
Python for Science
and Engineering

Hans-Petter Halvorsen

https://www.halvorsen.blog

Python for Science and Engineering

Python for Science and Engineering

Hans-Petter Halvorsen

2019

Python for Science and Engineering
c©Hans-Petter Halvorsen

August 12, 2020

ISBN:978-82-691106-5-4

1

Preface

Python is a popular programming language, and it is one of the most used pro-
gramming languages today.

Python works on all the main platforms and operating systems used today, such
Windows, macOS, and Linux.

Python is a multi-purpose programming language, which can be use for simu-
lation, creating web pages, communicate with database systems, etc.

My Blog/Web Site [1]:
https://www.halvorsen.blog

Here you find lots of technical resources about Technology, Programming, Soft-
ware Engineering, Automation and Control, Industrial IT, etc.

Here you find my Web page with Python resources:

https://www.halvorsen.blog/documents/programming/python/

These resources are a supplement to this textbook. Here you can download the
software, download code examples, etc.

This Textbook is written in LATEXusing Overleaf.

LATEXis a document preparation system used for the communication and publi-
cation of scientific documents.

2

For more information about LATEX:
https://www.latex-project.org

Overleaf is a web-bases LATEXsystem, meaning you can write your LATEXdocuments
in your web browser, you co-work and share documents with others.

For more information about Overleaf:
https://www.overleaf.com

Python Books

You find other Python textbooks within different domains on my Python Web
page:
https://www.halvorsen.blog/documents/programming/python/

Python Books:

• Python Programming - This is a textbook in Python Programming
with lots of Practical Examples and Exercises. You will learn the necessary
foundation for basic programming with focus on Python.

• Python for Science and Engineering - This is a textbook in Python
Programming with lots of Examples, Exercises, and Practical Applications
within Mathematics, Simulations, etc. The focus is on numerical calcu-
lations in mathematics and engineering. Necessary theory is presented in
addition to many practical examples.

• Python for Control Engineering - This is a textbook in Python Pro-
gramming with lots of Examples, Exercises, and Practical Applications
within Mathematics, Simulations, Control Systems, DAQ, Database Sys-
tems, etc. The focus is on the use of Python within measurements, data
collection (DAQ), control technology, both analysis of control systems
(stability analysis, frequency response, ...) and implementation of control
systems (PID, etc.). Required theory is presented in addition to many
practical examples and exercises in Python.

• Python for Software Development - This is a textbook in Python Pro-
gramming with lots of Examples, Exercises, and Practical Applications
within Software Systems, Software Development, Software Engineering,
Database Systems, Web Application Desktop Applications, GUI Applica-
tions, etc. The focus is on the use of Python for creating modern Software
Systems. Required theory is presented in addition to many practical ex-
amples and exercises in Python.

3

Programming

The way we create software today has changed dramatically the last 30 years,
from the childhood of personal computers in the early 80s to today’s powerful
devices such as Smartphones, Tablets and PCs.

The Internet has also changed the way we use devices and software. We still
have traditional desktop applications, but Web Sites, Web Applications and so-
called Apps for Smartphones, etc. are dominating the software market today.

We need to find and learn Programming Languages that are suitable for the
New Age of Programming.

We have today several thousand different Programming Languages today. I
guess you will need to learn more than one Programming Language to survive
in today’s software market.

You find lots of Programming Resources here:
https://www.halvorsen.blog/documents/programming/

Software Engineering

Software Engineering is the discipline for creating software applications. A
systematic approach to the design, development, testing, and maintenance of
software.

The main parts or phases in the Software Engineering process are:

• Planning

• Requirements Analysis

• Design

• Implementation

• Testing

• Deployment and Maintenance

You find lots of Software Engineering Resources here:
https://www.halvorsen.blog/documents/programming/softwareengineering/

4

5

Contents

I Getting Started with Python 13

1 Introduction 14
1.1 The New Age of Programming 14
1.2 MATLAB . 18

2 What is Python? 20
2.1 Introduction to Python . 20

2.1.1 Interpreted vs. Compiled 21
2.2 Python Packages . 22

2.2.1 Python Packages for Science and Numerical Computations 23
2.3 Anaconda . 23
2.4 Python Editors . 24

2.4.1 Python IDLE . 24
2.4.2 Visual Studio Code . 25
2.4.3 Spyder . 25
2.4.4 Visual Studio . 25
2.4.5 PyCharm . 25
2.4.6 Wing Python IDE . 26
2.4.7 Jupyter Notebook . 26

2.5 Resources . 26
2.6 Installing Python . 26

2.6.1 Python Windows 10 Store App 27
2.6.2 Installing Anaconda . 27
2.6.3 Installing Visual Studio Code 27

3 Start using Python 29
3.1 Python IDE . 29
3.2 My first Python program . 29
3.3 Python Shell . 30
3.4 Running Python from the Console 30

3.4.1 Opening the Console on macOS 31
3.4.2 Opening the Console on Windows 32
3.4.3 Add Python to Path . 32

3.5 Scripting Mode . 34
3.5.1 Run Python Scripts from the Python IDLE 34
3.5.2 Run Python Scripts from the Console (Terminal) macOS 35
3.5.3 Run Python Scripts from the Command Prompt in Win-

dows . 36

6

3.5.4 Run Python Scripts from Spyder 36

4 Basic Python Programming 39
4.1 Basic Python Program . 39

4.1.1 Get Help . 39
4.2 Variables . 39

4.2.1 Numbers . 41
4.2.2 Strings . 42
4.2.3 String Input . 43

4.3 Built-in Functions . 43
4.4 Python Standard Library . 44
4.5 Using Python Libraries, Packages and Modules 45

4.5.1 Python Packages . 47
4.6 Plotting in Python . 47

4.6.1 Subplots . 50
4.6.2 Exercises . 52

II Python Programming 53

5 Python Programming 54
5.1 If ... Else . 54
5.2 Arrays . 55
5.3 For Loops . 57

5.3.1 Nested For Loops . 60
5.4 While Loops . 61
5.5 Exercises . 61

6 Creating Functions in Python 63
6.1 Introduction . 63
6.2 Functions with multiple return values 65
6.3 Exercises . 66

7 Creating Classes in Python 69
7.1 Introduction . 69
7.2 The init () Function . 70
7.3 Exercises . 73

8 Creating Python Modules 74
8.1 Python Modules . 74
8.2 Exercises . 75

9 File Handling in Python 77
9.1 Introduction . 77
9.2 Write Data to a File . 77
9.3 Read Data from a File . 78
9.4 Logging Data to File . 78
9.5 Web Resources . 79
9.6 Exercises . 79

7

10 Error Handling in Python 82
10.1 Introduction to Error Handling 82

10.1.1 Syntax Errors . 82
10.1.2 Exceptions . 82

10.2 Exceptions Handling . 83

11 Debugging in Python 85

12 Installing and using Python Packages 86
12.1 What is PIP? . 86

III Python Environments and Distributions 87

13 Introduction to Python Environments and Distributions 88
13.1 Package and Environment Managers 89

13.1.1 PIP . 89
13.1.2 Conda . 89

13.2 Python Virtual Environments . 90

14 Anaconda 91
14.1 Anaconda Navigator . 91

15 Enthought Canopy 93

IV Python Editors 94

16 Python Editors 95

17 Spyder 97

18 Visual Studio Code 99
18.1 Introduction to Visual Studio Code 99
18.2 Python in Visual Studio Code . 100

19 Visual Studio 101
19.1 Introduction to Visual Studio . 101
19.2 Work with Python in Visual Studio 101

19.2.1 Make Visual Studio ready for Python Programming . . . 102
19.2.2 Python Interactive . 102
19.2.3 New Python Project . 103

20 PyCharm 109

21 Wing Python IDE 111

22 Jupyter Notebook 113
22.1 JupyterHub . 114
22.2 Microsoft Azure Notebooks . 114

8

V Python for Mathematics Applications 116

23 Mathematics in Python 117
23.1 Basic Math Functions . 117

23.1.1 Exercises . 119
23.2 Statistics . 121

23.2.1 Introduction to Statistics 121
23.2.2 Statistics functions in Python 122

23.3 Trigonometric Functions . 124
23.4 Polynomials . 128

24 Linear Algebra in Python 131
24.1 Introduction to Linear Algebra 131
24.2 Linear Algebra with Python . 132

24.2.1 Vectors . 133
24.2.2 Matrices . 134
24.2.3 Linear Algebra (numpy.linalg) 134
24.2.4 Matrix Addition . 134
24.2.5 Matrix Subtraction . 135
24.2.6 Matrix Multiplication . 136
24.2.7 Transpose of a Matrix . 139
24.2.8 Determinant . 140
24.2.9 Inverse Matrix . 141

24.3 Solving Linear Equations . 142
24.4 Exercises . 144

25 Complex Numbers in Python 146
25.1 Introduction to Complex Numbers 146
25.2 Complex Numbers with Python 148

26 Differential Equations 150
26.1 Introduction to Differential Equations 150
26.2 ODE Solvers in Python . 153
26.3 Solving Multiple 1. order Differential Equations 156
26.4 Solving Higher order Differential Equations 159
26.5 Exercises . 161

27 Interpolation 166
27.1 Exercises . 169

28 Curve Fitting - Fitting Models to Data 172
28.1 Linear Regression . 172
28.2 Polynomial Regression . 174
28.3 Exercises . 180

29 Least Square Method 183

30 Numerical Differentiation 187
30.1 Differentiation on Polynomials 193

9

31 Numerical Integration 197
31.1 Integration on Polynomials . 202
31.2 Exercises . 203

32 Optimization 205

VI Using Python for Simulations 209

33 Introduction to Simulations 210

34 Differential Equations 211
34.1 Introduction to Differential Equations 211

35 Discrete Systems 213
35.1 Discretization . 213
35.2 Exercises . 217

36 Real-Time Simulations 219
36.1 Introduction . 219
36.2 Introduction to Real-Time Plotting 221
36.3 Real-Time Plotting with Animation 226

36.3.1 Speeding Up the Plot Animation 230

VII Data Acquisition (DAQ) with Python 235

37 Plotting Sensor Data 236
37.1 Introduction . 236
37.2 Introduction to Real-Time Plotting 236
37.3 Real-Time Plotting with Animation 238

37.3.1 Speeding Up the Plot Animation 240

38 Data Acquisition (DAQ) with Python 243
38.1 Introduction to DAQ . 243
38.2 Data Acquisition using NI DAQ Devices 243

38.2.1 NI-DAQmx . 245
38.2.2 Measurement Automation Explorer (MAX) 246

38.3 NI-DAQmx Python API . 246
38.3.1 Analog Write . 247
38.3.2 Analog Read . 247
38.3.3 Digital Write . 249
38.3.4 Digital Read . 249

38.4 Controlling LEDs . 250
38.5 Read Data from Temperature Sensors 252

38.5.1 Read Data from TMP36 Temperature Sensor 252
38.5.2 Read Data from Thermistor 256
38.5.3 Read Data NI TC-01 Thermocouple Device 260

38.6 Data Logging . 261

10

VIII Python Database Development 262

39 Database Applications with Python 263
39.1 Structured Query Language (SQL) 263
39.2 SQL Server . 264
39.3 MySQL . 264
39.4 MongoDB . 264

40 MongoDB with Python 265
40.1 Introduction to MongoDB . 265
40.2 MongoDB with Python . 265

40.2.1 PyMongo . 265
40.3 Additional Resources . 266

IX Python Application Development 267

41 Development of Applications with Python 268
41.1 Mathematics, Science and Engineering 269
41.2 Desktop GUI Applications . 269

41.2.1 PyQt . 270
41.2.2 PySide2 . 271
41.2.3 Tkinter . 271
41.2.4 WxPython . 271

41.3 Web Applications . 272
41.4 Database Applications . 272

41.4.1 SQL Server . 272
41.4.2 MySQL . 272
41.4.3 MariaDB . 273
41.4.4 MongoDB . 273

42 Python Integration with Visual Studio 274

43 Python Integration with LabVIEW 275
43.1 What is LabVIEW? . 275
43.2 Using Python in LabVIEW . 275

44 Raspberry Pi and Python 280
44.1 What is Raspberry Pi? . 280

45 Machine Learning with Python 281
45.1 Introduction to Machine Learning 281

X Resources 282

46 Python for MATLAB Users 283
46.1 Use Python inside MATLAB . 284
46.2 Calling MATLAB from Python 285

11

47 Python Resources 287
47.1 Python Distributions . 287
47.2 Python Libraries . 287
47.3 Python Editors . 287
47.4 Python Tutorials . 288
47.5 Python in Visual Studio . 288

XI Solutions to Exercises 291

12

Part I

Getting Started with
Python

13

Chapter 1

Introduction

With this textbook you will learn basic Python programming. The textbook
contains lots of examples and self-paced tasks that the users should go through
and solve in their own pace.

You will find additional resources on my blog/web site [1].
https://www.halvorsen.blog

My Web Site about Python is:
https://www.halvorsen.blog/documents/programming/python/

See Figure 1.1

1.1 The New Age of Programming

The way we create software today has changed dramatically the last 30 years,
from the childhood of personal computers in the early 80s to today’s powerful
devices such as Smartphones, Tablets and PCs.

The Internet has also changed the way we use devices and software. We still
have traditional desktop applications, but Web Sites, Web Applications and so-
called Apps for Smartphones, etc. are dominating the software market today.

We need to find and learn Programming Languages that are suitable for the
New Age of Programming.

We have today several thousand different Programming Languages, so why
should we learn Python? I guess you will need to learn more than one Pro-
gramming Language to survive in today’s software market. Python is easy to
learn, so it it a good starting point for new programmers.

Python is an interpreted, high-level, general-purpose programming language.
Created by Guido van Rossum and first released in 1991 [2].

14

Figure 1.1: Web Site - Python

Python is a fairly old Programming Language (1991) compared to many other
Programming Languages like C# (2000), Swift (2014), Java (1995), PHP (1995).

Python has during the last 10 years become more and more popular. Today,
Python has become one of the most popular Programming Languages.

There are many different rankings regarding which programming language which
is most popular. In most of these ranking, Python is in top 10.

One of these rankings is the IEEE Spectrum’s ranking of the top programming
languages [3].

From this ranking we see that Python is the most popular Programming Lan-
guage in 2018. See Figure 1.2
As we see in Figure 1.2 they categorize the different Programming Languages
into the following categories:

• Web

15

Figure 1.2: The Most Popular Programming Languages

• Mobile

• Enterprise

• Embedded

According to Figure 1.2 we see that Python can be used to program Web Ap-
plications, Enterprise Applications and Embedded Applications.

So far Python is not used or not optimized for creating Mobile Applications. We
have today 2 major Mobile platforms; iOS Applications are mainly programmed
with the Swift Programming language, while Android Applications are mainly
programmed with either Java or Kotlin.

Another survey is the ”Stack Overflow Developer Survey 2018” [4]. See Figure
1.3.

As we can see from [5] and Figure 1.4, Python becomes more and more popular
year by year.

Based on Figure 1.4, the source [5] try to predict the future of Python, see
Figure 1.5.

Based on the surveys and statistics mention above, obviously Python is a pro-
gramming language that you should learn.

Lets summarize:

• Python is fun to learn and use and it is also named after the British
comedy group called Monty Python.

• Python has a simple and flexible code structure and the code is easy to
read.

16

Figure 1.3: The Top Programming Languages - Stack Overflow Survey

• Python is highly extendable due to its high number of free available
Python Packaged and Libraries

• Python can be used on all platforms (Windows, macOS and Linux).

• Python is multi-purpose and can be used for to program Web Applications,
Enterprise Applications and Embedded Applications, and within Data
Science and Engineering Applications.

• The popularity of Python is growing fast.

• Python is open source and free to use

• The growing Python community makes it easy to find documentation,
code examples and get help when needed

In general, Python is a multipurpose programming language that can be used
in many situations. But there is not one programming language which is best
in all kind of situations, so it is important that you know about and have skills
in different languages.

My list of recommendations (one of many):

• Visual Studio and C

• LabVIEW - a graphical programming language well suited for hardware
integration, taking measurements and data logging

• MATLAB - Numerical calculations and Scientific computing

• Python - Numerical calculations, and Scientific computing, etc.

• Web Programming, such as HTML, CSS, JavaScript and a Server-side
framework/programming language like PHP, ASP.NET (C or VB.NET),
Django (Python based)

17

Figure 1.4: The Incredible Growth of Python

• Databases (such as SQL Server and MySQL) and using the Structured
Query Language (SQL) or the upcoming NoSQL databases

• App Development for the 2 main platforms iOS (XCode using the Swift
Programming Language) and Android (Android Studio using the Java
Programming Language or Kotlin Programming language)

If you have skills in most of the tools, programming languages and frameworks
mention above, you are well suited for working as a full-time programmer or
software engineer.

1.2 MATLAB

If you are looking for MATLAB, please see the following:
https://www.halvorsen.blog/documents/programming/matlab/

18

Figure 1.5: The Future of Python

19

Chapter 2

What is Python?

2.1 Introduction to Python

Python is an open source and cross-platform programming language, that has
become increasingly popular over the last ten years. It was first released in
1991. Latest version is 3.7.0. CPython is the reference implementation of the
Python programming language. Written in C, CPython is the default and most
widely-used implementation of the language.

Python is a multi-purpose programming languages (due to its many extensions),
examples are scientific computing and calculations, simulations, web develop-
ment (using, e.g., the Django Web framework), etc.

Python Home Page [6]:
https://www.python.org

The programming language is maintained and available from (Python Software
Foundation): https://www.python.org Here you can download the basic Python
features in one package, which includes the Python programming language in-
terpreter, and a basic code editor, or an integrated development environment,
called IDLE. See Figure 2.1

But this is just the Python core, i.e. the interpreter a very basic editor, and the
minimum needed to create basic Python programs.

Typically you will need more features for solving your tasks. Then you can in-
stall and use separate Python packages created by third parties. These packages
need to be downloaded and installed separately (typically you use something
called PIP), or you choose to use, e.g., a distribution package like Anaconda.

Python is an object-oriented programming language (OOP), but you can use
Python in basic application without the need to know about or use the object-
oriented features in Python.

Python is an interpreted programming language, this means that as a developer

20

Figure 2.1: IDLE - Basic Python Editor

you write Python (.py) files in a text editor and then put those files into the
python interpreter to be executed. Depending on the Editor you are using, this
is either done automatically, or you need to do it manually.

Here are some important Python sources: [6], [7], [8].

2.1.1 Interpreted vs. Compiled

What are the differences between Interpreted programming languages and Com-
piled programming languages? What kind should you choose, and why should
you bother?

Programming languages generally fall into one of two categories: Compiled or
Interpreted. With a compiled language, code you enter is reduced to a set of
machine-specific instructions before being saved as an executable file.
Both approaches have their advantages and disadvantages.

21

With interpreted languages, the code is saved in the same format that you en-
tered. Compiled programs generally run faster than interpreted ones because
interpreted programs must be reduced to machine instructions at run-time. It
is usually easier to develop applications in an interpreted environment because
you don’t have to recompile your application each time you want to test a small
section.

Python is an interpreted programming language, while e.g., C/C++ are trans-
lated by running the source code through a compiler, i.e., C/C++ are compiled
languages.

Interpreted languages, in contrast, must be parsed, interpreted, and executed
each time the program is run.

Another example of an interpreted programming language is PHP, which is
mainly used to create dynamic web pages and web applications.

Compiled languages are all translated by running the source code through a
compiler. This results in very efficient code that can be executed any number of
times. The overhead for the translation is incurred just once, when the source
is compiled; thereafter, it need only be loaded and executed.

During the design of an application, you might need to decide whether to use a
compiled language or an interpreted language for the application source code.

Interpreted languages, in contrast, must be parsed, interpreted, and executed
each time the program is run

Thus, an interpreted language is generally more suited for doing ”ad hoc” cal-
culations or simulations, while compiled languages are better for permanent
applications where speed is in focus.

2.2 Python Packages

With Python you don’t get so much out of the box. Instead of having all of
its functionality built into its core, you need to install different packages for
different topics.

This approach has advantages and disadvantages. An disadvantage is that you
need to install these packages separately and then later import these modules
in your code.

This is also typical approach for open source software, because everybody can
create their own Python packages and distribute them. In that way you also
find Python packages for almost everything, from Scientific Computing to Web
Development.

22

These packages need to be downloaded and installed separately, or you choose
to use, e.g., a distribution package like Anaconda, where you typically get the
packages you need for scientific computing. With Anaconda you typically get
the same features as with MATLAB.

Lots of Python packages exists, depending on what you are going to solve.
We have Python packages for Desktop GUI Development, Database Develop-
ment, Web Development, Software Development, etc.

See an overview of Applications for Python:
https://www.python.org/about/apps/

See also the Python Package Index (PyPI) web site:
https://pypi.org

Here you can search for, download and install many hundreds Python Packages
within different topics and applications. You can also make your own Python
Packages and distribute them here.

2.2.1 Python Packages for Science and Numerical Com-
putations

Some important Python Packages for Science and Numerical Computations are:

• NumPy - NumPy is the fundamental package for scientific computing
with Python [9]

• SciPy - SciPy is a free and open-source Python library used for scientific
computing and technical computing. SciPy contains modules for optimiza-
tion, linear algebra, integration, interpolation, special functions, FFT, sig-
nal and image processing, ODE solvers and other tasks common in science
and engineering. [9]

• Matplotlib - Matplotlib is a Python 2D plotting library. [10]

• Pandas - Pandas Python Data Analysis Library [11]

These packages need to be downloaded and installed separately, or you choose
to use, e.g., a distribution package like Anaconda, where you typically get the
packages you need for scientific computing. With Anaconda you typically get
the same features as with MATLAB.

2.3 Anaconda

Anaconda is a distribution package, where you get Python compiler, Python
packages and the Spyder editor, all in one package.

Anaconda includes Python, the Jupyter Notebook, and other commonly used
packages for scientific computing and data science.

23

They offer a free version (Anaconda Distribution) and a paid version (Enter-
prise) Anaconda is available for Windows, macOS, and Linux

Web:
https://www.anaconda.com

Wikipedia:
https://en.wikipedia.org/wiki/Anaconda(Pythondistribution)

Spyder and the Python packages (NumPy, SciPy, Matplotlib, ...) mention above
+++ are included in the Anaconda Distribution.

2.4 Python Editors

An Editor is a program where you create your code (and where you can run
and test it). Most Editors have also features for Debugging. For simple Python
programs you can use the IDLE Editor, but for more advanced programs a bet-
ter editor is recommended.

Examples of Python Editors:

• Python IDLE

• Visual Studio Code

• Spyder

• Visual Studio

• PyCharm

• Wing Python IDE

• Jupyter Notebook

These editors are shortly described below and in more detail later in this text-
book.

Which editor you should use depends on your background, what kind of code
editors you have used previously, your programming skills, what your are going
to develop in Python, etc.

2.4.1 Python IDLE

The programming language is maintained and available from (Python Software
Foundation): https://www.python.org Here you can download the basic Python
features in one package, which includes the Python programming language in-
terpreter, and a basic code editor, or an integrated development environment,
called IDLE. See Figure 2.1

Web:
https://www.python.org

24

2.4.2 Visual Studio Code

Visual Studio Code is a source code editor developed by Microsoft for Windows,
Linux and macOS.

Web:
https://code.visualstudio.com

Resources: Getting Started with Python in Visual Studio Code

2.4.3 Spyder

Spyder is an open source cross-platform integrated development environment
(IDE) for scientific programming in the Python language.

