
2 The equations governing atmospheric flow.

2.1 Introduction to Lagrangian (Material) derivatives

The equations governing large scale atmospheric motion will be derived from a Lagrangian
perspective i.e. from the perspective in a reference frame moving with the fluid. The Eu-
lerian viewpoint is normally the one we are concerned with i.e. what is the temperature
or wind at a fixed point on the Earth as a function of time. But, the Lagrangian perspec-
tive is useful for deriving the equations and understanding why the Eulerian winds and
temperatures evolve in the way they do.

The material derivative (D/Dt) is the rate of change of a field following the air
parcel. For example, the material derivative of temperature is given by

DT

Dt
=
∂T

∂t
+ ~u · ∇T, (1)

where the first term on the RHS is the Eulerian derivative (i.e. the rate of a change at a
fixed point) and the second term is the advection term i.e. the rate of change associated
with the movement of the fluid through the background temperature field. If the material
derivative is zero then the field is conserved following the motion and the local rate of
change is entirely due to advection.

2.1.1 Material derivatives of line elements

When deriving the equations of motion from a lagrangian perspective we will consider
fluid elements of fixed mass. But, their volume may change and it is therefore necessary
to consider the material derivative of line elements (vectors joining two points). Consider
Fig. 1 which shows a line element δ~r at position ~r at a time t. This line element could

Figure 1: Schematic of a line element moving with a velocity field.
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Figure 2: The infinitesimal mass element δM .

represent, for example, the side of an infinitesimal fluid element. If the line element were
connecting two fixed points in space then it will not change with time, but, if it connects
two points that are moving with the velocity field of the fluid it will change its position
and orientation over time. The line element at time t+ δt is given by

δ~r(t+δt) = δ~r(t)+~v(~r+δ~r)δt−~v(~r)δt→
δ~r(t+ δt) − δ~r(t)

δt
= ~v(~r+δ~r)−~v(~r) = δ~r

∂~v

∂~r
(2)

The left hand side is just the material derivative of the line element. So we have the
important result that

Dδ~r

Dt
= δ~r · ∇~v (3)

where ~v = D~r
Dt

. So, different shear terms can affect the size and orientation of line elements.
For a particular dimension q we have the general result that

1

δq

Dδq

Dt
=

∂

∂q

(

Dq

Dt

)

(4)

The equations that govern the atmospheric flow will now be derived from a Lagrangian
perspective. These are Mass Conservation, Momentum Conservation and Energy
Conservation.

2.2 Conservation of mass (Equation of continuity)

We consider an infinitesimal fluid element of constant mass δM depicted in Fig. 2 whose
density (ρ) and volume (δV ) may vary with time. Since the mass of the fluid element is
constant then DδM/Dt = 0, where δM = ρδV . So,

DδM

Dt
= 0 →

Dρ

Dt
δV +

DδV

Dt
ρ = 0 (5)
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Consider first the rate of change of the infinitesimal volume

DδV

Dt
=

D

Dt
(δxδyδz) = δyδz

Dδx

Dt
+ δxδz

Dδy

Dt
+ δxδy

Dδz

Dt
(6)

But, from the material derivative of line elements (Eq. 3) this can be written

DδV

Dt
= δxδyδz

((

∂

∂x

Dδx

Dt

)

+

(

∂

∂y

Dδy

Dt

)

+

(

∂

∂z

Dδz

Dz

))

= δV

(

∂u

∂x
+
∂v

∂y
+
∂w

∂z

)

= (∇.~v)δV.

(7)
So,

DδV

Dt
= (∇.~v)δV (8)

So, the fractional rate of change of the volume is equal to the divergence of the velocity
field. So, back to the eqution for mass coninuity we have

Dρ

Dt
δV +

DδV

Dt
ρ = 0 →

Dρ

Dt
δV + ρ(∇.~v)δV = 0 →

Dρ

Dt
+ ρ∇ · ~v = 0 (9)

for arbitrary δV . This can also be written in flux form as

∂ρ

∂t
+ ∇ · (~vρ) = 0 (10)

To summarise, mass continuity is given by

Dρ

Dt
+ ρ∇ · ~v =

∂ρ

∂t
+ ∇ · (~vρ) = 0 (11)

Thus, a fluid element in a divergent flow field will experience a reduction in density.

