2014 Raytheon MATHCOUNTS National Competition

Friday May 9, 2014 - Washington, D.C.

Rank	Student	State	Grade
1	Swapnil Garg	CA	8
2	Kevin Liu	IN	7
S	Daniel Zhu	MD	7
S	Alan Peng	MO	8
Q	Nicholas Sun	IL	8
Q	Hongyi Chen	CO	8
Q	Colin Tang	WA	7
Q	Vinjai Vale	TX	8
P	Freddie Zhao	MI	7
P	Jun-Hee Lee	IA	8
P	Graham O’Donnell	FL	8
P	Akshaj Kadaveru	VA	8
13	Elbert Du	IL	8
14	Andy Xu	SC	7
15	Daniel Kim	NJ	8
16	Franklyn Wang	VA	8
17	Kevin Feng	TX	8
18	Vincent Huang	TX	7
19	Alexander Gu	IN	7
20	Jason Lee	MD	7
21	Brian Reinhart	FL	8
22	Daniel Liu	WA	8
23	Zack Lee	NC	8
24	Raymond Feng	NY	7
25	Jeffrey Chang	MA	8
26	Chang Yu	TN	8
27	Allen Ryu	MS	7
28	Joseph Feffer	PA	8

Rank	Student	State	Grade
29	Harry Wang	CA	8
30	Rajiv Movva	CA	8
31	William Sun	VA	8
32	Hannah Zhang	CO	8
33	William Wang	KS	7
34	Walker Kroubalkian	AZ	7
35	Christopher Lee	PA	7
36	Peter Rowley	MA	8
37	Jeffery Li	CA	7
38	Jae Hyun Lim	NE	8
39	Kaan Dokmeci	NM	8
40	Srivats Narayanan	KS	8
41	Joshua Lee	VA	8
42	Daniel Chu	GA	8
43	Spencer Liu	MI	8
44	Richard Xu	NY	8
45	Thomas Luo	MD	7
46	David Ma	MA	8
47	Matthew Dai	NC	8
48	Allen Chen	IL	7
49	Alan Tu	NY	7
50	Jeremy Chen	MA	8
51	Wanlin Li	PA	8
52	Samuel Merson	AZ	8
53	Michelle Shen	IN	8
54	Anders Olsen	OR	8
55	Richard Liu	FL	8
56	Peter Zhu	OH	8

Rank	Team
1	California
2	Maryland
3	Virginia
4	New York
5	Pennsylvania
6	Indiana
7	Texas
8	Massachusetts
9	Florida
10	Colorado
11	Illinois
12	Washington

Rank	Team
13	Kansas
14	Michigan
15	Nevada
16	New Jersey
17	North Carolina
18	South Carolina
19	Iowa
20	Wisconsin
21	Oregon
22	Ohio
23	Arizona

Written Competition Champion - Kevin Liu, Indiana
Written Competition Runner-Up - Nicholas Sun, Illinois

Orlando, FL
Friday, May 9, 2014
National Competition

Scoring Statistics

	----------------- Individual --------------------	------------ Team -------------			
	Indiv. Total	Sprint Score	Target Score	Team Total	Team Round
Minimum	4.00	4.00	0.00	14.75	6.00
Average	24.16	15.84	8.32	35.27	11.11
Maximum	43.00	28.00	16.00	52.75	18.00
Std. Dev.	9.37	5.64	4.23	9.97	2.88

Grade / Gender Distribution

Gender:

Grade:	\mathbf{M}	F	\mathbf{U}	Total
$\mathbf{6}$	8	1		9
$\mathbf{7}$	53	7		60
$\mathbf{8}$	132	23		155
Total	193	31	0	224

MATHCOUNTS
Score Distributions

2014 Raytheon MATHCOUNTS National Competition

Orlando, FL

Friday, May 9, 2014
National Competition

Score Distributions

Orlando, FL

Friday, May 9, 2014
National Competition

Question Analysis
2014 Raytheon MATHCOUNTS National Competition

Orlando, FL

Friday, May 9, 2014
National Competition

The appropriate units (or their abbreviations) are provided in the answer blanks.

Note to coordinators: Answers to the Tiebreaker Round problems appear in the Tiebreaker Round Booklet.

