 Indiana
- 7 Texas
- 8 Massachusetts
- 9 Florida
- 10 Colorado
- 11 Illinois
- 12 Washington

Rank	Student	State	Grade
29	Harry Wang	CA	8
30	Rajiv Movva	CA	8
31	William Sun	VA	8
32	Hannah Zhang	CO	8
33	William Wang	KS	7
34	Walker Kroubalkian	AZ	7
35	Christopher Lee	PA	7
36	Peter Rowley	MA	8
37	Jeffery Li	CA	7
38	Jae Hyun Lim	NE	8
39	Kaan Dokmeci	NM	8
40	Srivats Narayanan	KS	8
41	Joshua Lee	VA	8
42	Daniel Chu	GA	8
43	Spencer Liu	MI	8
44	Richard Xu	NY	8
45	Thomas Luo	MD	7
46	David Ma	MA	8
47	Matthew Dai	NC	8
48	Allen Chen	IL	7
49	Alan Tu	NY	7
50	Jeremy Chen	MA	8
51	Wanlin Li	PA	8
52	Samuel Merson	AZ	8
53	Michelle Shen	IN	8
54	Anders Olsen	OR	8
55	Richard Liu	FL	8
56	Peter Zhu	OH	8

Rank Team

- 13 Kansas14 Michigan
- 15 Nevada
- 16 New Jersey
- 17 North Carolina
- 18 South Carolina
- 19 Iowa
- 20 Wisconsin
- 21 Oregon
- 22 Ohio
- 23 Arizona

Written Competition Champion - Kevin Liu, Indiana Written Competition Runner-Up - Nicholas Sun, Illinois

2014 Raytheon MATHCOUNTS National Competition

Competition Statistics

Orlando, FL Friday, May 9, 2014 National Competition

Scoring Statistics

		Individual	Team		
	Indiv. Total	Sprint Score	Target Score	Team Total	Team Round
Minimum	4.00	4.00	0.00	14.75	6.00
Average	24.16	15.84	8.32	35.27	11.11
Maximum	43.00	28.00	16.00	52.75	18.00
Std. Dev.	9.37	5.64	4.23	9.97	2.88

Grade / Gender Distribution

Grade:	М	F	U	Total
6	8	1		9
7	53	7		60
8	132	23		155
Total	193	31	0	224

Score Distributions

2014 Raytheon MATHCOUNTS National Competition

Orlando, FL

Friday, May 9, 2014

National Competition

5/9/2014 8:22:33 PM

Score Distributions

2014 Raytheon MATHCOUNTS National Competition

Orlando, FL

Friday, May 9, 2014

National Competition

2014 Raytheon MATHCOUNTS National Competition

Orlando, FL

Question Analysis

Friday, May 9, 2014

National Competition

5/9/2014 8:22:58 PM

MATHCOUNTS[®]

2014 ■ National Competition ■ Answer Key

The appropriate units (or their abbreviations) are provided in the answer blanks.

Note to coordinators: Answers to the Tiebreaker Round problems appear in the Tiebreaker Round Booklet.

2014 MATHCOUNTS National Competition Sponsor National Sponsors Raytheon Company Northrop Grumman Foundation U.S. Department of Defense National Society of Professional Engineers CNA Foundation Phillips 66 Texas Instruments Incorporated 3M Foundation Art of Problem Solving NextThought

FOUNDING SPONSORS: National Society of Professional Engineers, National Council of Teachers of Mathematics and CNA Foundation

Copyright MATHCOUNTS, Inc. 2014. All rights reserved.

