
1 Basic Multirate Operations
2 Interconnection of Building Blocks

1.1 Decimation and Interpolation
1.2 Digital Filter Banks

Basic Multi-rate Operations: Decimation and Interpolation

Building blocks for traditional single-rate digital signal
processing: multiplier (with a constant), adder, delay,
multiplier (of 2 signals)

New building blocks in multi-rate signal processing:

M-fold decimator

L-fold expander

Readings: Vaidyanathan Book §4.1; tutorial Sec. II A, B
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1 Basic Multirate Operations
2 Interconnection of Building Blocks

1.1 Decimation and Interpolation
1.2 Digital Filter Banks

L-fold Expander

yE [n] =

{
x [n/L] if n is integer multiple of L ∈ N
0 otherwise

Question: Can we recover x [n]
from yE [n]? → Yes.

The expander does not cause loss of
information.

Question: Are ↑ L and ↓ M linear and shift invariant?
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1 Basic Multirate Operations
2 Interconnection of Building Blocks

1.1 Decimation and Interpolation
1.2 Digital Filter Banks

Input-Output Relation on the Spectrum

YE (z) = X(zL)
(details)

Evaluating on the unit circle, the Fourier Transform relation is:

YE (e jω) = X(e jωL) ⇒ YE (ω) = X(ωL)

i.e. L-fold compressed version of X(ω) along ω
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1 Basic Multirate Operations
2 Interconnection of Building Blocks

1.1 Decimation and Interpolation
1.2 Digital Filter Banks

M-fold Decimator

yD [n] = x [Mn],M ∈ N

Corresponding to the physical time scale, it
is as if we sampled the original signal in a
slower rate when applying decimation.

Questions:

What potential problem will this bring?

Under what conditions can we avoid it?

Can we recover x [n]?
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1 Basic Multirate Operations
2 Interconnection of Building Blocks

1.1 Decimation and Interpolation
1.2 Digital Filter Banks

Transform-Domain Analysis of Decimators

YD(z) =
∑∞

n=−∞ yD [n]z−n =
∑∞

n=−∞ x [nM]z−n

Putting all together:

YD(z) = 1
M

∑M−1
k=0 X(W k

Mz
1
M )

(details)

YD(ω) = 1
M

∑M−1
k=0 X

(
ω−2πk

M

) (details)
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1 Basic Multirate Operations
2 Interconnection of Building Blocks

1.1 Decimation and Interpolation
1.2 Digital Filter Banks

Frequency-Domain Illustration of Decimation

Interpretation of YD(ω)

Step-1: stretch X(ω) by a factor of M to

obtain X(ω/M)

Step-2: create M − 1 copies and shift

them in successive amounts of 2π

Step-3: add all M copies together and

multiply by 1/M.
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1 Basic Multirate Operations
2 Interconnection of Building Blocks

2.1 Decimator-Expander Cascades
2.2 Noble Identities

Interconnection of Building Blocks: Basic Properties

Basic interconnection properties:

}
by the linearity of ↓ M & ↑ L

Readings: Vaidyanathan Book §4.2; tutorial Sec. II B
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1 Basic Multirate Operations
2 Interconnection of Building Blocks

2.1 Decimator-Expander Cascades
2.2 Noble Identities

Decimator-Expander Cascades

Questions:

1 Is y1[n] always equal to y2[n]? Not always.

E.g., when L = M, y2[n] = x [n], but

y1[n] = x [n] · cM [n] 6= y2[n], where cM [n] is a comb sequence

2 Under what conditions y1[n] = y2[n]?
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1 Basic Multirate Operations
2 Interconnection of Building Blocks

2.1 Decimator-Expander Cascades
2.2 Noble Identities

Condition for y1[n] = y2[n]

Equiv. to examine the condition of
{
W k

M

}M−1
k=0

≡
{
W kL

M

}M−1
k=0

:

iff M and L are relatively prime.

Question: Prove it. (see homework).

Equivalent to show: {0, 1, ...,M − 1} ≡ {0, L, 2L, ...(M − 1)L} mod M
iff M and L are relatively prime.