National Sponsors
Raytheon Company
U.S. Department of Defense
corporated
Texas Instruments Incorporated 3M Foundation
Art of Problem Solving
NextThought

1. 5000.5
2. 30%
3. 8 years
4. $\$ 6.50$
5. 20
6. $(1,-1)$
7. 28
8. 24 cm
9. -11
10. $2+\sqrt{3} \mathrm{~cm}$ or $\sqrt{3}+2$
11. 90
12. 2013
13. 4 solutions
14. 9 pairs
15. $\frac{13}{1024}$
16. $11 \mathrm{~m}^{2}$
17. 19
18. $\frac{35}{72}$
19. $\frac{26}{9}$
20. 5
21. $\frac{1}{4}$
22. 42
23. 9 base 10
24. 22
25. 225
26. $\$ 3.75$
27. $\frac{3}{5}$
28. 0
29. 32 pages
30. 8

Target Round Answers

| 1. 5 | 3. | 65 | 5. | $56 \mathrm{in}^{2}$ | 7. | $\frac{19}{118}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2. $\$ 3.83$ | 4. | 13 travelers | 6. $\frac{23}{2}$ | 8. $\frac{7}{10}$ in | | |

Team Round Answers

1. 25 boxes
2. $\$ 1150$ or 1150.00
3. 2685
4. 65
5. $\frac{1}{54}$
6. 32 units 2
7. $46 \mathrm{in}^{2}$
8. $\frac{27}{15,625}$
9. 1020 ways
10. 80 degrees

2014
National Competition Sprint Round
Problems 1-30

HONOR PLEDGE

I pledge to uphold the highest principles of honesty and integrity as a Mathlete ${ }^{\circledR}$. I will neither give nor accept unauthorized assistance of any kind. I will not copy another's work and submit it as my own. I understand that any competitor found to be in violation of this honor pledge is subject to disqualification.

Signature \qquad Date \qquad
Printed Name \qquad
State \qquad

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This section of the competition consists of 30 problems. You will have 40 minutes to complete all the problems. You are not allowed to use calculators, books or other aids during this round. If you are wearing a calculator wrist watch, please give it to your proctor now. Calculations may be done on scratch paper. All answers must be complete, legible and simplified to lowest terms. Record only final answers in the blanks in the left-hand column of the competition booklet. If you complete the problems before time is called, use the remaining time to check your answers.

In each written round of the competition, the required unit for the answer is included in the answer blank. The plural form of the unit is always used, even if the answer appears to require the singular form of the unit. The unit provided in the answer blank is the only form of the answer that will be accepted.

Total Correct	Scorer's Initials

National Sponsors

Raytheon Company Northrop Grumman Foundation
U.S. Department of Defense National Society of Professional Engineers CNA Foundation Phillips 66
Texas Instruments Incorporated
3M Foundation
Art of Problem Solving NextThought

1. \qquad What is the mean of the 10,000 integers from 1 to 10,000 , inclusive? Express your answer as a decimal to the nearest tenth.
2. \qquad \%

What percent of the integers from 3 to 12, inclusive, are neither primes nor multiples of 4 ?
3. \qquad years

On the next full moon, Bob will celebrate being alive for 100 full moons. On average, the cycle of the moon has lasted 29.53 days since he was born. In years, how old will Bob be on his 100-moons birthday? Express your answer to the nearest whole number.
4. \qquad Samantha bought 6 total pounds of red and green candies to share with her friends. The red candies cost $\$ 1.00$ per pound and the green candies cost $\$ 1.25$ per pound. She bought twice as many pounds of red candies as green candies. How much did Samantha pay for the 6 pounds of candies?

5. \qquad The sum of nine consecutive integers is 216 . What is the smallest of the nine integers?
6. (,)
\qquad A kite is a quadrilateral in which two pairs of adjacent sides are congruent. Points $\mathrm{A}(-2,1), \mathrm{B}(1,5), \mathrm{C}(4,1)$ and $\mathrm{D}(x, y)$ are vertices of a convex kite with an area of 18 units 2. If x and y are integers, what are the coordinates of point D ? Express your answer as an ordered pair.
7. \qquad What is the smallest value of x such that $3(x-21)>8$ and x is a multiple of 7 ?
8. \qquad cm

Two squares, with integer side lengths a and b, are arranged so that one entire side of the smaller square overlaps a part of a side of the larger square, and the two squares share a vertex, as shown. The perimeter of the entire figure is 86 cm , and the sum of the areas of the two squares is $386 \mathrm{~cm}^{2}$. In centimeters, what is the value of $a+b$?

9. \qquad The mean of $10,4,1, x$ and 1 is equal to the median. What is the smallest possible value of x ?
10. \qquad Lothario wants to cut out five circles, each 2 cm in diameter, from a rectangular (piece of cardboard that is 6 cm long. What must be the minimum width of the rectangular cardboard? Express your answer in simplest radical form.