	int Round Answ	vers	11 00			21	1		
1.	5000.5		11. 90			21.	$\frac{1}{4}$		
2.	30 %		12. 2013			22. 4	2		
3.	8 years		13. 4 solutions			23. 9	base	e 10	
4.	\$6.50		14. 9 pairs			24. 2	22		
5.	20		15. $\frac{13}{1024}$			25. 2	25		
6.	(1, -1)		16. 11 m ²			26. \$			
7.	28		17. 19			27. $\frac{3}{5}$	3		
8.	24 cm		18. $\frac{35}{72}$			28. 0)		
9.	-11		18. $\frac{35}{72}$ 19. $\frac{26}{9}$			29. 3	2 pag	ges	
10.	$2 + \sqrt{3}$ cm or $\sqrt{3} + 2$		20. 5			30. 8	3		
	get Round Answ							19	
1.			65 13 travelers	5. 6.	$\frac{56 \text{ in}^2}{\frac{23}{2}}$		7. 8.	$\frac{\frac{19}{118}}{\frac{7}{10}}$ in	
1. 2.	5	3. 4.						$\frac{\frac{19}{118}}{\frac{7}{10}}$ in	
1. 2.	5 \$3.83	3. 4.						$\frac{\frac{19}{118}}{\frac{7}{10}}$ in	
1. 2. Tear	5 \$3.83 m Round Answe	3. 4. ers		6.	$\frac{23}{2}$ 32 units^2 46 in^2			$\frac{\frac{19}{118}}{\frac{7}{10}}$ in	
1. 2. Tear 1.	5 \$3.83 m Round Answe 25 boxes	3. 4. ers		6.	$\frac{23}{2}$ 32 units^2 46 in^2 27			$\frac{\frac{19}{118}}{\frac{7}{10}}$ in	
1. 2. Tear 1. 2.	5 \$3.83 m Round Answe 25 boxes \$1150 or 1150.00	3. 4. ers		6. 6. 7.	$\frac{23}{2}$ 32 units^2 46 in^2			$\frac{\frac{19}{118}}{\frac{7}{10}}$ in	
1. 2. Tear 1. 2. 3.	5 \$3.83 m Round Answe 25 boxes \$1150 or 1150.00 2685	3. 4. ers		6. 7. 8. 9.	$\frac{23}{2}$ 32 units^{2} 46 in^{2} $\frac{27}{15,625}$			$\frac{\frac{19}{118}}{\frac{7}{10}}$ in	
1. 2. Tear 1. 2. 3. 4.	5 \$3.83 m Round Answe 25 boxes \$1150 or 1150.00 2685 65 <u>1</u>	3. 4. ers		6. 7. 8. 9.	$\frac{23}{2}$ 32 units ² 46 in ² $\frac{27}{15,625}$ 1020 ways			$\frac{\frac{19}{118}}{\frac{7}{10}}$ in	

2014 National Competition **Sprint Round** Problems 1–30

HONOR PLEDGE

I pledge to uphold the highest principles of honesty and integrity as a Mathlete®. I will neither give nor accept unauthorized assistance of any kind. I will not copy another's work and submit it as my own. I understand that any competitor found to be in violation of this honor pledge is subject to disqualification.

Signature _____ Date _____

Printed Name

State

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This section of the competition consists of 30 problems. You will have 40 minutes to complete all the problems. You are not allowed to use calculators, books or other aids during this round. If you are wearing a calculator wrist watch, please give it to your proctor now. Calculations may be done on scratch paper. All answers must be complete, legible and simplified to lowest terms. Record only final answers in the blanks in the left-hand column of the competition booklet. If you complete the problems before time is called, use the remaining time to check your answers.

In each written round of the competition, the required unit for the answer is included in the answer blank. The plural form of the unit is always used, even if the answer appears to require the singular form of the unit. The unit provided in the answer blank is the only form of the answer that will be accepted.

Total Correct	Scorer's Initials

2014 MATHCOUNTS **National Competition Sponsor** **NATIONAL SPONSORS**

Raytheon Company Northrop Grumman Foundation U.S. Department of Defense National Society of Professional Engineers **CNA** Foundation Phillips 66 Texas Instruments Incorporated **3M** Foundation Art of Problem Solving NextThought

FOUNDING SPONSORS: National Society of Professional Engineers, National Council of Teachers of Mathematics and CNA Foundation

Copyright MATHCOUNTS, Inc. 2014. All rights reserved.

1	What is the mean of the 10,000 integers from 1 to 10,000, inclusive? Express your answer as a decimal to the nearest tenth.
2%	What percent of the integers from 3 to 12, inclusive, are neither primes nor multiples of 4?
3. years	On the next full moon, Bob will celebrate being alive for 100 full moons. On average, the cycle of the moon has lasted 29.53 days since he was born. In years, how old will Bob be on his 100-moons birthday? Express your answer to the nearest whole number.
4	Samantha bought 6 total pounds of red and green candies to share with her friends. The red candies cost \$1.00 per pound and the green candies cost \$1.25 per pound. She bought twice as many pounds of red candies as green candies. How much did Samantha pay for the 6 pounds of candies?
5	The sum of nine consecutive integers is 216. What is the smallest of the nine integers?
6. (,)	A kite is a quadrilateral in which two pairs of adjacent sides are congruent. Points A(-2, 1), B(1, 5), C(4, 1) and D(x , y) are vertices of a convex kite with an area of 18 units ² . If x and y are integers, what are the coordinates of point D? Express your answer as an ordered pair.