Web:
https://www.spyder-ide.org

Wikipedia:
https://en.wikipedia.org/wiki/Spyder(software)

Spyder is included in the Anaconda Distribution.

2.4.4 Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from
Microsoft. It is used to develop computer programs, as well as websites, web
apps, web services and mobile apps. The deafult (main) programming language
in Visual studio is C, but many other programming languages are supported.

Visual studio is available for Windows and macOS.

Visual Studio (from 2017), has integrated support for Python, it is called
”Python Support in Visual Studio”.

Web:
https://visualstudio.microsoft.com

Wikipedia:
https://en.wikipedia.org/wiki/MicrosoftV isualStudio

2.4.5 PyCharm

PyCharm is cross-platform, with Windows, macOS and Linux versions. The
Community Edition is free to use, while the Professional Edition (paid version)
has some extra features.

25

Web:
https://www.jetbrains.com/pycharm/

2.4.6 Wing Python IDE

The Wing Python IDE family of integrated development environments (IDEs)
from Wingware were created specifically for the Python programming language.

3 different version of Wing exists [12]:

• Wing 101 – a very simplified free version, for teaching beginning pro-
grammers

• Wing Personal – free version that omits some features, for students and
hobbyists

• Wing Pro – a full-featured commercial (paid) version, for professional
programmers

2.4.7 Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you to cre-
ate and share documents that contain live code, equations, visualizations and
text.

Web:
http://jupyter.org

Wikipedia:
https://en.wikipedia.org/wiki/ProjectJupyter

2.5 Resources

Here are some useful Python resources:

• The official Python Tutorial
- https://docs.python.org/3.7/tutorial/index.html

• The official Python Documentation
- https://docs.python.org/3.7/index.html

• Python Tutorial (w3schools.com) [13]
- https://www.w3schools.com/python/

2.6 Installing Python

The Python programming language is maintained and available from (Python
Software Foundation):

26

https://www.python.org

Here you can download the basic Python features in one package, which includes
the Python programming language interpreter, and a basic code editor, or an
integrated development environment, called IDLE. See Figure 2.1

For basic Python programming this is good enough.

For more advanced Python Programming you typically need a better Code Ed-
itor and additional Packages.

For the basic Python examples in the beginning, the basic Python software
from:
https://www.python.org is good enough.

I suggest you start with the basic Python software in order to learn the basics,
then you can upgrade to a better Editor, install addition Python packages (either
manually or or install Anaconda where ”everything” is included).

2.6.1 Python Windows 10 Store App

Python 3.7 is also available in the Microsoft Store for Windows 10.

The Microsoft Store version of Python 3.7 is a simplified installer for running
scripts and packages.

Microsoft Store version of Python 3.7 is very basic but it’s good enough to run
the simple scripts.

Python 3.7 Microsoft Store edition will receive all updates automatically when
they are released and no manual action is required from your end.

In order to install the Microsoft Store version of Python just open Microsoft
Store in Windows 10 and search for Python.

2.6.2 Installing Anaconda

The Spyder Code Editor and the Python packages (such as NumPy, SciPy, mat-
plotlib, etc) are included in the Anaconda Distribution.

Download and install from:
https://www.anaconda.com

2.6.3 Installing Visual Studio Code

Visual Studio Code code is a simple and easy to use editor that can be used for
many different programming languages.

27

Download and install from:
https://code.visualstudio.com

Getting Started with Python in Visual Studio Code:
https://code.visualstudio.com/docs/python/python-tutorial

28

Chapter 3

Start using Python

In this chapter we will start to use Python in some simple examples.

3.1 Python IDE

The basic code editor, or an integrated development environment, called IDLE.
See Figure 3.1.

Other Python Editors will be discussed more in detail later. For now you can
use the basic Python IDE (IDLE) or Spyder if you have installed the Anaconda
distribution package.

Figure 3.1: Python Shell / Python IDLE Editor

3.2 My first Python program

We will start using Python and create some code examples.

29

Example 3.2.1. Plotting in Python

Lets open your Python Editor and type the following:

1 pr in t (”He l lo World ! ”)

Listing 3.1: Hello World Python Example

[End of Example]

An extremely useful command is help(), which enters a help functionality to
explore all the stuff python lets you do, right from the interpreter. Press q to
close the help window and return to the Python prompt.

You can use Python in different ways, either in ”interactive” mode or in ”Script-
ing” mode.

The python program that you have installed will by default act as something
called an interpreter. An interpreter takes text commands and runs them as
you enter them - very handy for trying things out.

Yo can run Python interactively in different ways either using the Console which
is part of the operating system or the Python IDLE and the Python Shell which
is part of the basic Python installation from https://www.python.org.

3.3 Python Shell

In interactive Mode you use the Python Shell as seen in Figure 3.1.

Here you type one and one command at a time after the ”>>>” sign in the
Python Shell.

1 >>> pr in t (”He l lo World ! ”)

3.4 Running Python from the Console

A console (or ”terminal”, or ‘command prompt’) is a textual way to interact
with your OS (Operating System).

The python program that you have installed will by default act as something
called an interpreter. An interpreter takes text commands and runs them as
you enter them - very handy for trying things out.

Below we see how we can run Python from the Console which is part of the OS.

30

3.4.1 Opening the Console on macOS

The standard console on macOS is a program called Terminal. Open Terminal
by navigating to Applications, then Utilities, then double-click the Terminal pro-
gram. You can also easily search for it in the system search tool in the top right.

The command line Terminal is a tool for interacting with your computer. A
window will open with a command line prompt message, something like this:

Last l o g i n : Tue Dec 11 08 : 33 : 51 on conso l e
computername : ˜ username

Just type python at your console, hit Enter, and you should enter Python’s
Interpreter.

1 Last l o g i n : Tue Dec 11 12 : 34 : 16 on ttys000
2 Hans−Petter−Work−MacBook−Air : ˜ hansha$ python
3 Python 3 . 6 . 5 |Anaconda , Inc . | (de fau l t , Apr 26 2018 , 0 8 : 4 2 : 3 7)
4 [GCC 4 . 2 . 1 Compatible Clang 4 . 0 . 1 (tags /RELEASE 401/ f i n a l)] on

darwin
5 Type ” help ” , ” copyr ight ” , ” c r e d i t s ” or ” l i c e n s e ” f o r more

in fo rmat ion .
6 >>>

The prompt >>> on the last line indicates that you are now in an interactive
Python interpeter session, also called the “Python shell”. This is different from
the normal terminal command prompt!

You can now enter some code for python to run. Try:

>>> pr in t (” He l lo World”)

Se also Figure 3.2.

Figure 3.2: Console macOS

Try other Python commands, e.g.:

1 >>> a = 5
2 >>> b = 2
3 >>> x = 5
4 >>> y = 3∗a + b
5 >>> y

31

3.4.2 Opening the Console on Windows

Window’s console is called the Command Prompt, named cmd. An easy way to
get to it is by using the key combination Windows+R (Windows meaning the
windows logo button), which should open a Run dialog. Then type cmd and
hit Enter or click Ok.

You can also search for it from the start menu.

It should look like:

C:\ Users \myusername>

Just type python in the Command Prompt, hit Enter, and you should enter
Python’s Interpreter. See Figure 3.3.

Figure 3.3: Command Prompt Windows

If you get an error message like this:

’python’ is not recognized as an internal or external command, operable program
or batch file.
Then you need to add Python to your path. See instructions below.

Note! This is also an option during the setup. While installing you can se-
lect ”Add Python.exe to path”. This option is by default set to ”Off”. To get
that option you need to select ”Customize”, not using the ”Default” installation.

3.4.3 Add Python to Path

In the Windows menu, search for “advanced system settings” and select View
advanced system settings.

In the window that appears, click Environment Variables. . . near the bottom
right. See Figure 3.4.

32

Figure 3.4: Windows System Properties

In the next window, find and select the user variable named Path and click
Edit. . . to change its value. See Figure 3.5.

Select ”New” and add the path where ”python.exe” is located. See Figure 3.6.

The Default Location is:

C:\ Users \ user \AppData\Local \Programs\Python\Python37−32\

Click Save and open the Command Prompt once more and enter ”python” to
verify it works. See Figure 3.3.

33

Figure 3.5: Windows System Properties

3.5 Scripting Mode

In ”Scripting” mode you can write a Python Program with multiple Python
commands and then save it as a file (.py).

3.5.1 Run Python Scripts from the Python IDLE

From the Python Shell you select File → New File, or you can open an existing
Pytho program or Python Script by selecting File → Open...

Lets create a new Script and type in the following:

1 pr in t (”He l lo ”)
2 pr in t (”World”)
3 pr in t (”How are you?”)

In Figure 3.7 we see how this is done. As you see we can enter many Python
commands that together makes a Python program or Python script.
From the Python Shell you select Run→ Run Module or hit F5 in order to run
or execute the Python Script. See Figure 3.8.

34

Figure 3.6: Windows System Properties

The IDLE editor is very basic, for more complicated tasks you typically may
prefer to use another editor like Spyder, Visual Studio Code, etc.

3.5.2 Run Python Scripts from the Console (Terminal)
macOS

From the Console (Terminal) on macOS:

1 $ cd /Users /username/Downloads
2 $ python he l l owor ld . py

Note! Make sure you are at your system command prompt, which will have $
or > at the end, not in Python mode (which has >>> instead)!

See also Figure 3.9.
Then it responds with:

1 Hel lo
2 World
3 How are you?

35

Figure 3.7: Python Script

3.5.3 Run Python Scripts from the Command Prompt in
Windows

From Command Prompt in Window:

1 > cd /
2 > cd Temp
3 > python he l l owor ld . py

Note! Make sure you are at your system command prompt, which will have >
at the end, not in Python mode (which has >>> instead)!

See also Figure 3.10.
Then it responds with:

1 Hel lo
2 World
3 How are you?

3.5.4 Run Python Scripts from Spyder

If you have installed the Anaconda distribution package you can use the Spyder
editor. See 3.11.

In the Spyder editor we have the Script Editor to the left and the interactive
Python Shell or the Console window to the right. See See 3.11.

36

Figure 3.8: Running a Python Script

Figure 3.9: Running Python Scripts from Console window on macOS

Figure 3.10: Running Python Scripts from Console window on macOS

37

Figure 3.11: Running a Python Script in Spyder

38

Chapter 4

Basic Python Programming

4.1 Basic Python Program

We will start using Python and create some code examples.

We use the basic IDLE editor (or another Python Editor)

Example 4.1.1. Hello World Example

Lets open your Python Editor and type the following:

1 pr in t (”He l lo World ! ”)

Listing 4.1: Hello World Python Example

[End of Example]

4.1.1 Get Help

An extremely useful command is help(), which enters a help functionality to
explore all the stuff python lets you do, right from the interpreter.

Press q to close the help window and return to the Python prompt.

4.2 Variables

Variables are defined with the assignment operator, “=”. Python is dynamically
typed, meaning that variables can be assigned without declaring their type, and
that their type can change. Values can come from constants, from computation
involving values of other variables, or from the output of a function.
Python

39

Example 4.2.1. Creating and using Variables in Python

We use the basic IDLE (or another Python Editor) and type the following:

1 >>> x = 3
2 >>> x
3 3

Listing 4.2: Using Variables in Python

Here we define a variable and sets the value equal to 3 and then print the result
to the screen.

[End of Example]

You can write one command by time in the IDLE. If you quit IDLE the variables
and data are lost. Therefore, if you want to write a somewhat longer program,
you are better off using a text editor to prepare the input for the interpreter
and running it with that file as input instead. This is known as creating a script.

Python scripts or programs are save as a text file with the extension .py

Example 4.2.2. Calculations in Python

We can use variables in a calculation like this:

1 x = 3
2 y = 3∗x
3 pr in t (y)

Listing 4.3: Using and Printing Variables in Python

We can implementing the formula y = ax+ b like this:

1 a = 2
2 b = 5
3 x = 3
4

5 y = a∗x + b
6

7 pr in t (y)

Listing 4.4: Calculations in Python

As seen in the examples, you can use the print() command in order to show the
values on the screen.

[End of Example]

40

A variable can have a short name (like x and y) or a more descriptive name
(sum, amount, etc).

You don need to define the variables before you use them (like you need to to
in, e.g., C/C++/C).

Figure 4.1 show these examples using the basic IDLE editor.

Figure 4.1: Basic Python

Here are some basic rules for Python variables:

• A variable name must start with a letter or the underscore character

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters (A-z, 0-9) and
underscores

• Variable names are case-sensitive, e.g., amount, Amount and AMOUNT
are three different variables.

4.2.1 Numbers

There are three numeric types in Python:

• int

• float

• complex

41

Variables of numeric types are created when you assign a value to them, so in
normal coding you don’t need to bother.

Example 4.2.3. Numeric Types in Python

1 x = 1 # in t
2 y = 2 .8 # f l o a t
3 z = 3 + 2 j # complex

Listing 4.5: Numeric Types in Python

This means you just assign values to a variable without worrying about what
kind of data type it is.

1 pr in t (type (x))
2 pr in t (type (y))
3 pr in t (type (z))

Listing 4.6: Check Data Types in Python

If you use the Spyder Editor, you can see the data types that a variable has
using the Variable Explorer (Figure 4.2):

Figure 4.2: Variable Editor in Spyder

[End of Example]

4.2.2 Strings

Strings in Python are surrounded by either single quotation marks, or double
quotation marks. ’Hello’ is the same as ”Hello”.
Strings can be output to screen using the print function. For example: print(”Hello”).

Example 4.2.4. Plotting in Python

Below we see examples of using strings in Python:

1 a = ”He l lo World ! ”
2

3 pr in t (a)
4

5 pr in t (a [1])
6 pr in t (a [2 : 5])
7 pr in t (l en (a))
8 pr in t (a . lower ())

42

9 pr in t (a . upper ())
10 pr in t (a . r ep l a c e (”H” , ”J”))
11 pr in t (a . s p l i t (” ”))

Listing 4.7: Strings in Python

As you see in the example, there are many built-in functions form manipulating
strings in Python. The Example shows only a few of them.

Strings in Python are arrays of bytes, and we can use index to get a specific
character within the string as shown in the example code.

[End of Example]

4.2.3 String Input

Python allows for command line input.

That means we are able to ask the user for input.

Example 4.2.5. Plotting in Python

The following example asks for the user’s name, then, by using the input()
method, the program prints the name to the screen:

1 pr in t (”Enter your name : ”)
2 x = input ()
3 pr in t (”Hel lo , ” + x)

Listing 4.8: String Input

[End of Example]

4.3 Built-in Functions

Python consists of lots of built-in functions. Some examples are the print(9
function that we already have used (perhaps without noticing it is actually a
Built-in function).

Python also consists of different Modules, Libraries or Packages. These Mod-
ules, Libraries or Packages consists of lots of predefined functions for different
topics or areas, such as mathematics, plotting, handling database systems, etc.
See Section 4.4 for more information and details regarding this.

In another chapter we will learn to create our own functions from scratch.

43

4.4 Python Standard Library

Python allows you to split your program into modules that can be reused in
other Python programs. It comes with a large collection of standard modules
that you can use as the basis of your programs.
The Python Standard Library consists of different modules for handling file
I/O, basic mathematics, etc. You don’t need to install these separately, but you
need to important them when you want to use some of these modules or some
of the functions within these modules.

The math module has all the basic math functions you need, such as: Trigono-
metric functions: sin(x), cos(x), etc. Logarithmic functions: log(), log10(), etc.
Constants like pi, e, inf, nan, etc. etc.

Example 4.4.1. Using the math module

We create some basic examples how to use a Library, a Package or a Module:

If we need only the sin() function we can do like this:

1 from math import s i n
2

3 x = 3.14
4 y = s i n (x)
5

6 pr in t (y)

If we need a few functions we can do like this

1 from math import s in , cos
2

3 x = 3.14
4 y = s i n (x)
5 pr in t (y)
6

7 y = cos (x)
8 pr in t (y)

If we need many functions we can do like this:

1 from math import ∗
2

3 x = 3.14
4 y = s i n (x)
5 pr in t (y)
6

7 y = cos (x)
8 pr in t (y)

We can also use this alternative:

1 import math
2

3 x = 3.14
4 y = math . s i n (x)
5

6 pr in t (y)

44

We can also write it like this:

1 import math as mt
2

3 x = 3.14
4 y = mt . s i n (x)
5

6 pr in t (y)

[End of Example]

There are advantages and disadvantages with the different approaches. In your
program you may need to use functions from many different modules or pack-
ages. If you import the whole module instead of just the function(s) you need
you use more of the computer memory.

Very often we also need to import and use multiple libraries where the different
libraries have some functions with the same name but different use.

Other useful modules in the Python Standard Library are statistics (where
you have functions like mean(), stdev(), etc.)

For more information about the functions in the Python Standard Library,
see:
https://docs.python.org/3/library/index.html

4.5 Using Python Libraries, Packages and Mod-
ules

Rather than having all of its functionality built into its core, Python was de-
signed to be highly extensible. This approach has advantages and disadvantages.
An disadvantage is that you need to install these packages separately and then
later import these modules in your code.

Some important packages are:

• NumPy - NumPy is the fundamental package for scientific computing
with Python

• SciPy - SciPy is a free and open-source Python library used for scientific
computing and technical computing. SciPy contains modules for optimiza-
tion, linear algebra, integration, interpolation, special functions, FFT, sig-
nal and image processing, ODE solvers and other tasks common in science
and engineering.

• Matplotlib - Matplotlib is a Python 2D plotting library

45

Lots of other packages exists, depending on what you are going to solve.

These packages need to be downloaded and installed separately, or you choose
to use, e.g., a distribution package like Anaconda.

Here you find an overview of the NumPy library:
http://www.numpy.org

Here you find an overview of the SciPy library:
https://www.scipy.org

Here you find an overview of the Matplotlib library:
https://matplotlib.org

You will learn the basics features in all these libraries. We will use all of the in
different examples and exercises throughout this textbook.

Example 4.5.1. Using libraries

In this example we use the NumPy library:

1 import numpy as np
2

3 x = 3
4

5 y = np . s i n (x)
6

7 pr in t (y)

In this example we use both the math module in the Python Standard Library
and the NumPy library:

1 import math as mt
2 import numpy as np
3

4 x = 3
5

6 y = mt . s i n (x)
7

8 pr in t (y)
9

10

11 y = np . s i n (x)
12

13 pr in t (y)

Note! As seen in this example we use a function called sin() which exists both
in the math module in the Python Standard Library and the NumPy library.
In this case they give the same results. In this case the following code is not
recommended:

1 from math import ∗
2 from numpy import ∗
3

4 x = 3
5

46

6 y = s i n (x)
7

8 pr in t (y)
9

10

11 y = s i n (x)
12

13 pr in t (y)

In this case it works, but assume you have 2 different functions with the same
name that have different meaning in 2 different libraries.

[End of Example]

4.5.1 Python Packages

In addition to the Python Standard Library, there is a growing collection of sev-
eral thousand components (from individual programs and modules to packages
and entire application development frameworks), available from the Python
Package Index.

Python Package Index (PYPI):
https://pypi.org

Here you can download and install individual Python packages.
An easy alternative is the Anaconda Distribution, where many of the most used
Python packages are included.

Anaconda:
https://www.anaconda.com/distribution/

4.6 Plotting in Python

Typically you need to create some plots or charts. In order to make plots or
charts in Python you will need an external library. The most used library is
Matplotlib.

Matplotlib is a Python 2D plotting library

Here you find an overview of the Matplotlib library:
https://matplotlib.org

If you are familiar with MATLAB and basic plotting in MATLAB, using the
Matplotlib is very similar.

The main difference from MATLAB is that you need to import the library,
either the whole library or one or more functions.
For simplicity we import the whole library like this:

1 import matp lo t l i b . pyplot as p l t

47

Plotting functions that you will use a lot:

• plot()

• title()

• xlabel()

• ylabel()

• axis()

• grid()

• subplot()

• legend()

• show()

Lets create some basic plotting examples using the Matplotlib library:

Example 4.6.1. Plotting in Python

In this example we have to arrays with data. We want to plot x vs. y. We
can assume x is a time series and y is the corresponding temperature i degrees
Celsius.

1 import matp lo t l i b . pyplot as p l t
2

3 x = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10]
4

5 y = [5 , 2 ,4 , 4 , 8 , 7 , 4 , 8 , 10 , 9]
6

7 p l t . p l o t (x , y)
8 p l t . x l ab e l (’Time (s) ’)
9 p l t . y l ab e l (’ Temperature (degC) ’)

10 p l t . show ()

We get the following plot:
We can also write like this:

1 from matp lo t l i b . pyplot import ∗
2

3 x = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10]
4 y = [5 , 2 ,4 , 4 , 8 , 7 , 4 , 8 , 10 , 9]
5

6 p lo t (x , y)
7 x l ab e l (’Time (s) ’)
8 y l ab e l (’ Temperature (degC) ’)
9 show ()

This makes the code simpler to read. one problem with this approach appears
assuming we import and use multiple libraries and the different libraries have
some functions with the same name but different use.

48

Figure 4.3: Plotting in Python

[End of Example]

We have used 4 basic plotting function in the Matplotlib library:

• plot()

• xlabel()

• ylabel()

• show()

Example 4.6.2. Plotting a Sine Curve

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 x = [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7]
5

6 y = np . s i n (x)
7

8 p l t . p l o t (x , y)
9 p l t . x l ab e l (’ x ’)

10 p l t . y l ab e l (’ y ’)
11 p l t . show ()

This gives the following plot (see Figure 4.4):
A better solution will then be:

49

Figure 4.4: Plotting a Sine function in Python

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 x s t a r t = 0
5 xstop = 2∗np . p i
6 increment = 0 .1
7

8 x = np . arange (xs tar t , xstop , increment)
9

10 y = np . s i n (x)
11

12 p l t . p l o t (x , y)
13 p l t . x l ab e l (’ x ’)
14 p l t . y l ab e l (’ y ’)
15 p l t . show ()

This gives the following plot (see Figure 4.5):
If you want grids you can use the grid() function.

[End of Example]

4.6.1 Subplots

The subplot command enables you to display multiple plots in the same window.
Typing ”subplot(m,n,p)” partitions the figure window into an m-by-n matrix
of small subplots and selects the subplot for the current plot. The plots are
numbered along the first row of the figure window, then the second row, and so
on. See Figure 4.6.

Example 4.6.3. Creating Subplots

50

Figure 4.5: Plotting a Sine function in Python - Better Implementation

We will create and plot sin() and cos() in 2 different subplots.

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 x s t a r t = 0
5 xstop = 2∗np . p i
6 increment = 0 .1
7

8 x = np . arange (xs tar t , xstop , increment)
9

10 y = np . s i n (x)
11

12 z = np . cos (x)
13

14

15 p l t . subp lot (2 , 1 , 1)
16 p l t . p l o t (x , y , ’ g ’)
17 p l t . t i t l e (’ s i n ’)
18 p l t . x l ab e l (’ x ’)
19 p l t . y l ab e l (’ s i n (x) ’)
20 p l t . g r i d ()
21 p l t . show ()
22

23

24 p l t . subp lot (2 , 1 , 2)
25 p l t . p l o t (x , z , ’ r ’)
26 p l t . t i t l e (’ cos ’)
27 p l t . x l ab e l (’ x ’)
28 p l t . y l ab e l (’ cos (x) ’)
29 p l t . g r i d ()
30 p l t . show ()

[End of Example]

51

Figure 4.6: Creating Subplots in Python

4.6.2 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 4.6.1. Create sin(x) and cos(x) in 2 different plots

Create sin(x) and cos(x) in 2 different plots.