11. \qquad If $j \| k$, what is the value of x, in the figure shown?

12. \qquad What is the value of $\frac{2013^{3}-2 \cdot 2013^{2} \cdot 2014+3 \cdot 2013 \cdot 2014^{2}-2014^{3}+1}{2013 \cdot 2014}$?
13. \qquad
 the triangle are the same. How many different solutions are possible? (Note that two solutions are considered the same if one can be rotated or reflected to obtain the other.)
14. \qquad How many pairs of consecutive, positive three-digit multiples of 9 contain the same three digits?
15. \qquad

7	5	3	1
5	5	3	1
3	3	3	1
1	1	1	1

A square dartboard is divided into 16 congruent regions, with a point value assigned to each region as shown. Assuming each dart thrown hits the dartboard in a region, what is the probability that the sum of the points earned from three randomly thrown darts will be greater than 15? Express your answer as a common fraction.
16. \qquad A right triangle has a hypotenuse of 10 m and a perimeter of 22 m . In square meters, what is the area of the triangle?
17. \qquad For the following system of equations, what is the value of c ?

$$
\begin{aligned}
& a+b+c+d=88 \\
& a+b+c+e=84 \\
& a+b+d+e=82 \\
& a+c+d+e=78 \\
& b+c+d+e=72
\end{aligned}
$$

18. \qquad Alexi rolled four standard dice and lined them up to create a 4-digit number. He removed two dice from the line and rolled them again. Alexi then returned each re-rolled die to its original position in the line, thereby creating a new 4-digit number. What is the probability that the new 4-digit number is greater than the original 4-digit number? Express your answer as a common fraction.

19. \qquad In circle P with radius 2 units, $m \angle \mathrm{NPR}=100^{\circ}$. If the shaded region has area $k \pi$ units 2, what is the value of k ? Express your answer as a common fraction.

20. \qquad For integers a, b, c and $d,\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)=x^{4}+x^{3}-2 x^{2}+17 x-5$. What is the value of $a+b+c+d$?
21. \qquad Two random integers, a and b, are independently chosen, with replacement, from 1 to 1000 , inclusive. What is the probability that both $2^{a}+2^{b}$ and $3^{a}+3^{b}$ are multiples of 5? Express your answer as a common fraction.
22. \qquad What is the smallest integer greater than 38 that cannot be the length of the hypotenuse of a right triangle with integer side lengths?
23. \qquad base 10

In base $b, 441_{b}$ is equal to n^{2} in base 10 , and 351_{b} is equal to $(n-2)^{2}$ in base 10 . What is the value of b, expressed in base 10 ?
24. \qquad Larry tells Mary and Jerry that he is thinking of two consecutive integers from 1 to 10 . He tells Mary one of the numbers, and he tells Jerry the other number. Then the following conversation occurs between Mary and Jerry:

Mary: I don't know your number.
Jerry: I don't know your number, either.
Mary: Ah, now I know your number.
Assuming both Mary and Jerry used correct logic, what is the sum of the possible numbers Mary could have?

25. \qquad If the 4014th term of a geometric sequence of non-negative numbers is 135 , and the 14 th term is 375 , what is the 2014th term?
26. \$
27. \qquad An unfair coin has the property that when flipped four times, the probability of it landing twice heads up and twice tails up (in any order) is the same as the probability of it landing three times heads up and once tails up (in any order). What is the probability of this coin landing heads up in one flip? Express your answer as a common fraction.
28. \qquad If $f(x)=\frac{a x+b}{c x+d}, a b c d \neq 0$ and $f(f(x))=x$ for all x in the domain of f, what is the value of $a+d$?
29. \qquad pages

Sam and Delilah are reading different books. Today, Sam and Delilah read one chapter in their respective books, and they each read more than one page. Interestingly, they read the same number of pages, but the sum of the page numbers for the chapter Sam read was 880 , and the sum of the page numbers for the chapter Delilah read was 1008 . How many pages did Sam read today?
30. \qquad The area of the largest equilateral triangle that can be inscribed in a square of side length 1 unit can be expressed in the form $a \sqrt{b}-c$ units 2, where a, b and c are integers. What is the value of $a+b+c$?

2014
National Competition Target Round

Name \qquad
State

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

Total Correct	Scorer's Initials

[^0]1. \qquad If $f(x)=a x^{2}+b x+c, f(1)=0, f(2)=1$ and $f(3)=8$, what is the value of c ?