Copyright MATHCOUNTS, Inc. 2014. All rights reserved. 2014 National Sprint Round

7	What is the smallest value of <i>x</i> such that $3(x - 21) > 8$ and <i>x</i> is a	multiple of 7?
8. <u>cm</u>	Two squares, with integer side lengths <i>a</i> and <i>b</i> , are arranged so that one entire side of the smaller square overlaps a part of a side of the larger square, and the two squares share a vertex, as shown. The perimeter of the entire figure is 86 cm, and the sum of the areas of the two squares is 386 cm ² . In centimeters, what is the value of $a + b$?	a
9	The mean of 10, 4, 1, x and 1 is equal to the median. What is the possible value of x ?	
10. <u>cm</u>	Lothario wants to cut out five circles, each 2 cm in diameter, from piece of cardboard that is 6 cm long. What must be the min the rectangular cardboard? Express your answer in simple	imum width of
11	$j \leftarrow 2$ If $j \parallel k$, what is the value of x , in the figure shown?	0° 140° <i>x</i> ° 30°
12	What is the value of $\frac{2013^3 - 2 \cdot 2013^2 \cdot 2014 + 3 \cdot 2013 \cdot 2014^2 - 2014^2}{2013 \cdot 2014}$	$\frac{4^3+1}{2}$?
	Copyright MATHCOUNTS, Inc. 2014. All rights reserved. 2	014 National Sprint Round

13. <u>solutions</u>	The integers 1 through 6 are to be used, each exactly once to fill the six circles in the figure so that the sums of three integers along each side of the triangle are the same. How many different solutions are possible? (Note that two solutions are considered the same if one can be rotated or reflected to obtain the other.)
14 pairs	How many pairs of consecutive, positive three-digit multiples of 9 contain the same three digits?
15	7 5 3 1 5 5 3 1 5 5 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 ²	A right triangle has a hypotenuse of 10 m and a perimeter of 22 m. In square meters, what is the area of the triangle?
17	For the following system of equations, what is the value of c? a+b+c+d=88 a+b+c+e=84 a+b+d+e=82 a+c+d+e=78 b+c+d+e=72
18	Alexi rolled four standard dice and lined them up to create a 4-digit number. He removed two dice from the line and rolled them again. Alexi then returned each re-rolled die to its original position in the line, thereby creating a new 4-digit number. What is the probability that the new 4-digit number is greater than the original 4-digit number? Express your answer as a common fraction.
	Copyright MATHCOUNTS, Inc. 2014. All rights reserved. 2014 National Sprint Round

19	In circle P with radius 2 units, $m \angle NPR = 100^\circ$. If the shaded region has area $k\pi$ units ² , what is the value of k? Express your answer as a common fraction.
20	For integers <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> , $(x^2 + ax + b)(x^2 + cx + d) = x^4 + x^3 - 2x^2 + 17x - 5$. What is the value of $a + b + c + d$?
21	Two random integers, <i>a</i> and <i>b</i> , are independently chosen, with replacement, from 1 to 1000, inclusive. What is the probability that both $2^a + 2^b$ and $3^a + 3^b$ are multiples of 5? Express your answer as a common fraction.
22	What is the smallest integer greater than 38 that cannot be the length of the hypotenuse of a right triangle with integer side lengths?
23. <u>base 10</u>	In base <i>b</i> , 441_b is equal to n^2 in base 10, and 351_b is equal to $(n-2)^2$ in base 10. What is the value of <i>b</i> , expressed in base 10?
24	Larry tells Mary and Jerry that he is thinking of two consecutive integers from 1 to 10. He tells Mary one of the numbers, and he tells Jerry the other number. Then the following conversation occurs between Mary and Jerry: Mary: I don't know your number. Jerry: I don't know your number, either. Mary: Ah, now I know your number. Assuming both Mary and Jerry used correct logic, what is the sum of the possible numbers Mary could have?
	Copyright MATHCOUNTS, Inc. 2014. All rights reserved. 2014 National Sprint Round