You should use all the Plotting functions listed below in your code:

• plot()

• title()

• xlabel()

• ylabel()

• axis()

• grid()

• legend()

• show()

[End of Exercise]

52

Part II

Python Programming

53

Chapter 5

Python Programming

We have been through the basics in Python, such as variables, using some basic
built-in functions, basic plotting, etc.

You may come far only using these thins, but to create real applications, you
need to know about and use features like:

• If ... Else

• For Loops

• While Loops

• Arrays ...

If you are familiar with one or more other programming language, these fea-
tures should be familiar and known to you. All programming languages has
these features built-in, but the syntax is slightly different from one language to
another.

5.1 If ... Else

An ”if statement” is written by using the if keyword.

Here are some Examples how you use a If sentences in Python:

Example 5.1.1. Using For Loops in Python

1 a = 5
2 b = 8
3

4 i f a > b :
5 pr in t (”a i s g r e a t e r than b”)
6

7 i f b > a :
8 pr in t (”b i s g r e a t e r than a”)
9

10 i f a == b :
11 pr in t (”a i s equal to b”)

Listing 5.1: Using Arrays in Python

54

Try to change the values for a and b.

Using If - Else:

1 a = 5
2 b = 8
3

4 i f a > b :
5 pr in t (”a i s g r e a t e r than b”)
6 e l s e :
7 pr in t (”b i s g r e a t e r than a or a and b are equal ”)

Listing 5.2: Using Arrays in Python

Using Elif :

1 a = 5
2 b = 8
3

4 i f a > b :
5 pr in t (”a i s g r e a t e r than b”)
6 e l i f b > a :
7 pr in t (”b i s g r e a t e r than a”)
8 e l i f a == b :
9 pr in t (”a i s equal to b”)

Listing 5.3: Using Arrays in Python

Note! Python uses ”elif” not ”elseif” like many other programming languages
do.

[End of Example]

5.2 Arrays

An array is a special variable, which can hold more than one value at a time.

Here are some Examples how you can create and use Arrays in Python:

Example 5.2.1. Using For Loops in Python

1 data = [1 . 6 , 3 . 4 , 5 . 5 , 9 . 4]
2

3 N = len (data)
4

5 pr in t (N)
6

7 pr in t (data [2])
8

9 data [2] = 7 .3
10

11 pr in t (data [2])
12

13

14 f o r x in data :
15 pr in t (x)

55

16

17

18 data . append (1 1 . 4)
19

20

21 N = len (data)
22

23 pr in t (N)
24

25

26 f o r x in data :
27 pr in t (x)

Listing 5.4: Using Arrays in Python

You define an array like this:

1 data = [1 . 6 , 3 . 4 , 5 . 5 , 9 . 4]

You can also use text like this:

1 c a r l i s t = [”Volvo” , ”Tes la ” , ”Ford”]

You can use Arrays in Loops like this:

1 f o r x in data :
2 pr in t (x)

You can return the number of elements in the array like this:

1 N = len (data)

You can get a specific value inside the array like this:

1 index = 2
2 x = car s [index]

You can use the append() method to add an element to an array:

1 data . append (1 1 . 4)

[End of Example]

You have many built in methods you can use in combination with arrays, like
sort(), clear(), copy(), count(), insert(), remove(), etc.

You should look test all these methods.

56

5.3 For Loops

A For loop is used for iterating over a sequence. I guess all your programs will
use one or more For loops. So if you have not used For loops before, make sure
to learn it now.

Below you see a basic example how you can use a For loop in Python:

1 f o r i in range (1 , 10) :
2 pr in t (i)

The For loop is probably one of the most useful feature in Python (or in any
kind of programming language). Below you will see different examples how you
can use a For loop in Python.

Example 5.3.1. Using For Loops in Python

1 data = [1 . 6 , 3 . 4 , 5 . 5 , 9 . 4]
2

3 f o r x in data :
4 pr in t (x)
5

6

7 c a r l i s t = [”Volvo” , ”Tes la ” , ”Ford”]
8

9 f o r car in c a r l i s t :
10 pr in t (car)

Listing 5.5: Using For Loops in Python

The range() function is handy yo use in For Loops:

1 N = 10
2

3 f o r x in range (N) :
4 pr in t (x)

The range() function returns a sequence of numbers, starting from 0 by default,
and increments by 1 (by default), and ends at a specified number.

You can also use the range() function like this:

1 s t a r t = 4
2 stop= 12 #but not i n c l ud ing
3

4 f o r x in range (s ta r t , stop) :
5 pr in t (x)

Finally, you can also use the range() function like this:

1 s t a r t = 4
2 stop = 12 #but not i n c l ud ing
3 s tep = 2
4

5 f o r x in range (s ta r t , stop , s tep) :
6 pr in t (x)

57

You should try all these examples in order to learn the basic structure of a For
loop.

[End of Example]

Example 5.3.2. Using For Loops for Summation of Data

You typically want to use a For loop for find the sum of a given data set.

1 data = [1 , 5 , 6 , 3 , 12 , 3]
2

3 sum = 0
4

5 #Find the Sum of a l l the numbers
6 f o r x in data :
7 sum = sum + x
8

9 pr in t (sum)
10

11 #Find the Mean or Average o f a l l the numbers
12

13 N = len (data)
14

15 mean = sum/N
16

17 pr in t (mean)

This gives the following results:

1 30
2 5 .0

[End of Example]

Example 5.3.3. Implementing Fibonacci Numbers Using a For Loop in Python

Fibonacci numbers are used in the analysis of financial markets, in strategies
such as Fibonacci retracement, and are used in computer algorithms such as the
Fibonacci search technique and the Fibonacci heap data structure.
They also appear in biological settings, such as branching in trees, arrangement
of leaves on a stem, the fruitlets of a pineapple, the flowering of artichoke, an
uncurling fern and the arrangement of a pine cone.

In mathematics, Fibonacci numbers are the numbers in the following sequence:
0, 1, 1, 2 ,3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

By definition, the first two Fibonacci numbers are 0 and 1, and each subsequent
number is the sum of the previous two.

Some sources omit the initial 0, instead beginning the sequence with two 1s.

58

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the
recurrence relation

fn = fn−1 + fn−2 (5.1)

with seed values:

f0 = 0, f1 = 1

We will write a Python script that calculates the N first Fibonacci numbers.
The Python Script becomes like this:

1 N = 10
2

3 f i b 1 = 0
4 f i b 2 = 1
5

6 pr in t (f i b 1)
7 pr in t (f i b 2)
8

9 f o r k in range (N−2) :
10 f i b n e x t = f i b 2 +f i b 1
11 f i b 1 = f i b 2
12 f i b 2 = f i b n e x t
13 pr in t (f i b n e x t)

Listing 5.6: Fibonacci Numbers Using a For Loop in Python

Alternative solution:

1 N = 10
2

3 f i b = [0 , 1]
4

5

6 f o r k in range (N−2) :
7 f i b n e x t = f i b [k+1] +f i b [k]
8 f i b . append (f i b n e x t)
9

10 pr in t (f i b)

Listing 5.7: Fibonacci Numbers Using a For Loop in Python - Alt2

Another alternative solution:

1 N = 10
2

3 f i b = []
4

5 f o r k in range (N) :
6 f i b . append (0)
7

8 f i b [0] = 0
9 f i b [1] = 1

10

59

11 f o r k in range (N−2) :
12 f i b [k+2] = f i b [k+1] +f i b [k]
13

14

15 pr in t (f i b)

Listing 5.8: Fibonacci Numbers Using a For Loop in Python - Alt3

Another alternative solution:

1 import numpy as np
2

3

4 N = 10
5

6 f i b = np . z e r o s (N)
7

8 f i b [0] = 0
9 f i b [1] = 1

10

11 f o r k in range (N−2) :
12 f i b [k+2] = f i b [k+1] +f i b [k]
13

14

15 pr in t (f i b)

Listing 5.9: Fibonacci Numbers Using a For Loop in Python - Alt4

[End of Example]

5.3.1 Nested For Loops

In Python and other programming languages you can use one loop inside an-
other loop.

Syntax for nested For loops in Python:

1 f o r i t e r a t i n g v a r in sequence :
2 f o r i t e r a t i n g v a r in sequence :
3 statements (s)
4 statements (s)

Simple example:

1 f o r i in range (1 , 10) :
2 f o r k in range (1 , 10) :
3 pr in t (i , k)

Exercise 5.3.1. Prime Numbers

The first 25 prime numbers (all the prime numbers less than 100) are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97

60

By definition a prime number has both 1 and itself as a divisor. If it has any
other divisor, it cannot be prime.

A natural number (1, 2, 3, 4, 5, 6, etc.) is called a prime number (or a prime) if
it is greater than 1 and cannot be written as a product of two natural numbers
that are both smaller than it.

Create a Python Script where you find all prime numbers between 1 and 200.

Tip! I guess this can be done in many different ways, but one way is to use 2
nested For Loops.

[End of Exercise]

5.4 While Loops

The while loop repeats a group of statements an indefinite number of times
under control of a logical condition.

Example 5.4.1. Using While Loops in Python

1 m = 8
2

3 whi le m > 2 :
4 pr in t (m)
5 m = m − 1

Listing 5.10: Using While Loops in Python

[End of Example]

5.5 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 5.5.1. Plot of Dynamic System

Given the autonomous system:
ẋ = ax (5.2)

Where:

a = − 1

T

61

where T is the time constant.

The solution for the differential equation is:

x(t) = eatx0 (5.3)

Set T=5 and the initial condition x(0)=1.

Create a Script in Python (.py file) where you plot the solution x(t) in the time
interval:

0 ≤ t ≤ 25

Add Grid, and proper Title and Axis Labels to the plot.

[End of Exercise]

62

Chapter 6

Creating Functions in
Python

6.1 Introduction

A function is a block of code which only runs when it is called. You can pass
data, known as parameters, into a function. A function can return data as a
result.

Previously we have been using many of the built-in functions in Python

If you are familiar with one or more other programming language, creating and
using functions should be familiar and known to you. All programming lan-
guages has the possibility to create functions, but the syntax is slightly different
from one language to another.

Some programming languages uses the term Method instead of a Function.
Functions and Methods behave in the same manner, but you could say that
Methods are functions that belongs to a Class. We will learn more about Classes
in Chapter 7.

Scripts vs. Functions

It is important to know the difference between a Script and a Function.

Scripts:

• A collection of commands that you would execute in the Editor

• Used for automating repetitive tasks

Functions:

• Operate on information (inputs) fed into them and return outputs

• Have a separate workspace and internal variables that is only valid inside
the function

63

• Your own user-defined functions work the same way as the built-in func-
tions you use all the time, such as plot(), rand(), mean(), std(), etc.

Python have lots of built-in functions, but very often we need to create our own
functions (we could refer to these functions as user-defined functions)
In Python a function is defined using the def keyword:

1 de f FunctionName :
2 <statement−1>
3 .
4 .
5 <statement−N>
6 r e turn . . .

Example 6.1.1. Create a Function in a separate File

Below you see a simple function created in Python:

1 de f add (x , y) :
2

3 r e turn x + y

Listing 6.1: Basic Python Function

The function adds 2 numbers. The name of the function is add, and it returns
the answer using the return statement.

The statement return [expression] exits a function, optionally passing back an
expression to the caller. A return statement with no arguments is the same as
return None.

Note that you need to use a colon ”:” at the end of line where you define the
function.

Note also the indention used.

1 de f add (x , y) :

Here you see a Python script where we use the function:

1 de f add (x , y) :
2

3 r e turn x + y
4

5

6 x = 2
7 y = 5
8

9 z = add (x , y)
10

11 pr in t (z)

Listing 6.2: Creating and Using a Python Function

64

[End of Example]

Example 6.1.2. Create a Function in a separate File

We start by creating a separate Python File (myfunctions.py) for the function:

1 de f average (x , y) :
2

3 r e turn (x + y) /2

Listing 6.3: Function calculating the Average

Next, we create a new Python File (e.g., testaverage.py) where we use the
function we created:

1 from myfunctions import average
2

3 a = 2
4 b = 3
5

6 c = average (a , b)
7

8 pr in t (c)

Listing 6.4: Test of Average function

[End of Example]

6.2 Functions with multiple return values

Typically we want to return more than one value from a function.

Example 6.2.1. Create a Function Function with multiple return values

Create the following example:

1 de f s t a t (x) :
2

3 totalsum = 0
4

5 #Find the Sum of a l l the numbers
6 f o r x in data :
7 totalsum = totalsum + x
8

9

10 #Find the Mean or Average o f a l l the numbers
11

12 N = len (data)
13

14 mean = totalsum/N
15

16

17 r e turn totalsum , mean
18

19

20

65

21 data = [1 , 5 , 6 , 3 , 12 , 3]
22

23

24 totalsum , mean = s t a t (data)
25

26 pr in t (totalsum , mean)

Listing 6.5: Function with multiple return values

[End of Example]

6.3 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 6.3.1. Create Python Function

Create a function calcaverage that finds the average of two numbers.

[End of Exercise]

Exercise 6.3.2. Create Python functions for converting between radians and
degrees

Since most of the trigonometric functions require that the angle is expressed in
radians, we will create our own functions in order to convert between radians
and degrees.

It is quite easy to convert from radians to degrees or from degrees to radians.

We have that:

2π[radians] = 360[degrees] (6.1)

This gives:

d[degrees] = r[radians]× (
180

π
) (6.2)

and

r[radians] = d[degrees]× (
π

180
) (6.3)

Create two functions that convert from radians to degrees (r2d(x)) and from
degrees to radians (d2r(x)) respectively.

These functions should be saved in one Python file .py.

Test the functions to make sure that they work as expected.

66

[End of Exercise]

Exercise 6.3.3. Create a Function that Implementing Fibonacci Numbers

Fibonacci numbers are used in the analysis of financial markets, in strategies
such as Fibonacci retracement, and are used in computer algorithms such as the
Fibonacci search technique and the Fibonacci heap data structure.
They also appear in biological settings, such as branching in trees, arrangement
of leaves on a stem, the fruitlets of a pineapple, the flowering of artichoke, an
uncurling fern and the arrangement of a pine cone.

In mathematics, Fibonacci numbers are the numbers in the following sequence:
0, 1, 1, 2 ,3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

By definition, the first two Fibonacci numbers are 0 and 1, and each subsequent
number is the sum of the previous two.

Some sources omit the initial 0, instead beginning the sequence with two 1s.

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the
recurrence relation

fn = fn−1 + fn−2 (6.4)

with seed values:

f0 = 0, f1 = 1

Create a Function that Implementing the N first Fibonacci Numbers

[End of Exercise]

Exercise 6.3.4. Prime Numbers

The first 25 prime numbers (all the prime numbers less than 100) are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97

By definition a prime number has both 1 and itself as a divisor. If it has any
other divisor, it cannot be prime.

A natural number (1, 2, 3, 4, 5, 6, etc.) is called a prime number (or a prime) if
it is greater than 1 and cannot be written as a product of two natural numbers
that are both smaller than it.

Tip! I guess this can be implemented in many different ways, but one way is to
use 2 nested For Loops.

67

Create a Python function where you check if a given number is a prime number
or not.

You can check the function in the Command Window like this:

1 number = 4
2 check i fp r ime (number)

Then Python respond with True or False.

[End of Exercise]

68

Chapter 7

Creating Classes in Python

7.1 Introduction

Python is an object oriented programming (OOP) language. Almost everything
in Python is an object, with its properties and methods.

The foundation for all object oriented programming (OOP) languages are Classes.

To create a class, use the keyword class:

1 c l a s s ClassName :
2 <statement−1>
3 .
4 .
5 .
6 <statement−N>

Example 7.1.1. Simple Class Example

We will create a simple Class in Python.

1 c l a s s Car :
2 model = ”Volvo”
3 c o l o r = ”Blue”
4

5

6 car = Car ()
7

8

9 pr in t (car . model)
10 pr in t (car . c o l o r)

Listing 7.1: Simple Python Class

The results will be in this case:

1 Volvo
2 Blue

69

This example don’t illustrate the good things with classes so we will create some
more examples.

[End of Example]

Example 7.1.2. Python Class

Lets create the following Python Code:

1 c l a s s Car :
2 model = ””
3 c o l o r = ””
4

5 car = Car ()
6

7 car . model = ”Volvo”
8 car . c o l o r = ”Blue”
9

10 pr in t (car . c o l o r + ” ” + car . model)
11

12 car . model = ”Ford”
13 car . c o l o r = ”Green”
14

15 pr in t (car . c o l o r + ” ” + car . model)

Listing 7.2: Python Class example

You should try these examples.

[End of Example]

7.2 The init () Function

In Python all classes have a built-in function called init (), which is always
executed when the class is being initiated.
In many other OOP languages we call this the Constructor.

Exercise 7.2.1. The init () Function

We will create a simple example where we use the init () function to illustrate
the principle.

We change our previous Car example like this:

1 c l a s s Car :
2 de f i n i t (s e l f , model , c o l o r) :
3 s e l f . model = model
4 s e l f . c o l o r = co l o r
5

6 car1 = Car (”Ford” , ”Green”)
7

8 pr in t (car1 . model)
9 pr in t (car1 . c o l o r)

10

11

70

12 car2 = Car (”Volvo” , ”Blue”)
13

14 pr in t (car2 . model)
15 pr in t (car2 . c o l o r)

Listing 7.3: Python Class Constructor Example

Lets extend the Class by defining a Function as well:

1 # Def in ing the Class Car
2 c l a s s Car :
3 de f i n i t (s e l f , model , c o l o r) :
4 s e l f . model = model
5 s e l f . c o l o r = co l o r
6

7 de f d i sp layCar (s e l f) :
8 pr in t (s e l f . model)
9 pr in t (s e l f . c o l o r)

10

11

12 # Lets s t a r t us ing the Class
13

14 car1 = Car (”Tesla ” , ”Red”)
15

16 car1 . d i sp layCar ()
17

18

19 car2 = Car (”Ford” , ”Green”)
20

21 pr in t (car2 . model)
22 pr in t (car2 . c o l o r)
23

24

25 car3 = Car (”Volvo” , ”Blue”)
26

27 pr in t (car3 . model)
28 pr in t (car3 . c o l o r)
29

30 car3 . c o l o r=”Black”
31

32 car3 . d i sp layCar ()

Listing 7.4: Python Class with Function

As you see from the code we have now defined a Class ”Car” that has 2 Class
variables called ”model” and ”color”, and in addition we have defined a Func-
tion (or Method) called ”displayCar()”.

Its normal to use the term ”Method” for Functions that are defined within a
Class.

You declare class methods like normal functions with the exception that the
first argument to each method is self.

To create instances of a class, you call the class using class name and pass in
whatever arguments its init () method accepts.

For example:

71

1 car1 = Car (”Tesla ” , ”Red”)

[End of Example]

Exercise 7.2.2. Create the Class in a separate Python file

We start by creating the Class and then we save the code in ”Car.py”:

1 # Def in ing the Class Car
2 c l a s s Car :
3 de f i n i t (s e l f , model , c o l o r) :
4 s e l f . model = model
5 s e l f . c o l o r = co l o r
6

7 de f d i sp layCar (s e l f) :
8 pr in t (s e l f . model)
9 pr in t (s e l f . c o l o r)

Listing 7.5: Define Python Class in separate File

Then we create a Python Script (testCar.py) where we are using the Class:

1 # Importing the Car Class
2 from Car import Car
3

4 # Lets s t a r t us ing the Class
5

6 car1 = Car (”Tesla ” , ”Red”)
7

8 car1 . d i sp layCar ()
9

10

11 car2 = Car (”Ford” , ”Green”)
12

13 pr in t (car2 . model)
14 pr in t (car2 . c o l o r)
15

16

17 car3 = Car (”Volvo” , ”Blue”)
18

19 pr in t (car3 . model)
20 pr in t (car3 . c o l o r)
21

22 car3 . c o l o r=”Black”
23

24 car3 . d i sp layCar ()

Listing 7.6: Script that is using the Class

Notice the following line at the top:

1 from Car import Car

[language=Python]

[End of Example]

72

7.3 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 7.3.1. Create Python Class

Create a Python Class where you calculate the degrees in Fahrenheit based on
the temperature in Celsius and vice versa.

The formula for converting from Celsius to Fahrenheit is:

Tf = (Tc × 9/5) + 32 (7.1)

The formula for converting from Fahrenheit to Celsius is:

Tc = (Tf − 32)× (5/9) (7.2)

[End of Exercise]

73

Chapter 8

Creating Python Modules

As your program gets longer, you may want to split it into several files for easier
maintenance. You may also want to use a handy function that you have written
in several programs without copying its definition into each program.

To support this, Python has a way to put definitions in a file and use them
in a script or in an interactive instance of the interpreter (the Python Console
window).

8.1 Python Modules

A module is a file containing Python definitions and statements. The file name
is the module name with the suffix .py appended.

Python allows you to split your program into modules that can be reused in
other Python programs. It comes with a large collection of standard modules
that you can use as the basis of your programs as we have seen examples of in
previous chapters. Not it is time to make your own modules from scratch.

Consider a module to be the same as a code library. A file containing a set of
functions you want to include in your application.

Previously you have been using different modules, libraries or packages created
by the Python organization or by others. Here you will create your own modules
from scratch.

Example 8.1.1. Create your first Python Module

We will create a Python module with 2 functions. The first function should
convert from Celsius to Fahrenheit and the other function should convert from
Fahrenheit to Celsius.

The formula for converting from Celsius to Fahrenheit is:

Tf = (Tc × 9/5) + 32 (8.1)

74

The formula for converting from Fahrenheit to Celsius is:

Tc = (Tf − 32)× (5/9) (8.2)

First, we create a Python module with the following functions (fahrenheit.py):

1 de f c2 f (Tc) :
2

3 Tf = (Tc ∗ 9/5) + 32
4 r e turn Tf
5

6

7 de f f 2 c (Tf) :
8

9 Tc = (Tf − 32) ∗ (5/9)
10 r e turn Tc

Listing 8.1: Fahrenheit Functions

Then, we create a Python script for testing the functions (testfahrenheit.py):

1 from fah r enhe i t import c2f , f 2 c
2

3 Tc = 0
4

5 Tf = c2 f (Tc)
6

7 pr in t (”Fahrenheit : ” + s t r (Tf))
8

9

10 Tf = 32
11

12 Tc = f2c (Tf)
13

14 pr in t (” Ce l s i u s : ” + s t r (Tc))

Listing 8.2: Python Script testing the functions

The results becomes:

1 Fahrenheit : 32 .0
2 Ce l s i u s : 0 . 0

8.2 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 8.2.1. Create Python Module for converting between radians and
degrees

Since most of the trigonometric functions require that the angle is expressed in
radians, we will create our own functions in order to convert between radians

75

and degrees.

It is quite easy to convert from radians to degrees or from degrees to radians.
We have that:

2π[radians] = 360[degrees] (8.3)

This gives:

d[degrees] = r[radians]× (
180

π
) (8.4)

and

r[radians] = d[degrees]× (
π

180
) (8.5)

Create two functions that convert from radians to degrees (r2d(x)) and from
degrees to radians (d2r(x)) respectively.

These functions should be saved in one Python file .py.

Test the functions to make sure that they work as expected. You can choose to
make a new .py file to test these functions or you can use the Console window.

[End of Exercise]

76

Chapter 9

File Handling in Python

9.1 Introduction

Python has several functions for creating, reading, updating, and deleting files.
The key function for working with files in Python is the open() function.

The open() function takes two parameters; Filename, and Mode.