⇒ Thus the outputs of the two decimator-expander cascades,
Y1(z) and Y2(z), are identical and (a) ≡ (b) iff M and L are
relatively prime.
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1 Basic Multirate Operations
2 Interconnection of Building Blocks

2.1 Decimator-Expander Cascades
2.2 Noble Identities

The Noble Identities

Consider a LTI digital filter with a transfer function G (z):

Question: What kind of impulse response will a filter G (zL) have?

Recall: the transfer function G (z) of a LTI digital filter is rational for

practical implementation, i.e., a ratio of polynomials in z or z−1. There

should not be terms with fractional power in z or z−1.
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3 The Polyphase Representation
Appendix: Detailed Derivations

3.1 Basic Ideas
3.2 Efficient Structures
3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Polyphase Representation: Definition

H(z) =
∑∞

n=−∞ h[2n]z−2n + z−1
∑∞

n=−∞ h[2n + 1]z−2n

Define E0(z) and E1(z) as two polyphase components of H(z):

E0(z) =
∑∞

n=−∞ h[2n]z−n,

E1(z) =
∑∞

n=−∞ h[2n + 1]z−n,

We have

H(z) = E0(z2) + z−1E1(z2)

These representations hold whether H(z) is FIR or IIR, causal
or non-causal.

The polyphase decomposition can be applied to any sequence,
not just impulse response.
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3 The Polyphase Representation
Appendix: Detailed Derivations

3.1 Basic Ideas
3.2 Efficient Structures
3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Extension to M Polyphase Components

For a given integer M and H(z) =
∑∞

n=−∞ h[n]z−n, we have:

H(z) =
∑∞

n=−∞ h[nM]z−nM + z−1
∑∞

n=−∞ h[nM + 1]z−nM

+ . . . + z−(M−1)
∑∞

n=−∞ h[nM + M − 1]z−nM

Type-1 Polyphase Representation

H(z) =
∑M−1

`=0 z−`E`(z
M)

where the `-th polyphase components of H(z) given M is

E`(z) ,
∑∞

n=−∞ e`[n]z−n =
∑∞

n=−∞ h[nM + `]z−n

Note: 0 ≤ ` ≤ (M − 1); strictly we may denote as E
(M)
` (z).
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3 The Polyphase Representation
Appendix: Detailed Derivations

3.1 Basic Ideas
3.2 Efficient Structures
3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Alternative Polyphase Representation

If we define R`(z) = EM−1−`(z), 0 ≤ ` ≤ M − 1, we arrive at the

Type-2 polyphase representation

H(z) =
∑M−1

`=0 z−(M−1−`)R`(z
M)

Type-1: Ek(z) is ordered

consistently with the number of delays

in the input

Type-2: reversely order the filter

Rk(z) with respect to the delays
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3 The Polyphase Representation
Appendix: Detailed Derivations

3.1 Basic Ideas
3.2 Efficient Structures
3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

General Cases

In general, for FIR filters with length N:

M-fold decimation:

MPU = N
M , APU = N−1

M

L-fold interpolation:

MPU = N, APU = N − L

filtering is performed at a lower

data rate
APU = (NL − 1)× L
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3 The Polyphase Representation
Appendix: Detailed Derivations

3.1 Basic Ideas
3.2 Efficient Structures
3.3 Commutator Model
3.4 Discussions: Multirate Building Blocks & Polyphase Concept

Fractional Rate Conversion

Typically L and M should be chosen to have no common
factors greater than 1 (o.w. it is wasteful as we make the rate

higher than necessary only to reduce it down later)

H(z) filter needs to be fast as it operates in high data rate.

The direct implementation of H(z) is inefficient:{
there are L− 1 zeros in between its input samples

only one out of M samples is retained
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4 Multistage Implementations
5 Some Multirate Applications

4.1 Interpolated FIR (IFIR) Design
4.2 Multistage Design of Multirate Filters

Multistage Decimation / Expansion

Similarly, for interpolation,

Summary

By implementing in multistage, not only the number of polyphase
components reduces, but most importantly, the filter specification
is less stringent and the overall order of the filters are reduced.