2.3 Conservation of momentum

Here, we are again considering our infinitesimal air parcel of constant mass (δM) with
variable volume (δV ) and density ρ. We want to know how the momentum of the parcel
will change. The rate of change of momentum will be equal to the sum of the forces acting
on the parcel.

F =
D(δM~v)

Dt
= δM

D~v

Dt
(12)

There are several forces we may have to consider when examining the motion of fluid
elements in the atmosphere or ocean:

• Pressure - Consider the vector area element whose normal vector is given by d~s in
Fig. 2. The pressure acting on the area element is d~Fp = −pd~s. Integrating over the

surface area of the element gives ~Fp = −
∫

pd~s which from the divergence theorem
can be written

∫

∇pdV ≈ ∇pδV as δV → 0.

• Gravity - The gravitational force acting on the fluid element in geometric height
coordinates is Fg = −δMg which is often written as Fg = −δM∇Φ where Φ = gz is
the Geopotential and g is the acceleration due to gravity which for many purposes
can be taken to be a constant. The reason for writing it in this form is that we may
consider flow in different height coordinates (commonly pressure is used). Thus a
particular vertical level in our coordinate system may not necessarily be horizontal
and there may ba a component of gravity acting along that level.
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Figure 3: (a) Schematic illustrating the coriolis force as conservation of angular momentum,
(b) schematic illustrating the tangent plane approximation.

• Viscosity - Viscosity is a measure of the resistance of a fluid. The viscosity arises
from shear stress between layers of a fluid that are moving with different velocities.
The viscous force per unit mass is often written as ~Fν = ν∇2~v where ν is the
kinematic viscosity. For the atmosphere below around 100km the viscosity is so
small that it is normally negligible except for within a few cm at the Earth’s surface
where the vertical shear is very large. (See Holton 1.4.3 for more on viscosity). The
Reynolds number is a measure of the importance of viscosity. It is the ratio of
inertial forces to viscosity. In most of the atmosphere the Reynolds number is large
and viscosity is relatively unimportant.

So, our rate of change of momentum in Eq. 12 is given by the sum of these forces.
Dividing through by δM gives us an expression for the acceleration of the fluid parcel in
an inertial reference frame.

D~v

Dt
= −

∇~p

ρ
−∇Φ + ν∇2~v (13)

If the fluid is at rest then we have hydrostatic balance

−
∇p

ρ
−∇Φ = 0 →

∂p

∂z
~k = −ρg~k (14)

2.3.1 Adding in rotation

In the above section we related the rate of change of momentum of our fluid element to
the sum of the forces acting on the fluid element. But, that only applies when we are
considering motion in an inertial reference frame. Normally when examining atmospheric
motion we are not looking at motion in an inertial reference frame. Rather we are con-
cerned with how the atmosphere is moving with respect to the Earth’s surface i.e. in a
rotating reference frame. We therefore have to take this into account when determining
momentum balance.

For example, consider a parcel of air which is at a fixed position with respect to the
Earth’s surface. The Earth rotates with an angular velocity ~Ω. The position of the fluid

4



element does not alter in the rotating reference frame of the Earth. But, from the point
of a view of an observed in the Inertial reference frame the position vector will move as
it rotates with the Earth. The rate of change of the position vector as viewed from the
inertial reference frame is given by (See Holton 2.1.1)

(

D~r

Dt

)

I

= ~Ω × ~r (15)

If the air parcel now has a velocity with respect to the fixed surface of the Earth denoted
by (D~r/Dt)R, then an observed in the inertial reference frame will see the air parcel
moving with a velocity

(

D~r

Dt

)

I

=

(

D~r

Dt

)

R

+
(

~Ω × ~r
)

(16)

i.e. the sum of the velocity in the rotating reference frame and the velocity associated
with the movement of the reference frame.