There are four different methods (modes) for opening a file:

• ”x” - Create - Creates the specified file, returns an error if the file exists

• ”w” - Write - Opens a file for writing, creates the file if it does not exist

• ”r” - Read - Default value. Opens a file for reading, error if the file does
not exist

• ”a” - Append - Opens a file for appending, creates the file if it does not
exist

In addition you can specify if the file should be handled as binary or text mode

• ”t” - Text - Default value. Text mode

• ”b” - Binary - Binary mode (e.g. images)

9.2 Write Data to a File

To create a New file in Python, use the open() method, with one of the following
parameters:

• ”x” - Create - Creates the specified file, returns an error if the file exists

• ”w” - Write - Opens a file for writing, creates the file if it does not exist

• ”a” - Append - Opens a file for appending, creates the file if it does not
exist

77

To write to an Existing file, you must add a parameter to the open() function:

• ”w” - Write - Opens a file for writing, creates the file if it does not exist

• ”a” - Append - Opens a file for appending, creates the file if it does not
exist

Example 9.2.1. Write Data to a File

1 f = open (”myf i l e . txt ” , ”x”)
2

3 data = ”Helo World”
4

5 f . wr i t e (data)
6

7 f . c l o s e ()

Listing 9.1: Write Data to a File

[End of Example]

9.3 Read Data from a File

To read to an existing file, you must add the following parameter to the open()
function:

• ”r” - Read - Default value. Opens a file for reading, error if the file does
not exist

Example 9.3.1. Read Data from a File

1 f = open (”myf i l e . txt ” , ” r ”)
2

3 data = f . read ()
4

5 pr in t (data)
6

7 f . c l o s e ()

Listing 9.2: Read Data from a File

[End of Example]

9.4 Logging Data to File

Typically you want to write multiple data to the, e.g., assume you read some
temperature data at regular intervals and then you want to save the temperature
values to a File.

Example 9.4.1. Logging Data to File

78

1 data = [1 . 6 , 3 . 4 , 5 . 5 , 9 . 4]
2

3 f = open (”myf i l e . txt ” , ”x”)
4

5 f o r va lue in data :
6 r ecord = s t r (va lue)
7 f . wr i t e (record)
8 f . wr i t e (”\n”)
9

10 f . c l o s e ()

Listing 9.3: Logging Data to File

[End of Example]

Example 9.4.2. Read Logged Data from File

1 f = open (”myf i l e . txt ” , ” r ”)
2

3 f o r record in f :
4 r ecord = record . r ep l a c e (”\n” , ””)
5 pr in t (record)
6

7 f . c l o s e ()

Listing 9.4: Read Logged Data from File

[End of Example]

9.5 Web Resources

Below you find different useful resources for File Handling.

Python File Handling - w3school:
https://www.w3schools.com/python/pythonf ilehandling.asp

Reading and Writing Files - python.org:
https://docs.python.org/3/tutorial/inputoutput.htmlreading-and-writing-files

9.6 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 9.6.1. Data Logging

Assume you have the following data you want to log to a File as shown in Table
9.1.
Log these data to a File.

Create another Python Script that reads the same data.

79

[End of Exercise]

Exercise 9.6.2. Data Logging 2

Assume you read data from a Temperature sensor every 10 seconds for a period
of let say 5 minutes.

Log the data to a File.

You can use the Random Generator in Python. An example of how to use the
Random Generator is shown below:

1 import random
2 f o r x in range (10) :
3 data = random . rand int (1 , 31)
4 pr in t (data)

Listing 9.5: Read Data from a File

Make sure to log both the time and the temperature value

Create another Python Script that reads the same data.

You should also plot the data you read from the File.

[End of Exercise]

80

Table 9.1: Logged Data
Time Value
1 22
2 25
3 28
... ...

81

Chapter 10

Error Handling in Python

10.1 Introduction to Error Handling

So far error messages haven’t been discussed. You could say that we have 2
kinds of errors: syntax errors and exceptions.

10.1.1 Syntax Errors

Below we see an example of syntax errors:

1 >>> pr in t (He l lo World)
2 F i l e ”<ipython−input−1−10cb182148e3>” , l i n e 1
3 pr in t (He l lo World)
4 ˆ
5 SyntaxError : i n v a l i d syntax

In the example we have written print(Hello World) instead of print(”Hello
World”) and then the Python Interpreter gives us an error message.

10.1.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error
when an attempt is made to execute it. Errors detected during execution are
called exceptions and are not unconditionally fatal: you will soon learn how to
handle them in Python programs. Most exceptions are not handled by programs,
however, and result in error messages as shown here:

1 >>> 10 ∗ (1/0)
2 Traceback (most r e c en t c a l l l a s t) :
3

4 F i l e ”<ipython−input−2−0b280f36835c>” , l i n e 1 , in <module>
5 10 ∗ (1/0)
6

7 ZeroDiv i s i onErro r : d i v i s i o n by zero

or:

1 >>> ’ 2 ’ + 2
2 Traceback (most r e c en t c a l l l a s t) :
3

82

4 F i l e ”<ipython−input−3−d2b23a1db757>” , l i n e 1 , in <module>
5 ’ 2 ’ + 2
6

7 TypeError : must be s t r , not i n t

10.2 Exceptions Handling

It is possible to write programs that handle selected exceptions.

In Python we can use the following built-in Exceptions Handling features:

• The try block lets you test a block of code for errors.

• The except block lets you handle the error.

• The finally block lets you execute code, regardless of the result of the try-
and except blocks.

When an error occurs, or exception as we call it, Python will normally stop and
generate an error message.

These exceptions can be handled using the try - except statements.

Some basic example:

1 t ry :
2 10 ∗ (1/0)
3 except :
4 pr in t (”The c a l c u l a t i o n f a i l e d ”)

or:

1 t ry :
2 pr in t (x)
3 except :
4 pr in t (”x i s not de f ined ”)

You can also use multiple exceptions:

1 t ry :
2 pr in t (x)
3 except NameError :
4 pr in t (”x i s not de f ined ”)
5 except :
6 pr in t (”Something i s wrong”)

The finally block, if specified, will be executed regardless if the try block raises
an error or not.

Example:

83

1 x=2
2

3 t ry :
4 pr in t (x)
5 except NameError :
6 pr in t (”x i s not de f ined ”)
7 except :
8 pr in t (”Something i s wrong”)
9 f i n a l l y :

10 pr in t (”The Program i s f i n i s h e d ”)

In general you should use try - except - finally when you try to open a File, read
or write to Files, connect to a Database, etc.

Example:

1 t ry :
2 f = open (”myf i l e . txt ”)
3 f . wr i t e (”Lorum Ipsum”)
4 except :
5 pr in t (”Something went wrong when wr i t i ng to the f i l e ”)
6 f i n a l l y :
7 f . c l o s e ()

84

Chapter 11

Debugging in Python

Debugging is the process of finding and resolving defects or problems within
a computer program that prevent correct operation of computer software or a
system [14].

Debuggers are software tools which enable the programmer to monitor the ex-
ecution of a program, stop it, restart it, set breakpoints, and change values in
memory. The term debugger can also refer to the person who is doing the de-
bugging.

As a programmer, one of the first things that you need for serious program
development is a debugger.

Python has a built-in debugger that can be used if you are coding Python with
a basic text editor and running your Python programs from the command line.

A better option is to use the Debugging features integrated in your Python Ed-
itor. Debugging is typically integrated with the Python Editor you are using.

See the specific chapter for the different Python Editors.

85

Chapter 12

Installing and using Python
Packages

A package contains all the files you need for a module. Modules are Python
code libraries you can include in your project.

Since Python is open source you can find thousands of Python Packages that
you can install and use in your Python programs.

You can use a Python Distribution like Anaconda Distribution (or similar
Python Distributions) to download and install many common Python Pack-
ages as mentioned previously.

12.1 What is PIP?

PIP is a package manager for Python packages, or modules if you like. PIP is
a tool for installing Python packages.

If you do not have PIP installed, you can download and install it from this page:
https://pypi.org/project/pip/

PIP is typically used from the Command Prompt (Windows) or Terminal win-
dow (macOS).

Installing Python Packages:

1 pip i n s t a l l packagename

Uninstalling Python Packages:

1 pip u n i n s t a l l packagename

Some Python Editors also have a graphical way of installing Python Packages,
like, e.g., Visual Studio.

86

Part III

Python Environments and
Distributions

87

Chapter 13

Introduction to Python
Environments and
Distributions

Python comes with many flavours and version.

Python is open source and everybody can bundle and distribute Python and
different Python Packages.

A Python environment is a context in which you run Python code and includes
Python Packages.

An environment consists of an interpreter, a library (typically the Python Stan-
dard Library), and a set of installed packages.

These components together determine which language constructs and syntax
are valid, what operating-system functionality you can access, and which pack-
ages you can use.

You can have multiple Python Environments on your Computer.

Some of them are:

• CPython distribution available from python.org

• Anaconda

• Enthought Canopy

• WinPython

• etc.

It is easy to start using Python by installing one of these Python Distributions.

88

But you can also install the core Python from:
https://www.python.org

Then install the additional Python Packages you need by using PIP.
https://pypi.org/project/pip/

13.1 Package and Environment Managers

The two most popular tools for installing Python Packages and setting up
Python environments are:

• PIP - a Python Package Manager

• Conda - a Package and Environment Manager (for Python and other lan-
guages)

13.1.1 PIP

Web:
https://pypi.org

PIP is typically used from the Command Prompt (Windows) or Terminal win-
dow (macOS).

Installing Python Packages:

1 pip i n s t a l l packagename

Uninstalling Python Packages:

1 pip u n i n s t a l l packagename

13.1.2 Conda

Conda is an open source package management system and environment man-
agement system that runs on Windows, macOS and Linux. Conda installs, runs
and updates packages and their dependencies.

The Conda package and environment manager is included in all versions of Ana-
conda.

Conda was created for Python programs, but it can package and distribute soft-
ware for any language.

Conda allows you to to also create separate environments containing files, pack-
ages and their dependencies that will not interact with other environments.

89

Web:
https://conda.io/

Conda is part of or integrated with the Anaconda Python Distribution.

Web:
https://www.anaconda.com

13.2 Python Virtual Environments

Python ”Virtual Environments” allow Python packages to be installed in an
isolated location for a particular application, rather than being installed glob-
ally.

You can have multiple Python Environments on your computer.

Python Virtual Environments have their own installation directories and they
don’t share libraries with other virtual environments.

Python ”Virtual Environments” is handy when you have different Python appli-
cations that needs different versions of Python or different version of the Python
Packages you are using.

90

Chapter 14

Anaconda

Anaconda is not an Editor, but a Python Distribution package. Spyder is in-
cluded in the Python Distribution package. You can also use Anaconda to install
other Editors or Python packages.

It is available for Windows, macOS and Linux.

Web:
https://www.anaconda.com

Wikipedia:
https://en.wikipedia.org/wiki/Anaconda(Pythondistribution)

14.1 Anaconda Navigator

Anaconda Navigator is a desktop graphical user interface (GUI) included in
Anaconda distribution that allows users to launch applications and manage
Python packages. The Anaconda Navigator can search for packages and install
them on your computer, run the packages and update them.

Figure 14.1 shows the Anaconda Navigator.

91

Figure 14.1: Anaconda Navigator

92

Chapter 15

Enthought Canopy

Enthought Canopy is a Python Platform or Python Distribution for Scientists
and Engineers.

It is available for Windows, macOS and Linux.

Canopy is freely available to all users under the Canopy license. Canopy pro-
vides access to several hundreds Python packages, including NumPy, SciPy,
Pandas, Matplotlib, and IPython.

In addition, we have the Canopy Python Editor.

Enthought Canopy is a competitor to the Anaconda Python Distribution. It is
a matter of taste who you prefer.

Web:
https://www.enthought.com/product/canopy/

93

Part IV

Python Editors

94

Chapter 16

Python Editors

An Editor is a program where you create your code (and where you can run
and test it). Most Editors have also features for Debugging and IntelliSense.

In theory, you can use Windows Notepad for creating Python programs, but
in practice it is impossible to create programs without having an editor with
Debugging, IntelliSense, color formatting, etc.

For simple Python programs you can use the IDLE Editor, but for more ad-
vanced programs a better editor is recommended.

Examples of Python Editors:

• Spyder

• Visual Studio Code

• Visual Studio

• PyCharm

• Wing

• JupyterNotebook

We will give an overview of these Code Editors in the next chapters.

I guess hundreds of different editors can be used for Python Programming, ei-
ther out of the box or if you install an additional Extension that makes sure
you can use Python in that editor.

If you already have a favorite Code Editor, it is a good change you can use that
one for Python programming.

Which editor you should use depends on your background, what kind of code
editors you have used previously, your programming skills, what your are going
to develop in Python, etc.

95

If you are familiar with MATLAB, Spyder is recommended. Also, if you want
to use Python for numerical calculations and computations, Spyder is a good
choice.

If you want to create Web Applications or other kinds of Applications, other
Editors are probably better to use.

For a list of ”Best Python Editors”, see [15].

96

Chapter 17

Spyder

Spyder - short for ”Scientific PYthon Development EnviRonment”.

Spyder is an open source cross-platform integrated development environment(IDE)
for scientific programming in the Python language.

Figure 17.1: Spyder Editor

The Spyder editor consists of the following parts or windows:

• Code Editor window

• iPython Console window

97

• Variable Explorer

• etc.

Web:
https://www.spyder-ide.org

If you have used MATLAB previously or want to use Python for scientific use,
Spyder is a good choice. it is easy to install using the Anaconda Distribution.

Web:
https://www.anaconda.com

98

Chapter 18

Visual Studio Code

18.1 Introduction to Visual Studio Code

Visual Studio Code is a simple and easy to use editor that can be used for many
different programming languages.

Figure 18.1: Using Visual Studio Code as Python Editor

Right-Click and select ”Run Python File in Terminal”

Web:
https://code.visualstudio.com

Wikipedia:
https://en.wikipedia.org/wiki/VisualStudioCode

99

18.2 Python in Visual Studio Code

In addition to Visual Studio Code you need to install the Python extension for
Visual Studio Code.

You must install a Python interpreter yourself separately from the extension.
For a quick install, use Python from python.org.

https://www.python.org

Python is an interpreted language, and in order to run Python code and get
Python IntelliSense within Visual Studio Code, you must tell Visual Studio
Code which interpreter to use.

Web:
https://code.visualstudio.com/docs/languages/python

100

Chapter 19

Visual Studio

19.1 Introduction to Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from
Microsoft. It is used to develop computer programs, as well as websites, web
apps, web services and mobile apps. The default (main) programming language
in Visual studio is C, but many other programming languages are supported.

You could say Visual Studio is the big brother of Visual Studio Code.

Visual studio is available for Windows and macOS.

Visual Studio (from 2017), has integrated support for Python, it is called
”Python Support in Visual Studio”.

Web:
https://visualstudio.microsoft.com

Wikipedia:
https://en.wikipedia.org/wiki/MicrosoftV isualStudio

Go to my Web Site to learn more about Visual Studio and C programming:
https://www.halvorsen.blog/

Visual Studio and C:
https://www.halvorsen.blog/documents/programming/csharp/

19.2 Work with Python in Visual Studio

Work with Python in Visual Studio:
https://docs.microsoft.com/visualstudio/python/

101

Figure 19.1: Using Visual Studio as Python Editor

19.2.1 Make Visual Studio ready for Python Program-
ming

Visual Studio is mainly for Windows. A MacOS version of Visual Studio do
exists, but it has lot less features than the Windows edition.

Note that Python support is available only on Visual Studio for Windows. If
you use Mac and Linux, you need to use Visual Studio Code. You could say
Visual Studio Code is a down-scaled version of Visual Studio.

Visual Studio (from 2017), has integrated support for Python, it is called
”Python Support in Visual Studio”. Even if it is integrated, you need to manu-
ally select which components you want to install on your computer. Make sure
to download and run the latest Visual Studio 2017 installer for Windows.

when you run the Visual Studio installer (either for the first time or if you
already have installed Visual Studio 2017 and want to modify it) the window
shown in Figure 19.2 pops up.
The installer presents you with a list of so called workloads, which are groups of
related options for specific development areas. For Python, select the ”Python
development” workload and select Install (Figure 19.3).

19.2.2 Python Interactive

To quickly test Python support, launch Visual Studio, press Alt+I (or select
from the menu: Tools - Python - Python Interactive Window) to open the
Python Interactive window. See Figure 19.4.

Lets write something like this:

1 >>> a = 2

102

Figure 19.2: Installing Python Extension for Visual Studio

Figure 19.3: Python Development Workload

2 >>> b = 5
3 >>> x = 3
4 >>> y = a∗x + b
5 >>> y

19.2.3 New Python Project

Lets see how we can create a Python Application.

Start by select from the menu: File - New - Project... The New Project window
pops up. See Figure 19.5.
We can create an ordinary Python Application (one or more Python Scripts),
we can choose to create a Web Application using either Web Frameworks like
Django or Flask, or we can create different Desktop GUI applications. We can
also create Games.

Example 19.2.1. Python Hello World Application in Visual Studio

103

Figure 19.4: Python Interactive

We start by creating a basic Hello World Python Application. See Figure 19.1.
Select File - New - Project... The New Project window pops up. See Figure 19.5.

Name the project, e.g, ”PythonApplication1”.
In the Project Explorer, open the ”PythonApplication1.py” file and enter the
following Python code:

1 pr in t (”He l lo World”)

Hit F5 (our click the green arrow) in order to run or execute the Python program.
You can also right click on the file and select ”Start without Debugging”.

[End of Example]

Example 19.2.2. Visual Studio Python Plotting

Create a new Python File by right click in the Solution Explorer and select Add
- New Item... and then select ”Empty Python File”.

Enter the following Python Code:

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 x s t a r t = 0
5 xstop = 2∗np . p i
6 increment = 0 .1
7

8 x = np . arange (xs tar t , xstop , increment)
9

10 y = np . s i n (x)
11

12 p l t . p l o t (x , y)
13 p l t . t i t l e (’ y=s i n (x) ’)

104

Figure 19.5: New Python Project

14 p l t . x l ab e l (’ x ’)
15 p l t . y l ab e l (’ y ’)
16 p l t . g r i d ()
17 p l t . ax i s ([0 , 2∗np . pi , −1, 1])
18 p l t . show ()

See also Figure 19.6.
Make sure to select proper Python Environment. See Figure (19.7). Visual
Studio supports multiple Python Environments.

In this example we use the Matplotlib package for plotting, so we need to have
that package installed on the computer. You can install the Matplotlib package
in different Python Environments.

I have installed the Matplotlib package as part of the Anaconda distribution
setup, so I select ”Anaconda x.x.x” in the Python Environments window.

If you haven’t installed the Matplotlib package yet (either as part of Anaconda
or manually using PIP), you can also easily install Python packages from Visual
studio. See Figure 19.8.

You can also easily see which Python Packages that are installed for the differ-
ent Python Environments. See Figure 19.9.

105

Figure 19.6: Python Plotting Example with Visual Studio

The good thing about using Visual Studio is that you have a graphical user
interface for everything, you don’t need to use the Command window etc. for
installing Python Packages, etc.
Hit F5 (our click the green arrow) in order to run or execute the Python program.
You can also right click on the file and select ”Start without Debugging”.
We get the following results, see Figure 19.10.

[End of Example]

106

Figure 19.7: Select your Python Environment

Figure 19.8: Install Python Packages from Visual Studio

107

Figure 19.9: Installing Python Packages for different Python Environments from
Visual Studio

Figure 19.10: Python Plotting Example with Visual Studio

108

Chapter 20

PyCharm

PyCharm is cross-platform, with Windows, macOS and Linux versions. The
Community Edition is free to use, while the Professional Edition (paid version)
has some extra features.

The PyCharm Editor is shown in Figure 20.1.

Figure 20.1: PyCharm Python Editor

Web:
https://www.jetbrains.com/pycharm/

Wikipedia:
https://en.wikipedia.org/wiki/PyCharm

Anaconda and JetBrains also have a collaboration and offer what they call Py-
Charm for Anaconda. You can download it here:

109

https://www.jetbrains.com/pycharm/promo/anaconda/

We have code editors like Visual Studio and Visual Studio Code which can be
used for many different programming languages by installing different types of
plugins.

Editors like Spyder and PyCharm are tailor-made editors for the Python lan-
guage.

Spyder is light-weight IDE typically used for scientific use. PyCharm on the
other hand is full-blown IDE for software development in general by using the
Python language. It supports many plugins, it’s easier to program Django, etc.

110

Chapter 21

Wing Python IDE

The Wing Python IDE family of integrated development environments (IDEs)
from Wingware were created specifically for the Python programming language.

3 different version of Wing exists [12]:

• Wing 101 – a very simplified free version, for teaching beginning pro-
grammers

• Wing Personal – free version that omits some features, for students and
hobbyists

• Wing Pro – a full-featured commercial (paid) version, for professional
programmers

Figure 21.1: Wing Python IDE

Web:
https://wingware.com

111

Wikipedia:
https://en.wikipedia.org/wiki/WingIDE

112

Chapter 22

Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you to cre-
ate and share documents that contain live code, equations, visualizations and
text.

The Notebook has support for over 40 programming languages, including Python.

Figure 22.1: Jupyter Notebook [16]

Web:
http://jupyter.org

Wikipedia:
https://en.wikipedia.org/wiki/ProjectJupyter

113

22.1 JupyterHub

JupyterHub is a multi-user version of the notebook designed for companies,
classrooms and research labs [17].

JupyterHub runs in the cloud or on your own hardware.

JupyterHub is open-source and designed to be run on a variety of infrastructure.
This includes commercial cloud providers, virtual machines, or even your own
laptop hardware.

Web:
http://jupyter.org/hub

22.2 Microsoft Azure Notebooks

Microsoft Azure Notebooks is a version of Jupyter Notebook from Microsoft.

The good thing about Microsoft Azure Notebooks is that you have the infras-
tructure and everything up and running ready for you to use. You can use it
for free as well.

Web:
https://notebooks.azure.com

Example 22.2.1. Example Name

Figure 22.2 shows an overview of my Azure Notebook Projects.

Figure 22.2: Azure Notebook Projects

Figure 22.3 shows an overview of my Azure Notebook Project Notebooks.

Figure 22.4 shows an example of a simple Notebook.

[End of Example]

114

Figure 22.3: Azure Notebook Project Notebooks

Figure 22.4: Azure Notebook Example

115

Part V

Python for Mathematics
Applications

116

Chapter 23

Mathematics in Python

Python is a powerful tool for mathematical calculations.

If you are looking for similar using MATLAB, please take a look at these re-
sources:
https://www.halvorsen.blog/documents/programming/matlab/

23.1 Basic Math Functions

The Python Standard Library consists of different modules for handling file
I/O, basic mathematics, etc. You don’t need to install these separately, but you
need to important them when you want to use some of these modules or some
of the functions within these modules.

In this chapter we will focus on the math module that is part of the Python
Standard Library.

The math module has all the basic math functions you need, such as: Trigono-
metric functions: sin(x), cos(x), etc. Logarithmic functions: log(), log10(), etc.
Constants like pi, e, inf, nan, etc. etc.