Exercises:

Close book and think first how you would solve the problems.

Sketch your solutions on your notebook.

Then read V-book Sec. 4.4.
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1 Basic Multirate Operations
2 Interconnection of Building Blocks

1.1 Decimation and Interpolation
1.2 Digital Filter Banks

Digital Filter Banks

A digital filter bank is a collection of digital filters, with a common
input or a common output.

Hi (z): analysis filters

xk [n]: subband signals

Fi (z): synthesis filters

SIMO vs. MISO

Typical frequency response for analysis filters:

Can be

marginally overlapping

non-overlapping

(substantially) overlapping
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1 Basic Multirate Operations
2 Interconnection of Building Blocks

1.1 Decimation and Interpolation
1.2 Digital Filter Banks

DFT Filter Bank

Consider passing x [n] through a delay chain
to get M sequences {si [n]}: si [n] = x [n − i ]

i.e., treat {si [n]} as a vector s[n], then apply W∗s[n] to get x [n].
(W∗ instead of W due to newest component first in signal vector)

Question: What are the equiv. analysis filters?
And if having a multiplicative factor αi to the si [n]?
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1 Basic Multirate Operations
2 Interconnection of Building Blocks

1.1 Decimation and Interpolation
1.2 Digital Filter Banks

Uniform DFT Filter Bank

A filter bank in which the filters are related by

Hk(z) = H0(zW k)

is called a uniform DFT filter bank.

The response of filters |Hk(ω)| have a large amount of overlap.

ENEE630 Lecture Part-1 26 / 37



4 Multistage Implementations
5 Some Multirate Applications

5.1 Applications in Digital Audio Systems
5.2 Subband Coding / Compression
5.A Warm-up Exercise

Subband Coding

1 x0[n] and x1[n] are
bandlimited and can be
decimated

2 X1(ω) has smaller power
s.t. x1[n] has smaller
dynamic range, thus can be
represented with fewer bits

Suppose now to represent each
subband signal, we need

x0[n]: 16 bits / sample

x1[n]: 8 bits / sample

∴ 16× 10k
2 + 8× 10k

2 = 120kbps
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4 Multistage Implementations
5 Some Multirate Applications

5.1 Applications in Digital Audio Systems
5.2 Subband Coding / Compression
5.A Warm-up Exercise

Filter Bank for Subband Coding

Role of Fk(z):

Eliminate spectrum images introduced by ↑ 2, and recover
signal spectrum over respective freq. range

If {Hk(z)} is not perfect, the decimated subband signals may
have aliasing.

{Fk(z)} should be chosen carefully so that the aliasing gets
canceled at the synthesis stage (in x̂ [n]).
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Review: Quadrature Mirror Filter (QMF) BankReview: Quadrature Mirror Filter (QMF) Bank

M. Wu: ENEE630 Advanced Signal Processing [24]



6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

Polyphase Representation: Matrix Form

In matrix form: (with MIMO transfer function for intermediate stages)[
E1(z) 0

0 E0(z)

]
︸ ︷︷ ︸

synthesis

[
1 1
1 −1

] [
1 1
1 −1

]
︸ ︷︷ ︸ 2 0

0 2



[
E0(z) 0

0 E1(z)

]
︸ ︷︷ ︸

analysis

=

[
2E0(z)E1(z) 0

0 2E0(z)E1(z)

] > Note: Multiplication is

from left for each stage

when intermediate signals

are in column vector form.

ENEE630 Lecture Part-1 19 / 38



6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

Summary

Many “wishes” to consider toward achieving alias-free P.R. QMF:

(0) alias free, (1) phase distortion, (2) amplitude distortion,

(3) desirable filter responses.

Can’t satisfy them all at the same time, so often meet most of
them and try to approximate/optimize the rest.

A particular relation of synthesis-analysis filters to cancel alias:{
F0(z) = H1(−z)

F1(z) = −H0(−z)
s.t. H0(−z)F0(z) + H1(−z)F1(z) = 0.