~vI = ~vr + (Ω × ~r) (17)

If we now consider the rate of change of the inertial velocity in the inertial reference frame:
it will be related to the rate of change of the inertial velocity in the rotating reference
frame by the same transformation (16) i.e.

(

D~vI

Dt

)

I

=

(

D~vI

Dt

)

R

+ ~Ω × ~vI . (18)

But, combining with (17) it can be shown that
(

D~vI

Dt

)

I

=

(

D~vR

Dt

)

R

+ 2~Ω × ~vR + ~Ω × (~Ω × ~r) (19)

where the 2nd and 3rd terms on the RHS are the Coriolis force and the centrifugal force
respectively. These are ficticious forces introduced by the fact that we are examining the
motion in a non-inertial reference frame.

• The centrifugal force - The can be rewritten as ~Ω × (~Ω × ~r⊥) where ~r⊥ is the
component of the position vector that is perpendicular to the axis of rotation. This
can can be re-written as (~Ω.~r⊥)~Ω+(~Ω.~Ω).~r⊥ where the first term on the RHS is zero
giving Ω2~r⊥. This can then be written as the gradient of a scalar potential (∇ΦCE)
where ΦCE = Ω2~r⊥/2. Therefore, the centrifugal force is often combined with the
gravitational force in (13) but for many purposes the centrifugal force is small and
can actually be neglected.

• Coriolis force - The coriolis force can be thought of in terms of angular momentum
conservation. For examine, consider an air parcel starting at position (1) at low
latitudes in the NH in Fig. 3 (a). Suppose now a force acts to shift that air parcel
poleward to position (2). No torque has acted on the parcel in the zonal direction
and so the angular momentum of the air parcel around the Earths axis of rotation
must be conserved i.e. Ω1r

2

1
= Ω2r

2

2
, but r1 > r2 → Ω1 < Ω2. So, as the air

parcel moves poleward, it’s angular velocity in the zonal direction increases. So, an
observer at position (1) rotating with the Earth would see a trajectory of the air
parcel that looks like it is being deflected to the right.
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So, in (13) the acceleration of the air parcel is related to the forces that are acting on
it. But, that applies for motion in an inertial reference frame. What we normally care
about is the motion in a rotating reference frame i.e.

(

D~vR

Dt

)

R
. We can therefore combine

(13) and (19) to give

(

D~vR

Dt

)

R

+ 2~Ω × ~vR =
∇p

ρ
−∇Φ + ν∇2~v (20)

where we have either neglected the coriolid force or lumped it in with the gravitational
potential.

From now on we shall drop the subscript R and assume we are examining motion in
the rotating reference frame of the Earth. So, to conclude, momentum balance in the
rotating reference frame of the Earth where pressure, gravity, viscous and possibly other
frictional forces are acting is given by

D~v

Dt
+ 2~Ω × ~v = −

∇p

ρ
−∇Φ + ν∇2~v (+friction) (21)

2.3.2 Scale analysis of momentum balance

Considering the typical horizontal velocity (U) and typical length scales (L) of the system
we can perform scale analysis on the the first two terms of Eq. 39. The first term

D~v

Dt
∼

U

TA

∼
U2

L
(22)

where we have made use of the fact that the relevant timescale for the material derivative
is the advective timescale. The second term scales as

2Ω × ~v = 2Ω~vsinφ ∼ fU (23)

where f is the coriolis parameter. The angle φ is the angle between the rotation vector
and the velocity vector which when considering the horizontal velocity components on
the Earth’s surface is simply the latitude (See Fig. 3 (b)). Thus 1./f is the relevant
timescale for the effects of the Earth’s rotation as was discussed in Section 1. Taking
the ratio of the first term to the second term we end up with the ratio U/fL which is
the Rossby Number Ro. So, the Rossby number is a dimensionless parameter that comes
from scale analysis of momentum balance. It is the ratio of the intrinsic acceleration to
the acceleration associated with the coriolis force. If the Rossby number is small then
the effects of the Earths rotation are relatively important and vice-versa. If we are in the
regime of small Rossby number then if you apply a force on an air parcel and you’re in the
rotating reference frame of the Earth then you’re not going to see the parcel accelerating
in the direction of the force because there will be an acceleration due to the coriolis force.
We see from the terms involved in the Rossby number that the coriolis force is relatively
important if we are considering motion that is slow and/or large scale. This is the type
of motion that we will be concerned with.