Example 23.1.1. Using the math module

We create some basic examples how to use a Library, a Package or a Module:

If we need only the sin() function we can do like this:

1 from math import s i n
2

3 x = 3.14
4 y = s i n (x)
5

6 pr in t (y)

If we need a few functions we can do like this

117

1 from math import s in , cos
2

3 x = 3.14
4 y = s i n (x)
5 pr in t (y)
6

7 y = cos (x)
8 pr in t (y)

If we need many functions we can do like this:

1 from math import ∗
2

3 x = 3.14
4 y = s i n (x)
5 pr in t (y)
6

7 y = cos (x)
8 pr in t (y)

We can also use this alternative:

1 import math
2

3 x = 3.14
4 y = math . s i n (x)
5

6 pr in t (y)

We can also write it like this:

1 import math as mt
2

3 x = 3.14
4 y = mt . s i n (x)
5

6 pr in t (y)

[End of Example]

There are advantages and disadvantages with the different approaches. In your
program you may need to use functions from many different modules or pack-
ages. If you import the whole module instead of just the function(s) you need
you use more of the computer memory.

Very often we also need to import and use multiple libraries where the different
libraries have some functions with the same name but different use.

Other useful modules in the Python Standard Library are statistics (where
you have functions like mean(), stdev(), etc.)

For more information about the functions in the Python Standard Library,
see:
https://docs.python.org/3/library/

118

23.1.1 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 23.1.1. Create Mathematical Expressions in Python

Create a function that calculates the following mathematical expression:

z = 3x2 +
√
x2 + y2 + eln (x) (23.1)

Test with different values for x and y.

[End of Exercise]

Exercise 23.1.2. Create advanced Mathematical Expressions in Python

Create the following expression in Python:

f(x) =
ln (ax2 + bx+ c)− sin(ax2 + bx+ c)

4πx2 + cos(x− 2)(ax2 + bx+ c)
(23.2)

Given a = 1, b = 3, c = 5 Find f(9)
(The answer should be f(9) = 0.0044)

Tip! You should split the expressions into different parts, such as:

poly = ax2 + bx+ c

num = . . .
den = . . .
f = . . .

This makes the expression simpler to read and understand, and you minimize
the risk of making an error while typing the expression in Python.

When you got the correct answer try to change to, e.g., a = 2, b = 8, c = 6

Find f(9)

[End of Exercise]

Exercise 23.1.3. Pythagoras

119

Figure 23.1: Right-angled triangle

Pythagoras theorem is as follows:

c2 = a2 + b2 (23.3)

Create a function that uses Pythagoras to calculate the hypotenuse of a right-
angled triangle (Figure 23.1), e.g.:

1 de f pythagoras (a , b)
2 . . .
3 . . .
4 r e turn c

[End of Exercise]

Exercise 23.1.4. Albert Einstein

Given the famous equation from Albert Einstein:

E = mc2 (23.4)

The sun radiates 385x1024J/s of energy.

Calculate how much of the mass on the sun is used to create this energy per day.

How many years will it take to convert all the mass of the sun completely? Do
we need to worry if the sun will be used up in our generation or the next? justify
the answer.

The mass of the sun is 2x1030kg.

120

[End of Exercise]

Exercise 23.1.5. Cylinder Surface Area

Create a function that finds the surface area of a cylinder based on the height
(h) and the radius (r) of the cylinder. See Figure ??.

Figure 23.2: cylinder

[End of Exercise]

23.2 Statistics

23.2.1 Introduction to Statistics

Mean or average:
The mean is the sum of the data divided by the number of data points. It is
commonly called “the average”,

Formula for mean:

x̄ =
x1 + x2 + x3 + ...+ xN

N
=

1

N

N∑
i=1

xi (23.5)

Example 23.2.1. Mean

Given the following dataset: 2.2, 4.5, 6.2, 3.6, 2.6

Mean:

x̄ =
1

N

N∑
i=1

xi =
2.2 + 4.5 + 6.2 + 3.6 + 2.6

5
=

19.1

5
= 3.82 (23.6)

121

[End of Example]

Variance:

Variance is a measure of the variation in a data set.

var(x) =
1

N

N∑
i=1

(xi − x̄)2 (23.7)

Standard deviation:
The standard deviation is a measure of the spread of the values in a dataset
or the value of a random variable. It is defined as the square root of the variance.

std(x) = σ =
√
var =

√√√√ 1

N

N∑
i=1

(xi − x̄)2 (23.8)

We typically use the symbol σ for standard deviation.

We have that σ2 = var(x)

23.2.2 Statistics functions in Python

Mathematical statistics functions in Python:
https://docs.python.org/3/library/statistics.html

statistics is part of the The Python Standard Library.

For more information about the functions in the Python Standard Library,
see:
https://docs.python.org/3/library/

Example 23.2.2. Statistics using the statistics module in Python Standard
Library

Below you find some examples how to use some of the statistics functions in the
statistics module in Python Standard Library:

1 import s t a t i s t i c s as s t
2

3 data = [−1.0 , 2 . 5 , 3 . 25 , 5 . 7 5]
4

5 #Mean or Average
6 m = st .mean(data)
7 pr in t (m)
8

9 # Standard Deviat ion
10 s t dev = s t . stdev (data)

122

11 pr in t (s t dev)
12

13 # Median
14 med = st . median (data)
15 pr in t (med)
16

17 # Variance
18 var = s t . var i ance (data)
19 pr in t (var)

Listing 23.1: Statistics functions in Python

[End of Example]

IMPORTANT: Do not name your file ”statistics.py” since the import will be
confused and throw the errors of the library not existing and the mean function
not existing.

You can also use the NumPy Library. NumPy is the fundamental package for
scientific computing with Python.

Here you find an overview of the NumPy library:
http://www.numpy.org

Example 23.2.3. Statistics using the NumPy Library

Below you find some examples how to use some of the statistics functions in
NumPy:

1 import numpy as np
2

3 data = [−1.0 , 2 . 5 , 3 . 25 , 5 . 7 5]
4

5 #Mean or Average
6 m = np .mean(data)
7 pr in t (m)
8

9 # Standard Deviat ion
10 s t dev = np . std (data)
11 pr in t (s t dev)
12

13 # Median
14 med = np . median (data)
15 pr in t (med)
16

17 # Minimum Value
18 minv = np . min (data)
19 pr in t (minv)
20

21 # Maxumum Value
22 maxv = np .max(data)
23 pr in t (maxv)

Listing 23.2: Statistics using the NumPy Library

123

[End of Example]

Exercise 23.2.1. Create your own Statistics Module in Python

Using the built-in functions in the Python Standard Library or the NumPy li-
brary is straightforward.

In order to get a deeper understanding of the mathematics behind these func-
tions and to learn more Python programming, you should create your own
Statistics Module in Python.

Create your own Statistics Module in Python (e.g., ”mystatistics.py) and then
create a Python Script (e.g., ”testmystatistics.py) where you test these func-
tions.

You should at least implement functions for mean, variance, standard deviation,
minimum and maximum.

[End of Exercise]

23.3 Trigonometric Functions

Python offers lots of Trigonometric functions, e.g., sin, cos, tan, etc.

Note! Most of the trigonometric functions require that the angle is expressed in
radians.

Example 23.3.1. Trigonometric Functions in Math module

1 import math as mt
2

3 x = 2∗mt . p i
4

5 y = mt . s i n (x)
6 pr in t (y)
7

8 y = mt . cos (x)
9 pr in t (y)

10

11 y = mt . tan (x)
12 pr in t (y)

Listing 23.3: Trigonometric Functions in Math module

Here we have used the Math module in the Python Standard Library.

For more information about the functions in the Python Standard Library,
see:
https://docs.python.org/3/library/index.html

124

[End of Example]

Example 23.3.2. Plotting Trigonometric Functions

In the example above we used some of the trigonometric functiosn in basic cal-
culations.

Lets see if we are able to plot these functions.

1 import math as mt
2 import matp lo t l i b . pyplot as p l t
3

4 xdata = []
5 ydata = []
6

7 f o r x in range (0 , 10) :
8 xdata . append (x)
9 y = mt . s i n (x)

10 ydata . append (y)
11

12 p l t . p l o t (xdata , ydata)
13 p l t . show ()

Listing 23.4: Plotting Trigonometric Functions

In the example we have plotted sin(x), we can easily extend the program to plot
cos(x), etc.

For more information about the functions in the Python Standard Library,
see:
https://docs.python.org/3/library/index.html

[End of Example]

Example 23.3.3. Trigonometric Functions using NumPy

The problem with using the Trigonometric functions in the the Math module
from the Python Standard Library is that they don’t handle an array as input.

We will use the NumPy library instead because they handle arrays, in addition
to all the handy functionality in the NumPy library.

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 x s t a r t = 0
5 xstop = 2∗np . p i
6 increment = 0 .1
7

8 x = np . arange (xs tar t , xstop , increment)
9

10 y = np . s i n (x)

125

11 p l t . p l o t (x , y)
12 p l t . t i t l e (’ y=s i n (x) ’)
13 p l t . x l ab e l (’ x ’)
14 p l t . y l ab e l (’ y ’)
15 p l t . g r i d ()
16 p l t . ax i s ([0 , 2∗np . pi , −1, 1])
17 p l t . show ()
18

19 y = np . cos (x)
20 p l t . p l o t (x , y)
21 p l t . t i t l e (’ y=cos (x) ’)
22 p l t . x l ab e l (’ x ’)
23 p l t . y l ab e l (’ y ’)
24 p l t . g r i d ()
25 p l t . ax i s ([0 , 2∗np . pi , −1, 1])
26 p l t . show ()
27

28 y = np . tan (x)
29 p l t . p l o t (x , y)
30 p l t . t i t l e (’ y=tan (x) ’)
31 p l t . x l ab e l (’ x ’)
32 p l t . y l ab e l (’ y ’)
33 p l t . g r i d ()
34 p l t . ax i s ([0 , 2∗np . pi , −1, 1])
35 p l t . show ()

Listing 23.5: Trigonometric Functions using NumPy

This Python script gives the plots as shown in Figure 23.3.

[End of Example]

Exercise 23.3.1. Create Python functions for converting between radians an
degrees

Since most of the trigonometric functions require that the angle is expressed in
radians, we will create our own functions in order to convert between radians
and degrees.

It is quite easy to convert from radians to degrees or from degrees to radians.

We have that:

2π[radians] = 360[degrees] (23.9)

This gives:

d[degrees] = r[radians]× (
180

π
) (23.10)

and

r[radians] = d[degrees]× (
π

180
) (23.11)

Create two functions that convert from radians to degrees (r2d(x)) and from
degrees to radians (d2r(x)) respectively.

126

These functions should be saved in one Python file .py.

Test the functions to make sure that they work as expected.

[End of Exercise]

Exercise 23.3.2. Trigonometric functions on right triangle

Given right triangle as shown in Figure 23.4.

Create a function that finds the angle A (in degrees) based on input arguments
(a,c), (b,c) and (a,b) respectively.

Use, e.g., a third input “type” to define the different types above.

Use you previous function r2d() to make sure the output of your function is in
degrees and not in radians.

Test the function to make sure it works properly.

Tip! We have that:

sin(A) =
a

c
→ A = arcsin(

a

c
) (23.12)

cos(A) =
b

c
→ A = arccos(

b

c
) (23.13)

tan(A) =
a

b
→ A = arctan(

a

b
) (23.14)

We may also need to use the Pythagoras’ theorem:

c2 = a2 + b2 (23.15)

1 >>> a=5
2 >>> b=8
3 >>> c = sq r t (a∗∗2 + b∗∗2)
4

5 >>> A = r i g h t t r i a n g l e (a , c , ’ s i n ’)
6 A =
7 32.0054
8

9 >>> A = r i g h t t r i a n g l e (b , c , ’ cos ’)
10 A =
11 32.0054
12 >>> A = r i g h t t r i a n g l e (a , b , ’ tan ’)
13 A =
14 32.0054

We also see that the answer in this case is the same, which is expected.

127

[End of Exercise]

Exercise 23.3.3. Law of Cosines

Given the triangle as shown in Figure 23.5.

Create a function where you find c using the law of cosines.

c2 = a2 + b2 − 2ab cos(C) (23.16)

Test the functions to make sure it works properly.

[End of Exercise]

Exercise 23.3.4. Plotting Trigonometric Functions

Plot sin(θ) and cos(θ) for 0 ≤ θ ≤ 2π in the same plot (both in the same plot
and in 2 different subplots).

Make sure to add labels and a legend and use different line styles and colors for
the plots.

[End of Exercise]

23.4 Polynomials

A polynomial is expressed as:

p(x) = p1x
n + p2x

n−1 + ...+ pnx+ pn+1 (23.17)

where p1, p2, p3, ... are the coefficients of the polynomial.

We will use the Polynomial Module in the NumPy Package.

Web:
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.polynomials.polynomial.html

Other Resources:

Python Advanced Course Topics - Polynomials:
https://www.python-course.eu/polynomialclassinpython.php

128

Figure 23.3: Trigonometric Functions

129

Figure 23.4: Right Triangle

Figure 23.5: Law of Cosines

130

Chapter 24

Linear Algebra in Python

24.1 Introduction to Linear Algebra

A matrix is a two-dimensional data structure where numbers are arranged into
rows and columns.

Matrix is a special case of two dimensional array where each data element is of
strictly same size.

Matrices are very important data structures for many mathematical and scien-
tific calculations.

A general matrix is defined as:

A =

a11 a12 ... a1m
a21 a22 .. a2m
...
an1 an2 ... anm

 ∈ Rnxm (24.1)

Where n is number of rows and m is number of columns.

Example of a 3 x 3 matrix:

A =

 1 5 3
4 6 6
3 8 9

 (24.2)

Example of a 3 x 4 matrix:

A =

 1 5 3 4
4 5 7 8
7 8 9 3

 (24.3)

Example of a 4 x 2 matrix:

131

A =

1 5
4 5
3 2
7 8

 (24.4)

Python doesn’t have a built-in type for matrices. However, we can treat list of
a list as a matrix.

Example 24.1.1. Matrix definition with Standard Python

Here is an example how we can implement a vector and a matrix in standard
Python:

1 a = [1 , 3 , 7 , 2]
2

3 pr in t (”a =” , a)
4

5

6 A = [[1 , 3 , 7 , 2] ,
7 [5 , 8 , −9, 0] ,
8 [6 , −7, 11 , 1 2]]
9

10 pr in t (”A =” , A)

Listing 24.1: Python Arrays

This gives the following output:

1 a = [1 , 3 , 7 , 2]
2 A = [[1 , 3 , 7 , 2] , [5 , 8 , −9, 0] , [6 , −7, 11 , 1 2]]

So we can define vectors and matrices with standard Python, but standard
Python has no support for manipulation and calculation of them.

But fortunately we can use the NumPy package for creating matrices and for
matrix manipulation.

[End of Example]

24.2 Linear Algebra with Python

We will use the NumPy package for matrix manipulation.

NumPy is the fundamental package for scientific computing with Python.

Here you find an overview of the NumPy library:
http://www.numpy.org

Example 24.2.1. Matrix Manipulation using the NumPy Library

132

Below you see how we can use NumPy for creating vectors and matrices and
manipulate them using NumPy:

1 import numpy as np
2

3 a = np . array ([1 , 3 , 7 , 2])
4

5 pr in t (”a =” , a)
6

7

8

9 A = np . array ([[1 , 3 , 7 , 2] ,
10 [5 , 8 , −9, 0] ,
11 [6 , −7, 11 , 1 2]])
12

13

14 pr in t (”A =” , A)
15

16

17

18

19 A = np . array ([[0 , 1] ,
20 [−2 , −3]])
21

22 B = np . array ([[1 , 0] ,
23 [3 , −2]])
24

25 C = A + B
26 pr in t (C)
27

28

29 C = A. dot (B)
30 pr in t (C)
31

32 C = A. t ranspose ()
33 pr in t (C)

Listing 24.2: Matrix manipulation using NumPy

[End of Example]

24.2.1 Vectors

Use np.array() when you define vectors:

1 import numpy as np
2

3 a = np . array ([1 , 3 , 7 , 2])
4

5 pr in t (”a =” , a)

Listing 24.3: Matrix manipulation using NumPy

133

24.2.2 Matrices

You can use np.array() when defining matrices also, but it is even better to
use np.matrix().

The numpy matrix object is a subclass of the numpy array object and it is
tailor-made for matrices. The numpy matrices are strictly 2-dimensional, while
numpy arrays can be of any dimension.

Example:

1 import numpy as np
2

3 A = np . matrix ([[0 , 1] ,
4 [−2 , −3]])
5

6 pr in t (”A =” , A)

24.2.3 Linear Algebra (numpy.linalg)

For more Linear Algebra functionality in the NumPy library you need to use
the numpy.linalg module.

Here you find an overview of the numpy.linalg module:
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

We will use the numpy.linalg in different examples in this chapter.

24.2.4 Matrix Addition

Given the matrices:

A ∈ Rnxm

and

B ∈ Rnxm

Then

C = A+B ∈ Rnxm

Example:

A =

[
0 1
−2 −3

]
(24.5)

B =

[
1 0
3 −2

]
(24.6)

134

Then we get:

A+B =

[
0 1
−2 −3

] [
1 0
3 −2

]
=

[
0 + 1 1 + 0
−2 + 3 −3− 2

]
=

[
1 1
1 −5

]
(24.7)

Example 24.2.2. Matrix Addition in Python

1 import numpy as np
2

3 A = np . matrix ([[0 , 1] ,
4 [−2 , −3]])
5

6 B = np . matrix ([[1 , 0] ,
7 [3 , −2]])
8

9 C = A + B
10 pr in t (C)

Listing 24.4: Matrix Addition in Python

We get:

1 [[1 1]
2 [1 −5]]

[End of Example]

24.2.5 Matrix Subtraction

Given the matrices:

A ∈ Rnxm

and

B ∈ Rnxm

Then

C = A−B ∈ Rnxm

Example:

A =

[
0 1
−2 −3

]
(24.8)

135

B =

[
1 0
3 −2

]
(24.9)

Then we get:

A−B =

[
0 1
−2 −3

] [
1 0
3 −2

]
=

[
0− 1 1− 0
−2− 3 −3− (−2)

]
=

[
−1 1
−5 −1

]
(24.10)

Example 24.2.3. Matrix Subration in Python

1 import numpy as np
2

3 A = np . matrix ([[0 , 1] ,
4 [−2 , −3]])
5

6 B = np . matrix ([[1 , 0] ,
7 [3 , −2]])
8

9 C = A − B
10 pr in t (C)

Listing 24.5: Matrix Subraction in Python

We get:

1 [[−1 1]
2 [−5 −1]]

[End of Example]

24.2.6 Matrix Multiplication

Given the matrices:

A ∈ Rnxm

and

B ∈ Rmxp

Then

C = AB ∈ Rnxp

136

Where

cjk =

n∑
l=1

ajlblk

Example:

A =

[
0 1
−2 −3

]
(24.11)

B =

[
1 0
3 −2

]
(24.12)

Then we get:

AB =

[
0 1
−2 −3

] [
1 0
3 −2

]
=

[
0 · 1 + 1 · 3 0 · 0 + 1 · (−2)
−2 · 1− 3 · 3 −2 · 0− 3 · (−2)

]
=

[
3 −2
−11 6

]
(24.13)

We do the same in Python:

Example 24.2.4. Matrix Multiplication in Python

1 import numpy as np
2

3 A = np . matrix ([[0 , 1] ,
4 [−2 , −3]])
5

6 B = np . matrix ([[1 , 0] ,
7 [3 , −2]])
8

9 C = A ∗ B
10 pr in t (C)

Listing 24.6: Matrix Multiplication in Python

This gives:

1 [[3 −2]
2 [−11 6]]

Below you see different alternative solutions that can be used:

1 import numpy as np
2

3 A = np . array ([[0 , 1] ,
4 [−2 , −3]])
5

6 B = np . array ([[1 , 0] ,

137

7 [3 , −2]])
8

9 #Alt e rna t i v e 1
10 C = A. dot (B)
11 pr in t (C)
12

13 #Alt e rna t i v e 2
14 C = np . dot (A,B)
15 pr in t (C)
16

17 #Alt e rna t i v e 3
18 C = np .mat(A) ∗ np .mat(B)
19 pr in t (C)

Listing 24.7: Matrix Multiplication in Python - Alternative Solutions

As shown in the example you can use different syntax. The 3 alternatives in the
example give the same result. Try it.

[End of Example]

In matrix multiplication the matrices don’t need to be quadratic, but the inner
dimensions need to be the same. The size of the resulting matrix will be the
outer dimensions. See Figure 24.1.

Figure 24.1: Matrix Multiplication

We have also the following matrix rules:

AB 6= BA (24.14)

A(BC) = (AB)C (24.15)

(A+B)C = AC +BC (24.16)

C(A+B) = CA+ CB (24.17)

Exercise 24.2.1. Matrix Rules

Create a Python Script where you verify the rules above is correct.

[End of Exercise]

138

24.2.7 Transpose of a Matrix

A general matrix is defined as:

A =

a11 a12 ... a1m
a21 a22 .. a2m
...
an1 an2 ... anm

 ∈ Rnxm (24.18)

Where n is number of rows and m is number of columns.

The transpose of matrix a is then:

AT =

a11 a21 ... an1
a12 a22 .. a2m
...
a1m an2 ... anm

 ∈ Rmxn (24.19)

The transform of a matrix is formed by turning all the rows of a given matrix
into columns and vice-versa.

Example 24.2.5. Transpose of a Matrix in Python

1 import numpy as np
2

3 A = np . matrix ([[0 , 1] ,
4 [−2 , −3]])
5

6 At = np . t ranspose (A)
7 pr in t (At)
8

9

10 B = np . matrix ([[1 , 0 , 4] ,
11 [3 , −2, 8]])
12

13 Bt = np . t ranspose (B)
14 pr in t (Bt)
15

16

17

18 C = np . matrix ([[1 , 4 ,] ,
19 [2 , −3 ,] ,
20 [−6 , −2]])
21

22 Ct = np . t ranspose (C)
23 pr in t (Ct)

Listing 24.8: Transpose of a Matrix

1 [[0 −2]
2 [1 −3]]
3

4 [[1 3]
5 [0 −2]

139

6 [4 8]]
7

8 [[1 2 −6]
9 [4 −3 −2]]

[End of Example]

24.2.8 Determinant

Given a matrix A the Determinant is given by:

det(A) = |A|

For a 2x2 matrix A:

A =

[
a11 a12
a21 a22

]
(24.20)

We have:

det(A) = |A| = a11a22 − a21a12 (24.21)

Example:

A =

[
1 2
3 4

]
(24.22)

We get:

det(A) = |A| = 1 · 4− 3 · 2 = 4− 6 = −2 (24.23)

Example 24.2.6. Determinant

Python Example:

1 import numpy as np
2 import numpy . l i n a l g as l a
3

4 A = np . matrix ([[1 , 2] ,
5 [3 , 4]])
6

7 Adet = la . det (A)
8

9 pr in t (Adet)

Listing 24.9: Determinant

140

This gives:

1 −2.0000000000000004

Listing 24.10: Determinant

[End of Example]

24.2.9 Inverse Matrix

The inverse of a quadratic matrix A ∈ Rnxn is defined by:

A−1

For a square matrix A, the inverse is written A−1. When A is multiplied by
A−1 the result is the identity matrix I. Non-square matrices do not have inverses.

We have that:

AA−1 = A−1A = I (24.24)

For a 2x2 matrix we have:

A =

[
a11 a12
a21 a22

]
(24.25)

The inverse of A becomes:

A−1 =
1

det(A)

[
a22 −a12
−a21 a11

]
(24.26)

Example 24.2.7. Inverse Matrix

Python Example:

1 import numpy as np
2 import numpy . l i n a l g as l a
3

4 A = np . matrix ([[1 , 2] ,
5 [3 , 4]])
6

7 Ainv = la . inv (A)
8

9 pr in t (Ainv)

Listing 24.11: Inverse Matrix

We get the following results:

1 [[−2 . 1 .]
2 [1 . 5 −0 .5]]

[End of Example]

141

24.3 Solving Linear Equations

Example 24.3.1. Solving Linear Equations

Given the equations:

x1 + 2x2 = 5 (24.27)

3x1 + 4x2 = 6 (24.28)

We want to set the equations on the following form:

Ax = b (24.29)

We need to find A and b and define them in Python.