We considered a specific relation between the analysis filters:
H1(z) = H0(−z) s.t. response symmetric w.r.t. ω = π/2 (QMF)

With polyphase structure: T (z) = 2z−1E0(z2)E1(z2)
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6 Quadrature Mirror Filter (QMF) Bank
Appendix: Detailed Derivations

6.1 Errors Created in the QMF Bank
6.2 A Simple Alias-Free QMF System
6.A Look Ahead

Summary: T (z) = 2z−1E0(z2)E1(z2)

Case-1 H0(z) is FIR:

P.R.: require polyphase components of H0(z) to be pure delay
s.t. H0(z) = c0z

−2n0 + c1z
−(2n1+1)

[cons] H0(ω) response is very restricted.

For more desirable filter response, the system may not be P.R., but
can minimize distortion:

– eliminate phase distortion: choose filter order N to be odd,
and h0[n] be symmetric (linear phase)

– minimize amplitude distortion: |H0(ω)|2 + |H1(ω)|2 ≈ 1

Case-2 H0(z) is IIR:

E1(z) = 1
E0(z)

can get P.R. but restrict the filter responses.

eliminate amplitude distortion: choose polyphase components to be
all pass, s.t. T (z) is all-pass, but may have some phase distortion
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7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

7.1 The Reconstructed Signal and Errors Created
7.2 The Alias Component (AC) Matrix
7.3 The Polyphase Representation
7.4 Perfect Reconstruction Filter Bank
7.5 Relation between Polyphase Matrix E(z) and AC MatrixH(z)

The Alias Component (AC) Matrix

From the definition of A`(z), we have in matrix-vector form:

H(z): M ×M matrix called the “Alias Component matrix”

The condition for alias cancellation is

H(z)f(z) = t(z), where t(z) =


MA0(z)

0
:
0
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7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

7.1 The Reconstructed Signal and Errors Created
7.2 The Alias Component (AC) Matrix
7.3 The Polyphase Representation
7.4 Perfect Reconstruction Filter Bank
7.5 Relation between Polyphase Matrix E(z) and AC MatrixH(z)

Simple FIR P.R. Systems

X̂ (z) = z−1X (z),

i.e., transfer function T (z) = z−1

Extend to M channels:

Hk(z) = z−k

Fk(z) = z−M+k+1, 0 ≤ k ≤ M−1

⇒ X̂(z) = z−(M−1)X(z)

i.e. demultiplex then multiplex

again
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7 M-channel Maximally Decimated Filter Bank
Appendix: Detailed Derivations

7.1 The Reconstructed Signal and Errors Created
7.2 The Alias Component (AC) Matrix
7.3 The Polyphase Representation
7.4 Perfect Reconstruction Filter Bank
7.5 Relation between Polyphase Matrix E(z) and AC MatrixH(z)

Dealing with Matrix Inversion

To satisfy P(z) = R(z)E(z) = I, it seems we have to do matrix inversion

for getting the synthesis filters R(z) = (E(z))−1.

Question: Does this get back to the same inversion problem we have
with the viewpoint of the AC matrix f(z) = H−1(z)t(z)?

Solution:

E(z) is a physical matrix that each entry can be controlled.
In contrast, for H(z), only 1st row can be controlled (thus hard to
ensure desired Hk(z) responses and f(z) stability)

We can choose FIR E(z) s.t. detE(z) = αz−k thus R(z) can be
FIR (and has determinant of similar form).

Summary: With polyphase representation, we can choose E(z) to
produce desired Hk(z) and lead to simple R(z) s.t. P(z) = cz−kI.
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

General Alias-free Condition

Recall from Section 7: The condition for alias cancellation in terms of
H(z) and f(z) is

H(z)f(z) = t(z) =


MA0(z)

0
:
0



Theorem

A M-channel maximally decimated filter bank is alias-free

iff the matrix P(z) = R(z)E(z) is pseudo circulant.