2.4 Conservation of Energy (Thermodynamic Equation)

Again we consider our air parcel of fixed mass δM . We define I=the internal energy per
unit mass, η the entropy per unit mass and α the volume per unit mass. Thus the total
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internal energy is given by δU = IδM , the total entropy is given by δS = ηδM and the
total volume is given by δV = αδM . We take the first law of thermodynamics as our
starting point for deriving the thermodynamic equation for atmospheric flow. The first
law of thermodynamics may be written as

dU = TdS − pdV (24)

where d represents the change in our thermodynamic variable. That is the change in
internal energy of our mass element is given by the difference between the heat input
into the mass element and the work done by the mass element. This is in terms of the
extensive quantities so it depends on the size of the system. But, we can write it in terms
of the quantities per unit mass (or intensive variables) as follows

d(IδM) = Td(ηδM) − pd(αδM) (25)

So, over some time interval δt we have

d(IδM)

δt
=
Td(ηδM)

δt
−
pd(αδM)

δt
(26)

As the time interval δt tends to zero these tend to the rate of change following the parcel
(the material derivative) so

D(IδM)

Dt
= T

D(ηδM)

Dt
− p

D(αδM)

Dt
(27)

But, δM is conserved following the motion.

DI

Dt
= T

Dη

Dt
− p

Dα

Dt
(28)

This is our first law of thermodynamics in terms of the entropy per unit mass and the
volume per unit mass. These are rather difficult quantities to measure, but matters may be
simplified when we are considering motion of an ideal gas, which we are for most purposes
in atmospheric dynamics. It is much easier if we can use pressure (p) and temperature
(T ) as our thermodynamic variables as these are quantities we can measure. For an ideal
gas we have several useful relationships

pα = RT I = CV T Cp − CV = R (29)

where R is the gas constant, CV is the specific heat capacity at constant volume and CP

is the specific heat capacity at constant pressure. So, we can rewrite 28 as

CV

DT

Dt
= T

Dη

Dt
−R

DT

Dt
+
RT

p

Dp

Dt
(30)

which after some rearranging can be written

T
Dη

Dt
= Cp

DT

Dt
−
RT

p

Dp

Dt
(31)

This is an expression for the rate of change of entropy as a function of temperature and
pressure. But, if we are considering adiabatic motion of an ideal gas then entropy should
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be conserved. This leads us to the definition of potential temperature. For adiabatic
motion of an ideal gas we have

Dη

Dt
=
Cp

T

DT

Dt
−
R

p

Dp

Dt
= Cp

(

DlnT

Dt
−
Dlnpκ

Dt

)

= CP

Dln T
pκ

Dt
= 0 (32)

where κ = R/Cp. Therefore this ratio T/pκ must be a constant since the Cp is a constant
and non-zero. If we have an air parcel that has a temperature T at a pressure p then if
it is brought adiabatically to a reference pressure po then it will have a temperature (θ)
at that reference pressure given by

θ

pκ
o

=
T

pκ
→ θ = T

(

po

p

)κ

(33)

This quantity θ is known as the potential temperature. It is the temperature that an
air parcel would have if it were brought adiabatically to the reference pressure po. The
reference pressure is normally taken to be the surface pressure (∼1000hPa). Potential
temperature increase upward in the troposphere even though temperature decreases be-
cause the pressure is also decreasing. A positive potential temperature gradient implied
stability as given by the Brunt-Vaisala frequency in section 1.