25	If the 4014th term of a geometric sequence of non-negative numbers is 135, and the 14th term is 375, what is the 2014th term?
26	A certain car drives 40 mi per gallon of gas at a rate of 60 mi/h. The same car drives 35 mi per gallon of gas at a rate of 75 mi/h. Thus, traveling at the higher speed saves time, but uses more gas. Gasoline costs \$3.50 per gallon. What is the expense for each hour of time saved when traveling at the higher speed?
27	An unfair coin has the property that when flipped four times, the probability of it landing twice heads up and twice tails up (in any order) is the same as the probability of it landing three times heads up and once tails up (in any order). What is the probability of this coin landing heads up in one flip? Express your answer as a common fraction.
28	If $f(x) = \frac{ax+b}{cx+d}$, $abcd \neq 0$ and $f(f(x)) = x$ for all x in the domain of f, what is the value of $a + d$?
29 pages	Sam and Delilah are reading different books. Today, Sam and Delilah read one chapter in their respective books, and they each read more than one page. Interestingly, they read the same number of pages, but the sum of the page numbers for the chapter Sam read was 880, and the sum of the page numbers for the chapter Delilah read was 1008. How many pages did Sam read today?
30	The area of the largest equilateral triangle that can be inscribed in a square of side length 1 unit can be expressed in the form $a\sqrt{b} - c$ units ² , where <i>a</i> , <i>b</i> and <i>c</i> are integers. What is the value of $a + b + c$?
	Copyright MATHCOUNTS, Inc. 2014. All rights reserved. 2014 National Sprint Round

2014 ■ National Compe Target Rour	
ame	
ate	
O NOT BEGIN UNTIL YOU ARE O SO.	INSTRUCTED TO

Total Correct	Scorer's Initials

NATIONAL SPONSORS

Raytheon Company Northrop Grumman Foundation U.S. Department of Defense National Society of Professional Engineers CNA Foundation Phillips 66 Texas Instruments Incorporated 3M Foundation Art of Problem Solving NextThought

2014 MATHCOUNTS National Competition Sponsor

FOUNDING SPONSORS: National Society of Professional Engineers, National Council of Teachers of Mathematics and CNA Foundation

Copyright MATHCOUNTS, Inc. 2014. All rights reserved.

Copyright MATHCOUNTS, Inc. 2014. All rights reserved. 2014 National Target Round

in² A 1-inch by 35-inch piece of wood was divided into six pieces by making five 45° cuts, as shown. The four trapezoidal pieces were kept, and the two triangular pieces were discarded. All four trapezoidal pieces were then used to form a rectangular picture frame. A picture measuring $17\frac{1}{2}$ inches by 20 inches was reduced proportionally so it could fit in the interior of the frame. If the cuts were made so that the re-sized picture fit exactly within the frame, what was the area of the interior of the frame?

5.

6.

What is the sum of all real values of x that are solutions to the equation $\left(\frac{2}{3}x^2 - x - \frac{2}{3}\right)^{(x^2 - 9x + 20)} = 1?$ Express your answer as a common fraction.

Copyright MATHCOUNTS, Inc. 2014. All rights reserved. 2014 National Target Round

Copyright MATHCOUNTS, Inc. 2014. All rights reserved. 2014 National Target Round

MATHCOUNTS[®]

2014 ■ National Competition ■ Team Round Problems 1–10

State	
Team Members	 , Captain

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This section of the competition consists of 10 problems which the team has 20 minutes to complete. Team members may work together in any way to solve the problems. Team members may talk to each other during this section of the competition. This round assumes the use of calculators, and calculations also may be done on scratch paper, but no other aids are allowed. All answers must be complete, legible and simplified to lowest terms. The team captain must record the team's official answers on his/her own competition booklet, which is the only booklet that will be scored. If the team completes the problems before time is called, use the remaining time to check your answers.

Total Correct	Scorer's Initials

NATIONAL SPONSORS

Raytheon Company Northrop Grumman Foundation U.S. Department of Defense National Society of Professional Engineers CNA Foundation Phillips 66 Texas Instruments Incorporated 3M Foundation Art of Problem Solving NextThought

2014 MATHCOUNTS National Competition Sponsor

FOUNDING SPONSORS: National Society of Professional Engineers, National Council of Teachers of Mathematics and CNA Foundation