Then we can solve the equations, i.e., find x1 and x2 using Python.

It can be solved like this:

x = A−1b (24.30)

We get:

A =

[
1 2
3 4

]
(24.31)

b =

[
5
6

]
(24.32)

x =

[
x1
x2

]
(24.33)

Python Script:

1 import numpy as np
2 import numpy . l i n a l g as l a
3

4 A = np . array ([[1 , 2] ,
5 [3 , 4]])
6

7 b = np . array ([[5] ,

142

8 [6]])
9

10 Ainv = la . inv (A)
11

12 x = Ainv . dot (b)
13

14 pr in t (x)

The results becomes:

1 [[−4 .]
2 [4 . 5]]

You can also use the following:

1 x = np . l i n a l g . s o l v e (A, b)

Python Script:

1 import numpy as np
2

3 A = np . array ([[1 , 2] ,
4 [3 , 4]])
5

6 b = np . array ([[5] ,
7 [6]])
8

9 x = np . l i n a l g . s o l v e (A, b)
10 pr in t (x)

Note! The A matrix must be square and of full-rank, i.e. the inverse matrix
needs to exists.

[End of Example]

In many cases we cannot find the inverse matrix, e.g., when the matrix is not
quadratic. Finding the inverse matrix for large matrices is also time-consuming.

The numpy.linalg module can be used.

Here you find an overview of the numpy.linalg module:
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

Example 24.3.2. Solving Linear Equations when A is not quadratic

We use lstsq for the least-squares best “solution” of the system/equation.

Python Script:

1 import numpy as np
2

3 A = np . array ([[1 , 2] ,
4 [3 , 4] ,
5 [7 , 8]])

143

6

7 b = np . array ([[5] ,
8 [6] ,
9 [9]])

10

11 #x = np . l i n a l g . s o l v e (A, b) #Not working because i nv e r s e (A) does not
e x i s t s

12

13

14 x = np . l i n a l g . l s t s q (A, b , rcond=None) [0]
15

16 pr in t (x)

The results becomes:

1 [[−3 .5]
2 [4 . 1 7 857143]]

[End of Example]

24.4 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 24.4.1. Exercise Solving Linear Equations

Given the following equations:

x1 + 2x2 = 5 (24.34)

3x1 + 4x2 = 6 (24.35)

7x1 + 8x2 = 9 (24.36)

Find the solutions for the given equations using Python.

[End of Exercise]

Exercise 24.4.2. Matrix Addition, Subtraction and Multiplication using nested
For Loops

Assume that that you cannot do matrix addition, subtraction and multiplica-
tion as shown in the examples above.

Create a Python Module with 3 functions (e.g., matrixaddition(), matrixsub-
traction(), matrixmultiplication()) where you implement your own version of
matrix addition, subtraction and multiplication using nested For Loops.
Make sure to test the functions that they work as expected, e.g.:

144

1 import mymatrixmodule as matrix
2

3 A = [[1 , 3 , 7] ,
4 [5 , 8 , −9] ,
5 [6 , −7, 1 1]]
6

7 B = [[2 , 3 , 5] ,
8 [5 , −9, −9] ,
9 [6 , 8 , 1]]

10

11 c = matrix . matr ixadd i t ion (A, B)
12 pr in t (C)
13

14 c = matrix . mat r ix subt rac t i on (A, B)
15 pr in t (C)
16

17 c = matrix . ma t r i xmu l t i p l i c a t i on (A, B)
18 pr in t (C)

Listing 24.12: Python Arrays

You should test your function by do the calculations by hand and by using the
the numpy functionality. Compare the results and make sure you get the same
answers.

[End of Exercise]

145

Chapter 25

Complex Numbers in
Python

25.1 Introduction to Complex Numbers

A complex number is defined like this:

z = a+ jb (25.1)

Where the imaginary unit j is defined as i =
√
−1

Where a is called the real part of z and b is called the imaginary part of z, i.e.:

Re(z) = a, Im(z) = b

Figure 25.1 shows an illustration of complex numbers.

In Python we define a complex number like this:

1 >>> z = 2 + 3 j

The complex conjugate of z is defined as:

z∗ = a− jb (25.2)

You may also imaginary numbers on exponential/polar form:

z = rejθ (25.3)

146

Where:

r = |z| =
√
a2 + b2 (25.4)

and

θ = arctan
b

a
(25.5)

Note that a = r cos θ and b = r sin θ

Figure 25.2 shows an illustration of complex numbers on polar form.

Figure 25.1: Complex Numbers

To add or subtract two complex numbers, we simply add (or subtract) their real
parts and their imaginary parts.

In division and multiplication, we use the polar form.

Given the complex numbers:

z1 = r1e
jθ1 (25.6)

z2 = r2e
jθ2 (25.7)

Multiplication:

z3 = z1z2 = r1r1e
j(θ1+θ1) (25.8)

147

Figure 25.2: Complex Numbers - Polar form

Division:

z3 =
z1
z2

=
r1e

jθ1

r2ejθ2
=
r1
r2
ej(θ1−θ2) (25.9)

25.2 Complex Numbers with Python

In Python you can use the cmath library which has mathematical functions for
complex numbers.

https://docs.python.org/3/library/cmath.html

cmath is part of the The Python Standard Library.

For more information about the functions in the Python Standard Library,
see:
https://docs.python.org/3/library/

Example 25.2.1. Basic Complex Numbers in Python

Given the following complex numbers:

a = 5 + 3j (25.10)

148

b = 1− 1j (25.11)

In Python we can define the complex numbers and perform basic operations (+,
-, *, /) like this:

1 a = 5 + 3 j
2 b = 1 − 1 j
3

4 c = a + b
5 pr in t (c)
6

7 d = a − b
8 pr in t (d)
9

10 e = a ∗ b
11 pr in t (e)
12

13 f = a / b
14 pr in t (f)

Listing 25.1: Basic Complex Numbers in Python

[End of Example]

Example 25.2.2. Complex Number Functions in Python

1 import cmath
2

3 x = 2
4 y = −3
5

6 # conver t ing x and y in to complex number us ing complex ()
7 z = complex (x , y)
8 pr in t (z . r e a l)
9 pr in t (z . imag)

10

11 pr in t (z . con jugate ())
12

13 # conver t ing complex number in to po la r us ing po la r ()
14 w = cmath . po la r (z)
15 pr in t (w)
16

17

18 # conver t ing complex number in to r e c t angu l a r us ing r e c t ()
19 w = cmath . r e c t (2 , 3)
20 pr in t (w)

Listing 25.2: Complex Number Functions in Python

[End of Example]

149

Chapter 26

Differential Equations

26.1 Introduction to Differential Equations

A differential equation is a mathematical equation that relates some function
with its derivatives.

In applications, the functions usually represent physical quantities, the deriva-
tives represent their rates of change, and the differential equation defines a
relationship between the two.

Because such relations are extremely common, differential equations play a
prominent role in many disciplines including engineering, physics, economics,
and biology.

We typically want to solve ordinary differential equations (ODE) of the form:

dy

dt
= f(t, y), y(t0) = y0 (26.1)

Note! Different notation is used: dy
dt = y ’= ẏ

This document will use these different notations interchangeably.

Example 26.1.1. Example of Dynamic System

Given the following differential equation:

ẋ = −ax+ bu (26.2)

Note! ẋ is the same as dx
dt

We have the following:

• x - Process variable, e.g., Level, Pressure, Temperature, etc.

• u - Input variable, e.g., Control Signal from the Controller

• a, b - Constants

150

[End of Example]

With Python have we can solve these differential equations in many different
ways.

We can use so-called ODE solvers or we can make discrete version of the differ-
ential equations using discretization methods like Euler, etc.

With ODE solvers Python can solve these equations numerically. Higher order
differential equations must be reformulated into a system of first order differen-
tial equations.

In chapter 35 we will simulate (solve and plot the results) such differential equa-
tions numerically using Euler discretization.

Example 26.1.2. Differential Equation Example

Given the following differential equation:

ẋ = ax (26.3)

Where a = − 1
T , where T is defined as the time constant of the system.

Note! ẋ is the same as dx
dt

The solution for the differential equation is found to be:

x(t) = eatx0 (26.4)

We shall plot the solution for this differential equation using Python.

In our system we can set T = 5 and the initial condition x0 = x(0) = 1
Python code:

1 import math as mt
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5

6 # Parameters
7 T = 5
8 a = −1/T
9

10 x0 = 1
11 t = 0
12

13 t s t a r t = 0
14 t s top = 25
15

16 increment = 1
17

18 x = []
19 x = np . z e r o s (t s top+1)
20

21 t = np . arange (t s t a r t , t s top+1, increment)

151

22

23

24 # Def ine the Equation
25 f o r k in range (t s top) :
26 x [k] = mt . exp (a∗ t [k]) ∗ x0
27

28

29 # Plot the Resu l t s
30 p l t . p l o t (t , x)
31 p l t . t i t l e (’ P l o t t i ng D i f f e r e n t i a l Equation So lu t i on ’)
32 p l t . x l ab e l (’ t ’)
33 p l t . y l ab e l (’ x (t) ’)
34 p l t . g r i d ()
35 p l t . ax i s ([0 , 25 , 0 , 1])
36 p l t . show ()

Listing 26.1: Differential Equation

This gives the plot shown in Figure 26.1.

Figure 26.1: Plotting Differential Equation Solution

An alternative and perhaps simpler Python code:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4

5 # Parameters
6 T = 5

152

7 a = −1/T
8

9 x0 = 1
10 t = 0
11

12 t s t a r t = 0
13 t s top = 25
14 increment = 1
15 N = 25
16

17 #t = np . arange (t s t a r t , t s top+1, increment) #Al t e rna t i v e Approach
18 t = np . l i n s p a c e (t s t a r t , tstop , N)
19

20 x = np . exp (a∗ t) ∗ x0
21

22

23 # Plot the Resu l t s
24 p l t . p l o t (t , x)
25 p l t . t i t l e (’ P l o t t i ng D i f f e r e n t i a l Equation So lu t i on ’)
26 p l t . x l ab e l (’ t ’)
27 p l t . y l ab e l (’ x (t) ’)
28 p l t . g r i d ()
29 p l t . ax i s ([0 , 25 , 0 , 1])
30 p l t . show ()

Listing 26.2: Differential Equation

This alternative Python code gives the same plot as shown in Figure 26.1.

Solving differential equations like shown in this example works fine, but the
problem is that we first have to manually (by pen and paper) find the solution
to the differential equation.

An alternative is to use solvers for Ordinary Differential Equations (ODE) in
Python.

In the examples and tasks below we will learn how we can use these built-in
ODE solvers.
Another approach is to solve such equations from ”scratch” by making a dis-
crete version of the differential equation. This approach is presented later in
this textbook (chapter 35).

[End of Example]

26.2 ODE Solvers in Python

The scipy.integrate library has two powerful powerful functions ode() and
odeint(), for numerically solving first order ordinary differential equations
(ODEs). The ode() is more flexible, while odeint() (ODE integrator) has
a simpler Python interface works fine for most problems.

For details, see the SciPy documentation:

153

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.integrate.ode.html

Example 26.2.1. Using ODE Solver in Python

Given the following differential equation:

ẋ = ax (26.5)

Where a = − 1
T , where T is defined as the time constant of the system.

Note! ẋ is the same as dx
dt

We will use the odeint() function.

The syntax is as follows:

1 x = ode int (functionname , x0 , t)

Where we have:
functioname: Function that returns derivative values at requested x and t values
as dxdt = model(x,t)

x0: Initial conditions of the differential states

t: Time points at which the solution should be reported. Additional internal
points are often calculated to maintain accuracy of the solution but are not
reported.

Where we first has to define our differential equation:

1 de f functionname (x , t) :
2 dxdt = a ∗ x
3 r e turn dxdt

The Python code becomes:

1 import numpy as np
2 from sc ipy . i n t e g r a t e import ode int
3 import matp lo t l i b . pyplot as p l t
4

5 # I n i t i a l i z a t i o n
6 t s t a r t = 0
7 t s top = 25
8 increment = 1
9

10 x0 = 1
11 t = np . arange (t s t a r t , t s top+1, increment)
12

13

14 # Function that r e tu rn s dx/dt
15 de f mydi f f (x , t) :
16 T = 5
17 a = −1/T

154

18

19 dxdt = a ∗ x
20

21 r e turn dxdt
22

23

24 # Solve ODE
25 x = ode int (mydiff , x0 , t)
26 pr in t (x)
27

28

29 # Plot the Resu l t s
30 p l t . p l o t (t , x)
31 p l t . t i t l e (’ P l o t t i ng D i f f e r e n t i a l Equation So lu t i on ’)
32 p l t . x l ab e l (’ t ’)
33 p l t . y l ab e l (’ x (t) ’)
34 p l t . g r i d ()
35 p l t . ax i s ([0 , 25 , 0 , 1])
36 p l t . show ()

Listing 26.3: Using ODE Solver in Python

This gives the same plot as shown in Figure 26.1.

Some modification to the Python code:

1 import numpy as np
2 from sc ipy . i n t e g r a t e import ode int
3 import matp lo t l i b . pyplot as p l t
4

5 # I n i t i a l i z a t i o n
6 t s t a r t = 0
7 t s top = 25
8 increment = 1
9

10 T = 5
11 a = −1/T
12 x0 = 1
13 t = np . arange (t s t a r t , t s top+1, increment)
14

15

16 # Function that r e tu rn s dx/dt
17 de f mydi f f (x , t , a) :
18

19 dxdt = a ∗ x
20

21 r e turn dxdt
22

23

24 # Solve ODE
25 x = ode int (mydiff , x0 , t , a rgs=(a ,))
26 pr in t (x)
27

28

29 # Plot the Resu l t s
30 p l t . p l o t (t , x)
31 p l t . t i t l e (’ P l o t t i ng D i f f e r e n t i a l Equation So lu t i on ’)
32 p l t . x l ab e l (’ t ’)
33 p l t . y l ab e l (’ x (t) ’)
34 p l t . g r i d ()
35 p l t . ax i s ([0 , 25 , 0 , 1])

155

36 p l t . show ()

Listing 26.4: Using ODE Solver in Python

This gives the same plot as shown in Figure 26.1.

In the modified example we have the parameters used in the differential equation
(in htis case a) as an input argument. By doing this, it is very easy to changes
values for the parameters used in the differential equation without changing the
code for the differential equation.

You can also easily run multiple simulations like this:

1 a = −0.2
2 x = ode int (mydiff , x0 , t , a rgs=(a ,))
3

4 a = −0.1
5 x = ode int (mydiff , x0 , t , a rgs=(a ,))

[End of Example]

26.3 Solving Multiple 1. order Differential Equa-
tions

In real life we typically have higher order differential equations, or we have a
set of 1. order differential equations that describe a given system. How can we
solve such equations in Python?

Example 26.3.1. Set of 1.order Differential Equations

Given the differential equations:

dx

dt
= −y (26.6)

dy

dt
= x (26.7)

Assume the initial conditions x(0) = 1 and y(0) = 1.

The Python code is almost similar as previous examples, but we need to do
some small trick to make it work.

Python code:

156

1 import numpy as np
2 from sc ipy . i n t e g r a t e import ode int
3 import matp lo t l i b . pyplot as p l t
4

5 # I n i t i a l i z a t i o n
6 t s t a r t = −1
7 t s top = 1
8 increment = 0 .1
9

10 # I n i t i a l c ond i t i on
11 z0 = [1 , 1]
12

13

14 t = np . arange (t s t a r t , t s top+1, increment)
15

16

17 # Function that r e tu rn s dx/dt
18 de f mydi f f (z , t) :
19 dxdt = −z [1]
20 dydt = z [0]
21

22 dzdt = [dxdt , dydt]
23 r e turn dzdt
24

25

26 # Solve ODE
27 z = ode int (mydiff , z0 , t)
28 pr in t (z)
29

30 x = z [: , 0]
31 y = z [: , 1]
32

33

34 # Plot the Resu l t s
35 p l t . p l o t (t , x)
36 p l t . p l o t (t , y)
37 p l t . t i t l e (’ P l o t t i ng D i f f e r e n t i a l Equations So lu t i on ’)
38 p l t . x l ab e l (’ t ’)
39 p l t . y l ab e l (’ z (t) ’)
40 p l t . g r i d ()
41 p l t . ax i s ([−1 , 1 , −1.5 , 1 . 5])
42 p l t . show ()

Listing 26.5: xxx

This gives the the plot shown in Figure 26.2.

We can also rewrite the differential equations like this (to make it easier to
understand?):

dx1
dt

= −x2 (26.8)

dx2
dt

= x1 (26.9)

The Python code then becomes:

157

Figure 26.2: Figure Name

1 import numpy as np
2 from sc ipy . i n t e g r a t e import ode int
3 import matp lo t l i b . pyplot as p l t
4

5 # I n i t i a l i z a t i o n
6 t s t a r t = −1
7 t s top = 1
8 increment = 0 .1
9

10 # I n i t i a l c ond i t i on
11 x i n i t = [1 , 1]
12

13

14 t = np . arange (t s t a r t , t s top+1, increment)
15

16

17 # Function that r e tu rn s dx/dt
18 de f mydi f f (x , t) :
19 dx1dt = −x [1]
20 dx2dt = x [0]
21

22 dxdt = [dx1dt , dx2dt]
23 r e turn dxdt
24

25

26 # Solve ODE
27 x = ode int (mydiff , x i n i t , t)
28 pr in t (x)
29

30 x1 = x [: , 0]

158

31 x2 = x [: , 1]
32

33

34 # Plot the Resu l t s
35 p l t . p l o t (t , x1)
36 p l t . p l o t (t , x2)
37 p l t . t i t l e (’ P l o t t i ng D i f f e r e n t i a l Equations So lu t i on ’)
38 p l t . x l ab e l (’ t ’)
39 p l t . y l ab e l (’ x (t) ’)
40 p l t . g r i d ()
41 p l t . ax i s ([−1 , 1 , −1.5 , 1 . 5])
42 p l t . show ()

Listing 26.6: xxx

The plot and results will be the same.

[End of Example]

26.4 Solving Higher order Differential Equations

We shall use Python to solve and plot the results of the following differential
equation:

(1 + t2)ẅ + 2tẇ + 3w = 2 (26.10)

Note! Don’t be confused that in this example w is used and not x or y. All
these are just parameters or variable names.

Note! ẇ = dw
dt and ẅ = d2w

dt2

We will solve the differential equation in the interval [0,5s].

We will use the following initial conditions: w(t0) = 0 and ẇ(t0) = 1

First, we should rewrite the equation in order to get the highest derivative alone
on the left side of the equation:

ẅ =
2− 2tẇ − 3w

1 + t2
(26.11)

Note! Higher order differential equations must be reformulated into a system of
first order differential equations.

We do the following ”trick”:

159

w = x1 (26.12)

ẇ = x2 (26.13)

This gives a set of 1.order differential equations:

ẋ1 = x2 (26.14)

ẋ2 =
2− 2tx2 − 3x1

1 + t2
(26.15)

Now we can relatively easy implement the system in Python.

Python code:

1 import numpy as np
2 from sc ipy . i n t e g r a t e import ode int
3 import matp lo t l i b . pyplot as p l t
4

5 # I n i t i a l i z a t i o n
6 t s t a r t = 0
7 t s top = 5
8 increment = 0 .1
9

10 # I n i t i a l c ond i t i on
11 x i n i t = [0 , 1]
12

13

14 t = np . arange (t s t a r t , t s top+1, increment)
15

16

17 # Function that r e tu rn s dx/dt
18 de f mydi f f (x , t) :
19 dx1dt = x [1]
20 dx2dt = (2 − t ∗x [1] − 3∗x [0]) /(1 + t ∗∗2)
21

22 dxdt = [dx1dt , dx2dt]
23 r e turn dxdt
24

25

26 # Solve ODE
27 x = ode int (mydiff , x i n i t , t)
28 pr in t (x)
29

30 x1 = x [: , 0]
31 x2 = x [: , 1]
32

33

34 # Plot the Resu l t s
35 p l t . p l o t (t , x1)
36 p l t . p l o t (t , x2)
37 p l t . t i t l e (’ P l o t t i ng D i f f e r e n t i a l Equations So lu t i on ’)
38 p l t . x l ab e l (’ t ’)
39 p l t . y l ab e l (’ x (t) ’)

160

40 p l t . g r i d ()
41 p l t . ax i s ([0 , 5 , −1, 2])
42 p l t . show ()

Listing 26.7: xxx

This gives the the plot shown in Figure 26.3.

Figure 26.3: 2.order Differential Equation

26.5 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 26.5.1. Bacteria Population

In this task we will simulate a simple model of a bacteria population in a jar.

The model is as follows:

birth rate = bx (26.16)

161

death rate = px2 (26.17)

Then the total rate of change of bacteria population is:

ẋ = bx− px2 (26.18)

Note! ẋ is the same as dx
dt

Set b=1/hour and p=0.5 bacteria-hour

We will simulate the number of bacteria in the jar after 1 hour, assuming that
initially there are 100 bacteria present.

Use one of the ODE solvers in Python as shown in earlier examples.

[End of Exercise]

Exercise 26.5.2. Differential Equation

Given the following differential equation:

ẋ = ax+ b (26.19)

Where a = − 1
T , where T is defined as the time constant of the system. We can

set b = 1.

Note! ẋ is the same as dx
dt

Plot the solution for this differential equation using Python.

In our system we can set T = 5 and the initial condition x0 = x(0) = 1
When you have done that you should try with different values for a and b. Make
sure to pass these values

[End of Exercise]

Exercise 26.5.3. Simulation of Dynamic System

Given the following differential equation:

ẋ = −ax+ bu (26.20)

Note! ẋ is the same as dx
dt

We have the following:

• x - Process variable, e.g., Level, Pressure, Temperature, etc.

162

• u - Input variable, e.g., Control Signal from the Controller

• a, b - Constants

Start by setting a = 0.25, b = 2 and u = 1. Plot the simulation results. Use one
of the ODE solvers in Python.

Explore with other values for a, b and u.

[End of Exercise]

Exercise 26.5.4. Mass-Spring-Damper System

Given a ”Mass-Spring-Damper” system as shown in Figure 26.4.

Figure 26.4: Mass-Spring-Damper System

The system can be described by the following equation:

F (t)− cẋ(t)− kx(t) = mẍ(t) (26.21)

Where t is the simulation time, F(t) is an external force applied to the system, c
is the damping constant of the spring, k is the stiffness of the spring, m is a mass.

x(t) is the position of the object (m).

163

ẋ(t) is the first derivative of the position, which equals the velocity of the object
(m).

ẍ(t) is the second derivative of the position, which equals the acceleration of the
object (m).

Use your skills learned from the previous examples in order to simulate this
system. Use one of the ODE solvers in Python.

You should try with different values for F , c, k and m.

[End of Exercise]

Exercise 26.5.5. ODE

Use the one of the ODE solvers in Python to solve and plot the results of the
following differential equation in the interval [t0, tf]:

3w′ +
1

1 + t2
w = cos(t) (26.22)

Where the initial conditions are t0 = 0, tf = 5, w(t0) = 1

Note! w′ is the same as ẇ which is the same as dw
dt - different notations for the

same.