By comparison of 33 and 32 it can be seen that the rate of change of entropy is related
to the potential temperature by

Dη

Dt
= Cp

Dlnθ

Dt
(34)

and thus
η = Cplnθ (35)

Surface of constant potential temperature are therefore surface of constant entropy (isen-
tropic surfaces). We can see from Eqs. 32 and 33 that potential temperature must be
conserved following adiabatic motion of an ideal gas. We can therefore write our thermo-
dynamic equation as

Dθ

Dt
= 0 (36)

If there are sources of diabatic heating then we can make use of 34 and the relationship
between the heat input and the change in entropy (dQ = Tdη) to write the thermodynamic
equation in the presence of diabatic effects as

Cp

Dθ

Dt
=
θ

T
Q̇ (37)

Note: the above derivation of the thermodynamic equation relied on relationships that
are valid for an ideal gas. In the atmosphere what we are really concerned with is the
motion of an ideal gas although there may need to be modification to include effects like
moisture (see Vallis chapter 1). For, liquids a different equation of state is necessary and
the thermodynamic equation takes a different form.

2.5 Summary of the primitive equations

The above equations that we have derived for atmospheric flow are often known as the
primitive equations. The primative equations are summarised as follows

∂ρ

∂t
+ ~∇.(~vρ) = 0 CONTINUITY (38)
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D~v

Dt
+ 2 ~Ω × ~v = −

∇p

ρ
−∇Φ − ν∇2~v MOMENTUM (39)

Dθ

Dt
= 0 or Cp

Dθ

Dt
=
θ

T
Q̇ THERMODYNAMIC (40)

But, here we have 6 variables (ρ, u, v, w, p, θ) and only 5 equations. We need the diagnostic
equation of state which, for an ideal gas is given by

pα = RT (41)

We will be using these equations to look at simple cases in the atmosphere and understand
why certain aspects of the large scale circulation behave the way they do.

2.6 Geostrophic Balance

Momentum balance in the absence of viscosity and friction is given by

D~v

Dt
+ 2~Ω × ~v = −

∇p

ρ
−∇Φ. (42)

The assumptions we make about the characterisctics of large scale extra-tropical motion in
the atmosphere allow us to identify the dominant balances for such motions. We consider
flow for which the Rossby number is small i.e. the first term in 42 is much smaller than
the second. In geometric height coordinates we may neglect the component of gravity
acting in the horizontal direction. Thus, in the horizontal we have the dominant balance
occuring between the second and third terms (the coriolis force and the horizontal pressure
gradient). This gives

(ug, vg) =
1

ρf

(

−
∂p

∂y
,
∂p

∂x

)

(43)

The above expression gives the Geostrophic wind: the horizontal wind for which the
coriolis force exactly balances the horizontal pressure gradients. This balance is known
as Geostrophic balance. Geostrophic balance is often a reasonable approximation for
large scale motion away from the equator. Examination of Eq. 43 shows that, in the NH
the flow will be clockwise around high pressure (anticyclonic) systems whereas the flow
will be anti-clockwise around low pressure (cyclonic) systems. The opposite is true in the
SH as the coriolis parameter (f) is of opposite sign.

2.7 Hydrostatic balance

In the velocity was zero it can be seen from Eq. 42 that there would be a balance between
the vertical pressure gradient and the gravitational force - Hydrostatic balance. But,
infact, if we make the assumption that we are examining flow of small Rossby number
and small aspect ratio then the supplementary handout demonstrates that even in the
presence of a non-zero velocity the dominant balance in the vertical is between the vertical
pressure gradient and the gravitational force. So, for large scale flow hydrostatic balance
is the dominant balance in the vertical.