[ Readings: PPV Book 5.7 ]
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Circulant and Pseudo Circulant Matrix

(right-)circulant matrix P0(z) P1(z) P2(z)
P2(z) P0(z) P1(z)
P1(z) P2(z) P0(z)


Each row is the right circular shift
of previous row.

pseudo circulant matrix P0(z) P1(z) P2(z)
z−1P2(z) P0(z) P1(z)
z−1P1(z) z−1P2(z) P0(z)


Adding z−1 to elements below the
diagonal line of the circulant
matrix.

Both types of matrices are determined by the 1st row.

Properties of pseudo circulant matrix (or as an alternative definition):
Each column as up-shift version of its right column with z−1 to the wrapped
entry.
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Insights of the Theorem

Denote P(z) = [Ps,`(z)].

(Details) For further exploration: See PPV Book 5.7.2 for detailed proof.

Examine the relation between X̂ (z) and X (z), and evaluate the gain

terms on the aliased versions of X (z).
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Overall Transfer Function

The overall transfer function T (z) after aliasing cancellation:

X̂ (z) = T (z)X (z), where

T (z) = z−(M−1){P0,0(zM) + z−1P0,1(zM) + · · ·+ z−(M−1)P0,M−1(zM)}

(Details) For further exploration: See PPV Book 5.7.2 for derivations.
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Most General P.R. Conditions

Necessary and Sufficient P.R. Conditions

P(z) = cz−m0

[
0 IM−r

z−1Ir 0

]
for some r ∈ 0, ...,M − 1.

When r = 0, P(z) = I · cz−m0 , as the sufficient condition seen in
§I.7.3.

(Details)
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

(Binary) Tree-Structured Filter Bank

A multi-stage way to build M-channel filter bank:
Split a signal into 2 subbands ⇒ further split one or both subband
signals into 2 ⇒ · · ·

Question: Under what conditions is the overall system free from
aliasing? How about P.R.?
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

(Binary) Tree-Structured Filter Bank

• Can analyze the equivalent filters by noble identities.

• If a 2-channel QMF bank with H
(K)
0 (z), H

(K)
1 (z), F

(K)
0 (z),

F
(K)
1 (z) is alias-free, the complete system above is also alias-free.

• If the 2-channel system has P.R., so does the complete system.

[ Readings: PPV Book 5.8 ]
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Multi-resolution Analysis: Analysis Bank

Consider the variation of the tree structured filter bank
(i.e., only split one subband signals)

H0(z) = G (z)G (z2)G (z4)⇒ H0(ω) = G (ω)G (2ω)G (22ω)
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Multi-resolution Analysis: Synthesis Bank
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Discussions

(1) The typical frequency response of the equivalent analysis and
synthesis filters are:

(2) The multiresolution components vk [n] at the output of Fk(z):

v0[n] is a lowpass version of x [n] or a “coarse” approximation;

v1[n] adds some high frequency details so that v0[n] + v1[n] is
a finer approximation of x [n];

v3[n] adds the finest ultimate details.
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Discussions

(3) If 2-ch QMF with G (z), F (z), Gs(z), Fs(z) has P.R. with
unit-gain and zero-delay, we have x [n] = x [n].

(4) For compression applications: can assign more bits to represent
the coarse info, and the remaining bits (if available) to finer details
by quantizing the refinement signals accordingly.
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8 General Alias-Free Conditions for Filter Banks
9 Tree Structured Filter Banks and Multiresolution Analysis

Appendix: Detailed Derivations

Brief Note on Subband vs Wavelet Coding

The octave (dyadic) frequency partition can reflect the
logarithmic characteristics in human perception.

Wavelet coding and subband coding have many similarities
(e.g. from filter bank perspectives)

Traditionally subband coding uses filters that have little
overlap to isolate different bands

Wavelet transform imposes smoothness conditions on the
filters that usually represent a set of basis generated by shifting
and scaling (dilation) of a mother wavelet function

Wavelet can be motivated from overcoming the poor
time-domain localization of short-time FT

⇒ Explore more in Proj#1. See PPV Book Chapter 11
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