Ezra spent $\$ 60$ on gas each week for a period of three weeks. The first week gas was $\$ 3$ per gallon, the second week it was $\$ 4$ per gallon, and the third week it was $\$ 5$ per gallon. What was the average amount Ezra paid per gallon of gas over this three-week period? Express your answer as a decimal to the nearest hundredth.

3. \qquad A two-digit, positive integer, b, is formed by reversing the digits of another two-digit, positive integer, a. If both $a+b$ and $a-b$ are perfect squares, what is the value of a ?
4. \qquad At a New York airport 135 international travelers were polled to see what language or languages each spoke. Of those polled, 87 spoke English;

86 spoke Spanish; 39 spoke French; 31 spoke English and Spanish, but not

5. \qquad in^{2}

A 1 -inch by 35 -inch piece of wood was divided into six pieces by making five 45° cuts, as shown. The four trapezoidal pieces were kept, and the two triangular pieces were discarded. All four trapezoidal pieces were then used to form a rectangular picture frame. A picture measuring $17 \frac{1}{2}$ inches by 20 inches was reduced proportionally so it could fit in the interior of the frame. If the cuts were made so that the re-sized picture fit exactly within the frame, what was the area of the interior of the frame?

6. \qquad What is the sum of all real values of x that are solutions to the equation $\left(\frac{2}{3} x^{2}-x-\frac{2}{3}\right)^{\left(x^{2}-9 x+20\right)}=1$? Express your answer as a common fraction.
7. \qquad If 1% of the planets in the universe contain water, and astronomers develop a test that is 95% accurate for determining whether or not a planet contains water, then what is the probability that a planet identified by the test as containing water really does contain water? Express your answer as a common fraction.
8. in A circle passes through two diagonally opposite vertices of a 3-inch by 4-inch rectangle. What is the least possible distance between the center of the circle and a vertex of the rectangle? Express your answer as a common fraction.

2014
National Competition Team Round Problems 1-10
\qquad
\qquad

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This section of the competition consists of 10 problems which the team has 20 minutes to complete. Team members may work together in any way to solve the problems. Team members may talk to each other during this section of the competition. This round assumes the use of calculators, and calculations also may be done on scratch paper, but no other aids are allowed. All answers must be complete, legible and simplified to lowest terms. The team captain must record the team's official answers on his/her own competition booklet, which is the only booklet that will be scored. If the team completes the problems before time is called, use the remaining time to check your answers.

Total Correct	Scorer's Initials

National Sponsors
 Raytheon Company Northrop Grumman Foundation
 U.S. Department of Defense National Society of Professional Engineers CNA Foundation Phillips 66 Texas Instruments Incorporated 3M Foundation Art of Problem Solving

 National Competition Sponsor1. \qquad boxes
 figure shows some identical boxes in a room stacked flush against a wall and each other. How many boxes, including those not visible, are in this arrangement?
2. $\$$

At a health food store, income from trail mix is $\$ 4.95$ per pound. The expense, in dollars, of preparing n pounds of the trail mix is represented by $-0.005 n^{2}+5 n+620$. If the store prepares and sells 600 pounds of trail mix, after expenses, what is the total profit?
3. \qquad The prime factorization of 1995 , which is $3 \times 5 \times 7 \times 19$, uses each odd digit exactly once and 1995 is the smallest positive integer with this property. What is the next smallest?
4. \qquad A sequence is defined by $a_{1}=0, a_{2}=4$ and $a_{n}=4\left(a_{n-1}-a_{n-2}\right)$ for $n>2$. What is the greatest value of n such that $n<100$ and a_{n} is a power of 2 ?
5. \qquad If three standard six-sided dice are rolled, what is the probability that the sum of the numbers on the top faces is 17 or 18 ? Express your answer as a common fraction.
6. units 2 What is the area of the region defined by $|x|+|y| \leq 4$?
7. \qquad in^{2}
8. \qquad Using a standard six-sided die and the directions shown, a string of six letters is written in order. What is the probability that once 'END' is reached, the six letters that have been written are B, A, N, A, N and A, in that order? Express your answer as a common fraction.

9. \qquad How many ways are there to color the walls of a pentagonal room using five different colors, so that no two non-adjacent walls have the same color?
10. \qquad In the triangle shown, what is the degree measure of $\angle \mathrm{ADB}$?

[^0]: National Sponsors
 Raytheon Company
 Northrop Grumman Foundation
 U.S. Department of Defense National Society of Professional Engineers

 CNA Foundation
 Phillips 66
 Texas Instruments Incorporated 3M Foundation
 Art of Problem Solving
 NextThought