1

ρ

∂p

∂z
= −

∂Φ

∂z
or

∂p

∂z
= −ρg (44)
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Eq (44) together with the ideal gas law gives an expression for the geopotential of a
pressure level (known as the Hypsometric equation)

Φp = Φs +

∫ s

p

RTdlnp′ , (45)

where Φp is the geopotetial of a particular pressure level and Φs is the geopotential of the
surface. The geopotential height (Z) is related to the geopotential via Z = Φ/g and so
Eq. 45 gives an expression for the geopotential height of a particular pressure level. It
is related to the integral of temperature below that pressure level and is approximately
equal to the geometric height in the troposphere and lower stratosphere.

2.7.1 Using pressure as a vertical coordinate

From hydrostatic balance we have a monotonic relationship between pressure and geomet-
ric height and so pressure is an equally valid vertical coordinate. It is often advantageous
to formulate the primitive equations in pressure coordinates as we lose the dependence
on density. Mass conservation becomes

∂u

∂x

∣

∣

∣

∣

p

+
∂v

∂y

∣

∣

∣

∣

p

+
∂ω

∂p
= 0 (46)

where ω = Dp/Dt is the pressure velocity. So, for a hydrostatic system in pressure
coordinates the velocity field is non-divergent. The horizontal component of inviscid
momentum balance in the absence of friction in pressure coordinates becomes

D~vH

Dt
+ 2~Ω × ~vH = −∇Φ (47)

where ~vH represents only the horizontal velocity (u, v) and our geopotential is now a
function of (x, y, p and t) since the geopotential height of a pressure level may vary in the
horizontal and with time. Geostrophic balance in pressure coordinates becomes

(ug, vg) =

(

−
1

f

∂Φ

∂y
,
1

f

∂Φ

∂x

)

. (48)

i.e. the geostrophic velocity in pressure coordinates is related to horizontal variations of
the geopotential of the pressure surface. It is clear from 48 that the geostrophic velocity
in pressure coordinates is non-divergent and so we may define a stream function for the
geostrophic flow such that

u =
∂ψ

∂y
v = −

∂ψ

∂x
(49)

Therefore the geostrophic stream function is given by ψ = Φ/f (if we neglact horizontal
variations in f , (f-plane approximation)). Consider the flow depicted in Fig. 4, it repre-
sents either 1) flow around regions of high and low pressure in geometric coordinates or
2) flow around regions of anomalously high and low geopotential height in pressure coor-
dinates. A schematic of the cross section through the left hand side of 4 is also shown.
The high and low pressure systems in the geometric coordinates represent deformation of
a pressure contour and therefore the low pressure region corresponds to anomalously low
geopotential height of our pressure surface and the high pressure region corresponds to
anomalously high geopotential height of our pressure surface.
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Figure 4: Schematic illustrating the geostrophic flow around high and low pressure systems.
This could either represent flow on a geometric height surface around regions of high and low
pressure or it could represent flow on a pressure surface around regions of high and low geopo-
tential height as illustrated on the right.

2.8 Thermal wind balance

The combination of geostrophic balance in the horizontal and hydrostatic balance in the
vertical provides us with another important balance: Thermal wind balance. This
relates vertical gradients in the zonal and meridional wind to horizontal gradients in
temperature as follows:

∂ug

∂lnp
=
R

f

∂T

∂y

∂vg

∂lnp
= −

R

f

∂T

∂x
(50)

In other words a decrease in temperature with latitude is associated with a positive ver-
tical zonal wind shear and vice-versa (note the above equation is formulated in log(p)
coordinates which increases downwards). A decrease in temperature with longitude is
associated with a negative vertical gradient of the meridional wind. The relationship be-
tween meridional temperature gradients and zonal wind shear can be seen in Fig. 5 which
shows the climatology of DJF and JJA zonal wind and temperature. In the troposphere
it can be seen that there is a strong negative meridional temperature gradient which is
related to the positive vertical wind shear of the sub-tropical and mid-latitude jets. In
the winter stratosphere there is also a strong negative meridional temperature gradient
associated with the polar night which is related to the positive vertical wind shear of the
stratospheric polar vortex.
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Figure 5: ERA-40 reanalysis data climatologies of (top) DJF (left) Temperature and (Right)
Zonal wind and (bottom) corresponding plots for JJA.
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