[End of Exercise]

Exercise 26.5.6. Pendulum model

Use the one of the ODE solvers in Python to solve and plot the results of the
following differential equations:

ẋ1 = x2 (26.23)

ẋ2 = −g
r
x1 −

b

mr2
x2 (26.24)

The differential equations above is a simplified model of a pendulum where m
is the mass, r is the length of the arm of the pendulum, g is the gravity, and b
is a friction coefficient.

In the model, x1 is the distance from the starting point (which is when the
pendulum hangs straight down) and x2 is the velocity.

164

Figure 26.5: Pendulum

A pendulum is shown in Figure 26.5.

You may use the following values: m = 8, r = 5 and b = 10 (units are not so
important in this case). You may also explore with other values as well.

Assume you, e.g., take the pendulum away from the starting point and then drop
it, what happens then? You may, e.g., use the initial conditions x1(0) = 0.5 and
x2(0) = 0.

Explain the simulation results and see it in relation with the real world. Does
the simulation results make sense?

[End of Exercise]

165

Chapter 27

Interpolation

Interpolation is used to estimate data points between two known points. The
most common interpolation technique is Linear Interpolation.

We can use the following packages:

numpy.interp
https://docs.scipy.org/doc/numpy/reference/generated/numpy.interp.html

scipy.interpolate
https://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

Example 27.0.1. Basic Interpolation Example

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 x = [1 , 2 , 3]
5 y = [3 , 2 , 0]
6

7 x new = 2.5
8

9 y new = np . i n t e rp (2 . 5 , x , y)
10

11 pr in t (”New In t e rpo l a t ed Value : ”)
12 pr in t (y new)
13

14 p l t . p l o t (x , y , ’ o− ’)
15 p l t . show ()

Listing 27.1: Basic Interpolation Example

Figure 27.1 shows the plot given by the code.

By using the interpolation function interp that is part of the numpy library
we can find an interpolated value for x = 2.5 in this example. Python gives the
following results:

1 New In t e rpo l a t ed Value :
2 1 .0

166

Figure 27.1: Basic Interpolation Example

And seen from Figure 27.1 that is the expected result.

[End of Example]

Example 27.0.2. Interpolation Example using scipy.interpolate

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 from sc ipy import i n t e r p o l a t e
4

5 x = np . arange (0 , 10)
6 y = np . exp(−x /3 . 0)
7 f = i n t e r p o l a t e . in te rp1d (x , y)
8

9 xnew = np . arange (0 , 9 , 0 . 1)
10 ynew = f (xnew) # use i n t e r p o l a t i o n func t i on returned by ‘ interp1d

‘
11 p l t . p l o t (x , y , ’ o ’ , xnew , ynew , ’− ’)
12 p l t . show ()

Listing 27.2: Interpolation Example

Figure 27.2 shows the plot generated by the code.

167

Figure 27.2: Interpolation Example

[End of Example]

Example 27.0.3. Another Interpolation Example using scipy.interpolate

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 from sc ipy . i n t e r p o l a t e import inte rp1d
4

5 x = np . l i n s p a c e (0 , 10 , num=11, endpoint=True)
6 y = np . cos (−x ∗∗2/9 .0)
7

8 f = inte rp1d (x , y) #l i n e a r i s d e f au l t
9 f 2 = inte rp1d (x , y , kind=’ cubic ’)

10

11

12 xnew = np . l i n s p a c e (0 , 10 , num=41, endpoint=True)
13

14 p l t . p l o t (x , y , ’ o ’ , xnew , f (xnew) , ’− ’ , xnew , f 2 (xnew) , ’−− ’)
15 p l t . l egend ([’ data ’ , ’ l i n e a r ’ , ’ cub ic ’] , l o c=’ bes t ’)
16 p l t . show ()

Listing 27.3: Interpolation Example

168

Figure 27.3 shows the plot generated by the code.

Figure 27.3: Interpolation Example

From Figure 27.3 we see that the cubic interpolation gives a good results based
on the cosine function we used in this example.

[End of Example]

27.1 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 27.1.1. Basic Interpolation

Given the following data as shown in Table 28.2.
Find the interpolated value for x = 3.5.

You should try with different types of interpolation.

169

You should also plot the data points and the interpolated data in the same plot.

[End of Exercise]

Exercise 27.1.2. Interpolation

Given the following data as shown in Table 28.2.
Plot u versus T. Find the interpolated data and plot it in the same graph.

Test out different interpolation types.

Discuss the results. What kind of interpolation is best in this case?

What is the interpolated value for u=2680.78 KJ/kg?

[End of Exercise]

170

Table 27.1: Data
x y
0 15
1 10
2 9
3 6
4 2
5 0

Table 27.2: Data
Temperature T [C] Energy u [KJ/kg]
100 2506.7
150 2582.8
200 2658.1
250 2733.7
300 2810.4
400 2967.9
500 3131.6

171

Chapter 28

Curve Fitting - Fitting
Models to Data

In the previous chapter we found interpolated points, i.e., we found values be-
tween the measured points using the interpolation technique. It would be more
convenient to model the data as mathematical function y=f(x). Then we could
easily calculate any data we want based on this model.

We will use Python to create empiric data model. It is important to have in
mind that these models are good only in the region we have collected data.

These techniques use a polynomial of degree N that fits the data Y best in a
least-squares sense. A polynomial is expressed as:

p(x) = p1x
n + p2x

n−1 + ...+ pnx+ pn+1 (28.1)

where p1, p2, p3, . . . are the coefficients of the polynomial.

We have Linear Regression and Polynomial Regression.

We can use the curve fit function in the Scipy Python library to help us with
curve fitting.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve fit.html

28.1 Linear Regression

Here we will create a linear model of our data on the form:

y = ax+ b (28.2)

172

This is actually a polynomial of 1. order.

Example 28.1.1. Curve Fitting

Given the following data as shown in Table 28.1.
We want to determine the slope (a) and intercept (b) of the best-fit line to the
data.

Python Code:

1 from sc ipy . opt imize import c u r v e f i t
2

3 x = [0 , 1 , 2 , 3 , 4 , 5]
4 y = [15 , 10 , 9 , 6 , 2 , 0]
5

6

7 de f l i n ea r mode l (x , a , b) :
8 r e turn a ∗ x + b
9

10 popt , pcov = c u r v e f i t (l inear mode l , x , y)
11

12 pr in t (popt)

Listing 28.1: Curve Fitting Example

The curve fit function returns two items, which we can popt and pcov. The
popt argument are the best-fit paramters for a and b.

The pcov variable contains the covariance matrix, which indicates the uncer-
tainties and correlations between parameters.

From the Python code we get the following results:

[-2.91428571 14.28571429]

This means a = −2.91428571 and b = 14.28571429.

Based on that we get the following model based on the given data:

y = −2.9x+ 14.3 (28.3)

Next, it is also a good idea to plot the actual data in the same plot as the model
for comparison.

We extend the code as follows:

1 import numpy as np
2 from sc ipy . opt imize import c u r v e f i t
3 import matp lo t l i b . pyplot as p l t
4

5 x = [0 , 1 , 2 , 3 , 4 , 5]

173

6 y = [15 , 10 , 9 , 6 , 2 , 0]
7

8

9 de f l i n ea r mode l (x , a , b) :
10 r e turn a ∗ x + b
11

12 popt , pcov = c u r v e f i t (l inear mode l , x , y)
13

14 pr in t (popt)
15

16 p l t . p l o t (x , y , ’ or ’)
17

18

19 x s t a r t = −1
20 xstop = 6
21 increment = 0 .1
22 xmodel = np . arange (xs tar t , xstop , increment)
23

24 a = popt [0]
25 b = popt [1]
26

27 ymodel = a∗xmodel + b
28

29 p l t . p l o t (xmodel , ymodel , ’ b ’)

Listing 28.2: Curve Fitting Example

Figure 28.1 shows the plot generated by the code.

[End of Example]

28.2 Polynomial Regression

In the previous section we used linear regression which is a 1. order polynomial.
In this section we will study higher order polynomials. In polynomial regression
we will find the following model:

y(x) = a0x
n + a1x

n−1 + ...+ an−1x+ an (28.4)

Example 28.2.1. Curve Fitting with Polynomial Regression

Given the following data as shown in Table 28.1.

We want to find models on the form:

y(x) = a0x
n + a1x

n−1 + ...+ an−1x+ an (28.5)

174

Figure 28.1: Interpolation Example

We will use the Python to find and compare the models using different orders
of the polynomial.

We will investigate models of 2.order, 3.order, 4.order and 5.order.

We have only 6 data points, so a model with order higher than 5 will make no
sense.

We start with a 2.order model:

y(x) = ax2 + bx2 + c (28.6)

Python Code:

1 import numpy as np
2 from sc ipy . opt imize import c u r v e f i t
3 import matp lo t l i b . pyplot as p l t
4

175

5 x = [0 , 1 , 2 , 3 , 4 , 5]
6 y = [15 , 10 , 9 , 6 , 2 , 0]
7

8

9 de f l i n ea r mode l (x , a , b , c) :
10 r e turn a ∗ x∗∗2 + b ∗ x + c
11

12 popt , pcov = c u r v e f i t (l inear mode l , x , y)
13

14 pr in t (popt)
15

16 p l t . p l o t (x , y , ’ ok ’)
17

18

19 x s t a r t = −1
20 xstop = 6
21 increment = 0 .1
22 xmodel = np . arange (xs tar t , xstop , increment)
23

24 a = popt [0]
25 b = popt [1]
26 c = popt [2]
27

28 ymodel = a ∗xmodel∗∗2 + b ∗ xmodel + c
29

30 p l t . p l o t (xmodel , ymodel , ’ b ’)

Listing 28.3: Curve Fitting Example - 2.order model

The Python code gives the following results:

[0.05357143 -3.18214286 14.46428571]

This is the coefficients a, b and c in the model.

We can change the Python code to make a 3.order, 4.order and 5.order as well.

Here is the Python code for a 5.order model (based on that you can easily create
code for 3.order and 4.order models):

1 import numpy as np
2 from sc ipy . opt imize import c u r v e f i t
3 import matp lo t l i b . pyplot as p l t
4

5 x = [0 , 1 , 2 , 3 , 4 , 5]
6 y = [15 , 10 , 9 , 6 , 2 , 0]
7

8

9 de f l i n ea r mode l (x , a , b , c , d , e , f) :
10 r e turn a ∗ x∗∗5 + b ∗ x∗∗4 + c ∗ x∗∗3 + d ∗ x∗∗2 + e ∗ x + f
11

12 popt , pcov = c u r v e f i t (l inear mode l , x , y)
13

14 pr in t (popt)
15

16 p l t . p l o t (x , y , ’ ok ’)
17

18

176

19 x s t a r t = −1
20 xstop = 6
21 increment = 0 .1
22 xmodel = np . arange (xs tar t , xstop , increment)
23

24 a = popt [0]
25 b = popt [1]
26 c = popt [2]
27 d = popt [3]
28 e = popt [4]
29 f = popt [5]
30

31 ymodel = a ∗ xmodel∗∗5 + b ∗ xmodel∗∗4 + c ∗ xmodel∗∗3 + d ∗ xmodel
∗∗2 + e ∗ xmodel + f

32

33 p l t . p l o t (xmodel , ymodel , ’m’)

Listing 28.4: Curve Fitting Example - 5.order model

Figure 28.2 shows the plot generated by the code for the different models.

Figure 28.2: Interpolation Example

As expected, the higher order models match the data better and better.

Note! The fifth order model matches exactly because there were only six data
points available.

It is important to have in mind that these models are good only in the region

177

we have collected data.

[End of Example]

Example 28.2.2. Polynomial Regression using polyfit and polyval functions

In this example we will use the NumPy functions polyfit and polyval.

We start with a 3.order model:

y(x) = ax3 + bx2 + cx+ d (28.7)

Python code:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 # Or ig ina l Data
5 x = [0 , 1 , 2 , 3 , 4 , 5]
6 y = [15 , 10 , 9 , 6 , 2 , 0]
7

8 p l t . p l o t (x , y , ’ ok ’)
9

10

11 # Finding the Model
12 model order = 3
13

14 p = np . p o l y f i t (x , y , model order)
15 pr in t (p)
16

17 # Plot the Model
18 x s t a r t = −1
19 xstop = 6
20 increment = 0 .1
21 xmodel = np . arange (xs tar t , xstop , increment)
22

23 ymodel = np . po lyva l (p , xmodel)
24

25 p l t . p l o t (xmodel , ymodel , ’ r ’)

Listing 28.5: Polynomial Regression using polyfit and polyval functions

We get the following results:

[-0.06481481 0.53968254 -4.07010582 14.65873016]

This means the following 3.order model:

y(x) = −0.06x3 + 0.54x2 − 4.1x+ 14.7 (28.8)

178

Figure 28.3: Interpolation Example - 3.order model

Figure 28.3 shows the plot generated by the code.

Lets extend the code by creating different models with different orders. For easy
comparison of different models in the same program we can use a For loop as
shown in the code example below.

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 # Or ig ina l Data
5 x = [0 , 1 , 2 , 3 , 4 , 5]
6 y = [15 , 10 , 9 , 6 , 2 , 0]
7

8 p l t . p l o t (x , y , ’ ok ’)
9

10 # x va lues f o r model
11 x s t a r t = −1
12 xstop = 6
13 increment = 0 .1
14 xmodel = np . arange (xs tar t , xstop , increment)
15

16

17 s t a r t o r d e r = 1
18 endorder = 5
19

20 f o r model order in range (s t a r t o rde r , endorder , 1) :
21

22 # Finding the Model
23 p = np . p o l y f i t (x , y , model order)

179

24

25 pr in t (p)
26

27 # Plot the Model
28 ymodel = np . po lyva l (p , xmodel)
29

30 p l t . p l o t (xmodel , ymodel)

Listing 28.6: Polynomial Regression using polyfit and polyval functions

The results are the same as shown in Figure 28.2.

[End of Example]

28.3 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 28.3.1. Interpolation

Given the following data as shown in Table 28.2.
Start by plotting u versus T.

Next you should create a linear model of our data on the form:

y = ax+ b (28.9)

Plot the data and the model in the same plot for comparison.

Test also other interpolation types.

Discuss the results. What kind of interpolation is best in this case?

[End of Exercise]

Exercise 28.3.2. Polynomial Interpolation

Given the following data as shown in Table 28.3.
Use the polyfit and polyval functions in Python and compare the models using
different orders of the polynomial.

Use subplots and make sure to add titles, etc.

[End of Exercise]

180

Table 28.1: Data
x y
0 15
1 10
2 9
3 6
4 2
5 0

Table 28.2: Data
Temperature T [C] Energy u [KJ/kg]
100 2506.7
150 2582.8
200 2658.1
250 2733.7
300 2810.4
400 2967.9
500 3131.6

Table 28.3: Example Data
x y
10 23
20 45
30 60
40 82
50 111
60 140
70 167
80 198
90 200
100 220

Table 28.4: Example Data
Height, h [ft] Flow, f [ft3/s]
0 0
1.7 2.6
1.9 5 3.6
2.60 4.03
2.92 6.45
4.04 11.22
5.24 30.61

181

Exercise 28.3.3. Model Fitting

Given the following data as shown in Table 28.4.
Create a 1. (linear), 2. (quadratic) and 3.order (cubic) model. Which gives the
best model?

Plot the result in the same plot and compare them. Add xlabel, ylabel, title
and a legend to the plot and use different line styles so the user can easily see
the difference.

[End of Exercise]

182

Chapter 29

Least Square Method

The least squares method requires the model to be set up in the following form
based on input-output data:

Y = Φθ (29.1)

Where:

θ is a vector with the unknown parameters on which we want to find the values.

Y is a vector with known measurements.

Φ is the so-called regression matrix. This matrix consists of known values.

From mathematics we have the corresponding b = Ax where we want to solve
a linear equation system. In principle it is the same, but as you can see we use
a slightly different notation in system identification.

Assume we have some data and we want to find a mathematical model that fits
the data.

We can illustrate it with a simple sketch, see Figure 29.1.

We want to minimize the sum of the deviations e1, e2, e3, ..., em

We can define this as the following criteria function:

V (θ) = e21 + e22 + e23 + ...+ e2m (29.2)

We find the minimum by setting the derivative equal to 0:

dV

dθ
= 0 (29.3)

183

Figure 29.1: Least Square Principles

See Figure 29.2.

Based in this we can find the following Least Square formula:

θLS = (ΦTΦ)−1ΦTY (29.4)

We will derive this equation later, but first we should go through some basic
examples.

Example 29.0.1. Basic Least Square Method

Given the following model:

y(u) = au+ b (29.5)

Where the model parameters a and b are unknown.

The following values were found from experiments:

y(1) = 0.8 (29.6)

y(2) = 3.0 (29.7)

y(3) = 4.0 (29.8)

184

Figure 29.2: Finding Minimum of Criteria Function

We want to find the unknown model parameters a and b using the least squares
method in Python.
First, we need to put it on Least Square form.

We have:

Y = Φθ (29.9)

Then we get:

0.8 = a1 + b (29.10)

3.0 = a2 + b (29.11)

0.8 = a1 + b (29.12)

This becomes (Y = Φθ): 0.8
3.0
4.0

 =

 1 1
2 1
3 1

[a
b

]
(29.13)

185

We use the Least Square formula:

θLS = (ΦTΦ)−1ΦTY (29.14)

Lets implement this formula with Python:

1 import numpy as np
2

3 Phi = np . array ([[1 , 1] ,
4 [2 , 1] ,
5 [3 , 1]])
6

7 Y = np . array ([[0 . 8] ,
8 [3 . 0] ,
9 [4 . 0]])

10

11

12 #Method 1 − Ax = b (Not working in t h i s case)
13 #theta = np . l i n a l g . s o l v e (Phi , Y) #Not working because i nv e r s e (Phi)

does not e x i s t s
14

15

16 #Method 2 − us ing bu i l t−in Least Square Function in NumPy
17 theta = np . l i n a l g . l s t s q (Phi , Y, rcond=None) [0]
18

19 pr in t (theta)
20

21

22 #Method 3 − Implmenting Least Square from sc ra t ch
23 theta = np . l i n a l g . inv (Phi . t ranspose () ∗ np .mat(Phi)) ∗ Phi .

t ranspose () ∗ Y
24

25 pr in t (theta)

Listing 29.1: xxx

The Python code gives the following:

1 [[1 . 6]
2 [−0 . 6]]

[End of Example]

186

Chapter 30

Numerical Differentiation

The derivative of a function y = f(x) is a measure of how y changes with x.

Assume the following (Figure 30.1):

Then we have the following definition:

df(x)

dx
= lim
h→0

f(x+ h)− f(x)

h
(30.1)

In Python we typically deal with numerical calculations, so we will focus on
finding a numerical approach and use different functions for numerical differen-
tiation.

A numerical approach to the derivative of a function y = f(x) is:

dy

dx
=

∆y

∆x
=
y2 − y1
x2 − x1

(30.2)

This approximation of the derivative corresponds to the slope of each line seg-
ment used to connect each data point that exists.

We can use the NumPy diff() function for implementation of this numerical
approach. Several examples will be provided below.

Example 30.0.1. Numerical Differentiation

We will use numerical differentiation to find dy
dx on the following function:

y = x2 (30.3)

187

Figure 30.1: Numerical Differentiation

We use the following data as shown in Table 30.1.

Python code:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4

5 x s t a r t = −2
6 xstop = 2 .1
7 increment = 0 .1
8 x = np . arange (xs tar t , xstop , increment)
9

10 y = x∗∗2
11

12 p l t . p l o t (x , y)
13

14

15 x s t a r t = −2
16 xstop = 3
17 increment = 1
18 x = np . arange (xs tar t , xstop , increment)

188

19

20 y = x ∗∗2 ;
21

22 p l t . p l o t (x , y , ’−o ’)

Listing 30.1: Numerical Differentiation

This gives the the plot shown in Figure 30.2.

Figure 30.2: Basic Numerical Differentiation Example

We know that the exact solution to the problem is:

dy

dx
= 2x (30.4)

For the values given in Table 30.1 we have the following:

dy

dx
(x = −2) = −4 (30.5)

dy

dx
(x = −1) = −2 (30.6)

dy

dx
(x = 0) = 0 (30.7)

dy

dx
(x = 1) = 2 (30.8)

189

dy

dx
(x = 2) = 4 (30.9)

In the next code snippet we will calculate the numerical values and compare
with the exact solutions which are listed above.

Python code:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4

5 x s t a r t = −2
6 xstop = 3
7 increment = 1
8

9 x = np . arange (xs tar t , xstop , increment)
10

11 y = x ∗∗2 ;
12

13

14 # Exact/ Ana ly t i c a l So lu t i on
15

16 dydx exact = 2∗x
17

18 pr in t (dydx exact)
19

20 p l t . p l o t (x , dydx exact , ’ o− ’)
21

22

23

24 # Exact/ Ana ly t i c a l So lu t i on
25

26 dydx num = np . d i f f (y) / np . d i f f (x) ;
27

28 pr in t (dydx num)
29

30 x s t a r t = −2
31 xstop = 2
32

33 x = np . arange (xs tar t , xstop , increment)
34

35

36 p l t . p l o t (x , dydx num , ’ o− ’)

Listing 30.2: Numerical Differentiation

We get the following results:

dydx exact = [-4 -2 0 2 4]
dydx num = [-3. -1. 1. 3.]

This gives the the plot shown in Figure 30.3.

We see that there are some differences between the exact solutions and the nu-
meric solutions.

190

Figure 30.3: Numerical Differentiation Example

But what happens if we decreases the interval (h in Figure 30.1) between 2
points?

In the next code snippet we will decrease the intervall between 2 points to
h = 0.1.

Python code:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4

5 x s t a r t = −2
6 xstop = 2 .1
7 increment = 0 .1
8 x = np . arange (xs tar t , xstop , increment)
9

10 y = x ∗∗2 ;
11

12

13 # Exact/ Ana ly t i c a l So lu t i on
14

15 dydx exact = 2∗x
16

17 p l t . p l o t (x , dydx exact , ’ o− ’)
18

19

20

21 # Exact/ Ana ly t i c a l So lu t i on

191

22

23 dydx num = np . d i f f (y) / np . d i f f (x) ;
24

25 x s t a r t = −2
26 xstop = 2
27

28 x = np . arange (xs tar t , xstop , increment)
29

30

31 p l t . p l o t (x , dydx num , ’ o− ’)

Listing 30.3: Numerical Differentiation

This gives the the plot shown in Figure 30.4.

Figure 30.4: Numerical Differentiation Example

We see that there numeric solutions becomes very close to the exact solutions.
When h → 0 we should expect that the numerical solutions should exactly
match the exact solutions.

[End of Example]

Exercise 30.0.1. Numerical Differentiation

Given the following equation:

192

y = x3 + 2x2 − x+ 3 (30.10)

Find dy
dx analytically (use ”pen and paper”).

Define a vector x from -5 to +5 and use the diff function to approximate the
derivative y with respect to x (∆y/∆x).

Compare the data in a 2D array and/or plot both the exact value of dy
dx and the

approximation in the same plot.

Increase number of data point to see if there are any difference.

Do the same for the following functions:

y = sin(x) (30.11)

y = x5 − 1 (30.12)

[End of Exercise]

30.1 Differentiation on Polynomials

A polynomial is expressed as:

p(x) = p1x
n + p2x

n−1 + ...+ pnx+ pn+1 (30.13)

where p1, p2, p3, . . . are the coefficients of the polynomial.

The differentiation of the polynomial p(x) will be:

dp(x)

dx
= p1nx

n−1 + p2(n− 1)xn−2 + ...+ pn (30.14)

Performing differentiation on polynomials in easy because you only need to use
the basic differentiation rules:

f(x) = axn → f ′(x) = a · n · xn−1 (30.15)

f(x) = C → f ′(x) = 0 (30.16)

Where C is a constant.

193

Examples:

f(x) = 4x3 → f ′(x) = 12x2 (30.17)

f(x) = 5→ f ′(x) = 0 (30.18)

We could easily made a general function in Python that could handle this. If
you dont want to do that, you can use the polyder() NumPy function.

Example 30.1.1. Differentiation on Polynomials

Given the polynomial

p(x) = 2 + x3 (30.19)

We can rewrite the polynomial like this:

p(x) = 1 · x3 + 0 · x2 + 0 · x+ 2 (30.20)

We know that: p′(x) = 3x2

The polynomial is defined in Python as:

1 import numpy as np
2

3 p = [1 , 0 , 0 , 2]
4

5 dpdx = np . po lyder (p)
6

7 pr in t (dpdx)

Listing 30.4: Differentiation on Polynomials

The results:

dpdx = [3 0 0]

Which is correct, because

p′(x) = 3 · x2 + 0 · 2x+ 0 · 1 (30.21)

with the coefficients: p1 = 3, p2 = 0, p3 = 0
And this is written as an array [3 0 0] in Python.

The Python code can also be written like this:

194

1 import numpy as np
2

3 p = np . poly1d ([1 , 0 , 0 , 2])
4 pr in t (p)
5

6 dpdx = np . po lyder (p)
7 pr in t (dpdx)

Listing 30.5: Differentiation on Polynomials

Here we have used the poly1d() function in the NumPy library. Make sure to
try this example!

[End of Example]

Exercise 30.1.1. Differentiation on Polynomials

Consider the following equation:

y = x3 + 2x2 − x+ 3 (30.22)

Use differentiation on the Polynomial to find dy
dx

[End of Exercise]

Exercise 30.1.2. Differentiation on Polynomials

Find the derivative for the product:

y = (3x2 + 6x+ 9)(x2 + 3x) (30.23)

i.e, you need to find dy
dx

[End of Exercise]

195

Table 30.1: Example Data
x y
-2 4
-1 1
0 0
1 1
2 4

196

Chapter 31

Numerical Integration

The integral of a function f(x) is denoted as:∫ b

a

f(x)dx (31.1)

An integral can be seen as the area under a curve.

Given y = f(x) the approximation of the Area (A) under the curve can be found
dividing the area up into rectangles and then summing the contribution from
all the rectangles:

n−1∑
i=1

(xi+1 − xi) · (yi+1 + yi)/2 (31.2)

This is known as the Trapezoid rule.

We approximate the integral by using n trapezoids formed by using straight line
segments between the points (xi−1, yi−1) and (xi, yi) for 1 ≤ i ≤ n as shown in
Figure 31.1.

The area of a trapezoid is obtained by adding the area of a rectangle and a
triangle (31.3):

A = y0∆x+
1

2
(y1 − y0)∆x =

(y0 + y1)∆x

2
(31.3)

See Figure 31.2.

Example 31.0.1. Basic Integral Example

Given the function:

y = x2 (31.4)

197

Figure 31.1: Numerical Integral Approach

Figure 31.2: The Area of a Trapezoid

We know that the exact solution is:∫ b

a

x2dx =
a3

3
(31.5)

The integral from 0 to 1 is: ∫ 1

0

x2dx =
1

3
≈ 0.3333 (31.6)

We will use the trapezoid rule and the diff function in MATLAB to solve the
numerical integral of x2 from 0 to 1.

The Python code implements the formula known as the Trapezoid rule:

I =

∫ b

a

f(x)dx ≈ 1

2

n∑
i=1

(f(xi) + f(xi+1)) · (xi − xi−1) (31.7)

198

Assuming that we use N sub intervals in order to calculate the approximation
we get:

A =
∆x

2

N∑
i=1

(f(xi) + f(xi+1)) (31.8)

Where

∆x =
b− a
N

(31.9)

The Python code for this is:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 a = 0
5 b = 1
6 N = 10
7

8

9 x = np . l i n s p a c e (a , b ,N+1)
10

11 y = x ∗∗2 ;
12

13 y r i g h t = y [1 :]
14 y l e f t = y [: −1]
15

16

17 # Trapezoid Rule
18 dx = (b − a) /N
19 A = (dx/2) ∗ np . sum(y r i g h t + y l e f t)
20

21 pr in t (A)
22

23

24 p l t . p l o t (x , y)
25 p l t . xl im ([0 , 1]) ; p l t . yl im ([0 , 1]) ;

Listing 31.1: Trapezoid Rule

We get the following results:

A = 0.3350000000000001

Which is a good approximation when we now the exact answer is A = 1
3

[End of Example]

In the example above we implemented our own integration from scratch. That’s
always a good approach because then we get to know the mathematics behind.
But typically you want to use a predefined function that do the job for you.

The SciPy subpackage scipy.integrate contains several functions for approximat-
ing definite integrals numerically.

199

Take a closer look at the documentation in prder to get an overview of the dif-
ferent functions that are available.

https://docs.scipy.org/doc/scipy/reference/integrate.htmlmodule-scipy.integrate

Example 31.0.2. Integration using the quad function

In this example we will use the quad function in the SciPy subpackage scipy.integrate.

See the following for detailed information about the quad function:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.htmlscipy.integrate.quad

Python code:

1 from sc ipy import i n t e g r a t e
2

3 a = 0
4 b = 1
5

6 de f y (x) :
7 r e turn x∗∗2
8

9 I = i n t e g r a t e . quad (y , a , b)
10

11 pr in t (I)

Listing 31.2: xxx

We get the following results:

I = (0.33333333333333337, 3.700743415417189e-15)

Which is a good approximation when we now the exact answer is A = 1
3

The second result is an estimate of the absolute error in the given result.

[End of Example]

Example 31.0.3. Integration using the builtin trapz function

In this example we will use the builtin trapz function in SciPy.

See the following for detailed information about the trapz function:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.trapz.htmlscipy.integrate.trapz

Python code:

1 import numpy as np
2

3 a = 0
4 b = 1
5 N = 10
6 dx = (b − a) /N

200

7

8 x = np . l i n s p a c e (a , b ,N+1)
9

10 y = x ∗∗2 ;
11

12 I = np . t rapz (y , x , dx)
13

14 pr in t (I)

Listing 31.3: xxx

We get the following results:

I = 0.33499999999999996
Which is a good approximation when we now the exact answer is A = 1

3

[End of Example]

Exercise 31.0.1. Numerical Integration

Use some of the integral approximations shown in the examples above on the
following equation:

y = x3 + 2x2 − x+ 3 (31.10)

Find the integral of y with respect to x, evaluated from -1 to 1

Compare the different methods.

You should also find the exact solution using ”pen and paper for comparison.
Compare the result with the exact solution.

[End of Exercise]

Exercise 31.0.2. Numerical Integration 2

Use some of the integral approximations shown in the examples above on the
following equation:

y = sin(x) (31.11)

Find the integral of y with respect to x, evaluated from -1 to 1

Compare the different methods.

You should also find the exact solution using ”pen and paper for comparison.
Compare the result with the exact solution.

[End of Exercise]

201

Exercise 31.0.3. Numerical Integration 3

Use some of the integral approximations shown in the examples above on the
following equation:

y = x5 − 1 (31.12)

Find the integral of y with respect to x, evaluated from -1 to 1

Compare the different methods.

You should also find the exact solution using ”pen and paper for comparison.
Compare the result with the exact solution.

[End of Exercise]

31.1 Integration on Polynomials

A polynomial is expressed as:

p(x) = p1x
n + p2x

n−1 + ...+ pnx+ pn+1 (31.13)

where p1, p2, p3, . . . are the coefficients of the polynomial.

In Python we can use the polyint function to perform integration on polynomi-
als. This function works the same way as the polyder function which performs
differentiation on polynomials.

Exercise 31.1.1. Integration on Polynomials

Given the following equation:

y = x3 + 2x2 − x+ 3 (31.14)

Find the integral for this function using polyint.

You should also find the exact solution using ”pen and paper for comparison.

You should also plot the function in the interval [a,b] where you choose different
values for a and b.

You should also find the integral for these intervals.

[End of Exercise]

202

31.2 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 31.2.1. Piston Cylinder

Given the following piston cylinder shown in Figure 31.3.

Figure 31.3: Piston Cylinder

Find the work (W) produced in a piston cylinder device by solving the following
equation:

W =

∫ V2

V1

PdV (31.15)

Assume that the ideal gas low applies:

PV = nRT (31.16)

Where:

• P = Pressure

203

• V = Volume [m3]

• n = number of moles [kmol]

• R = universal gas constant [8.314kJ/kmolK]

• T = Temperature, [K]

We also assume that the piston contains 1 mol of gas at 300K and that the
temperature is constant during the process. V1 = 1m3, V2 = 5m3

Implement the integral using some of the different methods shown in previous
examples. You should also try to find the exact solution using ”pen and paper”
for comparison.

[End of Exercise]

204

Chapter 32

Optimization

Optimization is important in mathematics, control and simulation applications.
Optimization is based on finding the minimum of a given criteria function.

Example 32.0.1. Basic Optimization

Given the following function:

f(x) = x2 + 2x+ 1 (32.1)

We start by plotting the function:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 xmin = −5
5 xmax = 5
6 dx = 0 .1
7

8 N = in t ((xmax − xmin) /dx)
9

10 x = np . l i n s p a c e (xmin , xmax , N+1)
11 #x = np . arange (xmin , xmax+dx , dx) #Al t e rna t i v e implementation
12

13 y = x∗∗2 + 2∗x + 1 ;
14

15

16 p l t . p l o t (x , y)
17 p l t . xl im ([xmin , xmax])

Listing 32.1: Optimization in Python

This gives the the plot shown in Figure 32.1.

We will use fminbound to find the minimum of the function.

Python code:

1 from sc ipy import opt imize
2

205

Figure 32.1: Optimization Example

3 xmin = −5
4 xmax = 5
5

6

7 de f y (x) :
8 r e turn x∗∗2 + 2∗x + 1
9

10

11 x min = opt imize . fminbound (y , xmin , xmax)
12

13 pr in t (x min)

Listing 32.2: xxx

The result becomes:

xmin = -1.0

We see that this is the correct answer based on our plot in Figure 32.1.

[End of Example]

Exercise 32.0.1. Make your own Minimization function

Given the following function:

f(x) = x2 + 2x+ 1 (32.2)

206

Implement a basic minimization function from scratch using either a For loop
or a While loop.

Make sure to test the function and see if you get the same answer as in the
example above.

[End of Exercise]

Other optimization functions in Python:

scipy.optimize.fmin

scipy.optimize.minimize scalar

scipy.optimize.minimize

Exercise 32.0.2. Optimization Functions in Python

Given the following function:

f(x) = x2 + 2x+ 1 (32.3)

Test the different optimization (finding minimum) functions:

scipy.optimize.fmin

scipy.optimize.minimize scalar

scipy.optimize.minimize

Compare the results.

[End of Exercise]

Exercise 32.0.3. Optimization

Given the following function:

f(x) = x3 − 4x (32.4)

Test the different optimization (finding minimum) functions:

scipyoptimize.fminbound

207

scipy.optimize.fmin

scipy.optimize.minimize scalar

scipy.optimize.minimize

Compare the results. You should alos plot the function.

[End of Exercise]

Exercise 32.0.4. Minimum for function with 2 variables

Given the following function:

f(x, y) = 2(x− 1)2 + x− 2 + (y − 2)2 + y (32.5)

Plot the function and find the minimum.

[End of Exercise]

Exercise 32.0.5. Optimization - Rosenbrock’s Banana Function

Given the following function:

f(x, y) = (1− x)2 + 100(y − x2)2 (32.6)

This function is known as Rosenbrock’s banana function.

Plot the function and find the minimum.

[End of Exercise]

208

Part VI

Using Python for
Simulations

209

Chapter 33

Introduction to Simulations

Python is very powerful for performing simulations, like simulating dynamic
systems, i.e.., solving numerical differential equations.

See the next chapters for lots of practical examples.

210

Chapter 34

Differential Equations

34.1 Introduction to Differential Equations

A differential equation is a mathematical equation that relates some function
with its derivatives.

In applications, the functions usually represent physical quantities, the deriva-
tives represent their rates of change, and the differential equation defines a
relationship between the two.

Because such relations are extremely common, differential equations play a
prominent role in many disciplines including engineering, physics, economics,
and biology.

We typically want to solve ordinary differential equations (ODE) of the form:

dy

dt
= f(t, y), y(t0) = y0 (34.1)

Note! Different notation is used: dy
dt = y ’= ẏ

This document will use these different notations interchangeably.

Example 34.1.1. Example of Dynamic Systems

Given the following differential equation:

ẋ = −ax+ bu (34.2)

Note! ẋ is the same as dx
dt

We have the following:

• x - Process variable, e.g., Level, Pressure, Temperature, etc.

• u - Input variable, e.g., Control Signal from the Controller

• a, b - Constants

211

[End of Example]

With Python have we can solve these differential equations in many different
ways.

We can use so-called ODE solvers or we can make discrete version of the differ-
ential equations using discretization methods like Euler, etc.

With ODE solvers Python can solve these equations numerically. Higher order
differential equations must be reformulated into a system of first order differen-
tial equations.

In chapter 35 we will simulate (solve and plot the results) such differential
equations numerically using Euler discretization.

212

Chapter 35

Discrete Systems

When dealing with computers we need to deal with discrete systems.

35.1 Discretization

Sometimes we want to or need to discretize a continuous system and then sim-
ulate it in Python. When dealing with computer simulation, we need to create
a discrete version of our system. This means we need to make a discrete version
of our continuous differential equations. Interpolation, Curve Fitting, etc. is
also based on a set of discrete values (data points or measurements). The same
with Numerical Differentiation and Numerical Integration, etc.

Below we see a continuous signal vs the discrete signal for a given system with
discrete time interval Ts = 0.1s.

Figure 35.1: Discretization

In order to discretize a continuous model there are lots of different methods to
use.
A simple discretization method is the Euler Forward method:

ẋ =
x(k + 1)− x(k)

Ts
(35.1)

213

Ts is the Sampling Time

Figure 35.2: Euler Discretization methods

Lots of other discretization methods do exists, such as “Euler backward”, Zero
Order Hold (ZOH), Tustin’s method, etc.

Example 35.1.1. Simulation of Discrete System

Given the following differential equation:

ẋ = −ax+ bu (35.2)

Note! ẋ is the same as dx
dt

We have the following:

• x - Process variable, e.g., Level, Pressure, Temperature, etc.

• u - Input variable, e.g., Control Signal from the Controller

• a, b - Constants

We start with finding the discrete differential equation.

We can use e.g., the Euler Approximation:

ẋ ≈ xk+1 − xk
Ts

(35.3)

Ts - Sampling Interval

Then we get:

xk+1 − xk
Ts

= −axk + buk (35.4)

214

This gives the following discrete differential equation:

xk+1 = (1− Tsa)xk + Tsbuk (35.5)

Now we are ready to simulate the system.

We set a=0.25, b=2 and u=1 (You can explore with other values on your own)
We start creating the Python Script for the simulation of this system:

1 # Simulat ion o f d i s c r e t e model
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 # Model Parameters
6 a = 0.25
7 b = 2
8

9 # Simulat ion Parameters
10 Ts = 0 .1
11 Tstop = 30
12 uk = 1 # Step Response
13 xk = 0
14 N = in t (Tstop/Ts) # Simulat ion l ength
15 data = []
16 data . append (xk)
17

18

19 # Simulat ion
20 f o r k in range (N) :
21 xk1 = (1 − a∗Ts) ∗ xk + Ts ∗ b ∗ uk
22 xk = xk1
23 data . append (xk1)
24

25

26 # Plot the Simulat ion Resu l t s
27 t = np . arange (0 , Tstop+Ts , Ts)
28

29 p l t . p l o t (t , data)
30

31 # Formatting the appearance o f the Plot
32 p l t . t i t l e (’ S imulat ion o f dxdt = −ax + bu ’)
33 p l t . x l ab e l (’ t [s] ’)
34 p l t . y l ab e l (’ x ’)
35 p l t . g r i d ()
36 p l t . ax i s ([0 , 30 , 0 , 8])
37 p l t . show ()

Listing 35.1: Simulation of Discrete Dynamic System in Python

The simulation gives the results as shown in Figure 35.3.

Lets also take a look at the Variable Explorer as shown in Figure 35.4.

215

Figure 35.3: Simulation of Discrete System using Python

Here is an alternative solution presented:

1 # Simulat ion o f d i s c r e t e model
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 # Model Parameters
6 a = 0.25
7 b = 2
8

9 # Simulat ion Parameters
10 Ts = 0 .1 # Sampling Time
11 Tstop = 30 # End o f S imulat ion Time
12 uk = 1 # Step Response
13 N = in t (Tstop/Ts) # Simulat ion l ength
14 x = np . z e r o s (N+2) # I n i t i a l i z a t i o n the x vec to r
15 x [0] = 0
16

17

18 # Simulat ion
19 f o r k in range (N+1) :
20 x [k+1] = (1 − a∗Ts) ∗ x [k] + Ts ∗ b ∗ uk
21

22

23 # Plot the Simulat ion Resu l t s
24 t = np . arange (0 , Tstop+2∗Ts , Ts) #Create the Time S e r i e s
25

26 p l t . p l o t (t , x)
27

28 # Formatting the appearance o f the Plot
29 p l t . t i t l e (’ S imulat ion o f dxdt = −ax + bu ’)
30 p l t . x l ab e l (’ t [s] ’)
31 p l t . y l ab e l (’ x ’)

216

Figure 35.4: Variable Explorer for Discrete Simulation Example

32 p l t . g r i d ()
33 p l t . ax i s ([0 , 30 , 0 , 8])
34 p l t . show ()

Listing 35.2: Simulation of Discrete Dynamic System in Python

This gives of course the same results and the same plot.

You should try both examples, and then decide which one you prefer. I guess
there are also many other ways to do it.

[End of Example]

35.2 Exercises

Below you find different self-paced Exercises that you should go through and
solve on your own. The only way to learn Python is to do lots of Exercises!

Exercise 35.2.1. Simulation of Bacteria Population

In this task we will simulate a simple model of a bacteria population in a jar.

The model is as follows:

birth rate = bx (35.6)

death rate = px2 (35.7)

Then the total rate of change of bacteria population is:

217

ẋ = bx− px2 (35.8)

Set b=1/hour and p=0.5 bacteria-hour

We will simulate the number of bacteria in the jar after 1 hour, assuming that
initially there are 100 bacteria present.

Find the discrete model using the Euler Forward method by hand and implement
and simulate the system in Python using a For Loop.

[End of Example]

Exercise 35.2.2. Simulation with 2 variables

Given the following system:

dx1
dt

= −x2 (35.9)

dx2
dt

= x1 (35.10)

Find the discrete system and simulate the discrete system in MATLAB. Solve
the equations, e.g., in the time span [-1 1] with initial values [1, 1].

[End of Exercise]

218

Chapter 36

Real-Time Simulations

36.1 Introduction

Typically in a simulation, you run the simulation in a for loop. When you are
finished with the simulation you plot the data.
We repeat a basic simulation example from chapter 35.

Example 36.1.1. Basic Simulation of Discrete System

We will simulate the discrete system given as follows:

xk+1 = (1− Tsa)xk + Tsbuk (36.1)

We set a=0.25, b=2 and u=1 (You can explore with other values on your own)
We start creating the Python Script for the simulation of this system:

1 # Simulat ion o f d i s c r e t e model
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 # Model Parameters
6 a = 0.25
7 b = 2
8

9 # Simulat ion Parameters
10 Ts = 0 .1
11 Tstop = 30
12 uk = 1 # Step Response
13 xk = 0
14 N = in t (Tstop/Ts) # Simulat ion l ength
15 data = []
16 data . append (xk)
17

18

19 # Simulat ion
20 f o r k in range (N) :
21 xk1 = (1 − a∗Ts) ∗ xk + Ts ∗ b ∗ uk

219

22 xk = xk1
23 data . append (xk1)
24

25

26 # Plot the Simulat ion Resu l t s
27 t = np . arange (0 , Tstop+Ts , Ts)
28

29 p l t . p l o t (t , data)
30

31 # Formatting the appearance o f the Plot
32 p l t . t i t l e (’ S imulat ion o f dxdt = −ax + bu ’)
33 p l t . x l ab e l (’ t [s] ’)
34 p l t . y l ab e l (’ x ’)
35 p l t . g r i d ()
36 p l t . ax i s ([0 , 30 , 0 , 8])
37 p l t . show ()

Listing 36.1: Simulation of Discrete Dynamic System in Python

The simulation gives the results as shown in Figure 36.1.

Figure 36.1: Simulation of Discrete System using Python

As you can see from the code and when running the code, the simulation results
are plotted all in one operation after the simulation is finished, i.e, after the for
loop.

[End of Example]

Sometimes we want to plot one value at the time inside the loop, so-called
”Real-Time simulations”. That is also the case if we want to plot data from a
sensor or a real process.

220

36.2 Introduction to Real-Time Plotting

You can also use the matplotlib for real-time plotting.

Example 36.2.1. Introduction to Real-Time Plotting

Here is a basic example:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 p l t . ax i s ([0 , 10 , 0 , 1])
5

6 delay = 1 #Seconds
7

8 f o r i in range (10) :
9 y = np . random . random ()

10 p l t . s c a t t e r (i , y)
11 p l t . pause (de lay)
12

13 p l t . show ()

Listing 36.2: Real-Time Plotting in Python

We get the following plot as shown in Figure 37.1.

Figure 36.2: Real-Time Plotting with Python

You cannot see the the actual behavior of the plot by watching Figure 37.1, so

221

you need to run the Python program yourself.

If you run the code you see the plot is updated with a new value every second
as specified in the code.

[End of Example]

Note! If you use Anaconda and Spider, you typically need to change the the
settings for how graphics are are displayed in Spyder.

Select Preferences from the menu, then IPython console in the list of categories
on the left, then the tab Graphics at the top, and change the Graphics back-end
from Inline to e.g. Automatic or Qt. See Figure 37.2.

Figure 36.3: Change how Graphics are displayed in the Spyder Editor

Example 36.2.2. Real-Time Simulation of Discrete System

Lets change the discrete simulation example presented in the beginning of this
chapter:

1 # Real−Time Simulat ion o f D i s c r e t e System
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 # Model Parameters
6 a = 0.25
7 b = 2
8

9 # Simulat ion Parameters
10 Ts = 0 .1
11 Tstop = 30
12 uk = 1 # Step Response

222

13 xk = 0
14 N = in t (Tstop/Ts) # Simulat ion l ength
15 data = []
16 data . append (xk)
17

18 p l t . ax i s ([0 , N, 0 , 1 0])
19

20 f o r k in range (N) :
21 xk1 = (1 − a∗Ts) ∗ xk + Ts ∗ b ∗ uk
22 xk = xk1
23 data . append (xk1)
24

25 p l t . s c a t t e r (k , xk1)
26 p l t . pause (Ts)
27

28 p l t . show ()

Listing 36.3: Real-Time Simulation of Discrete Dynamic System in Python

Figure 36.4 shows the Real-Time Plot for this example.

Figure 36.4: Real-Time Simulation of Discrete System

You cannot see the the actual behavior of the plot by watching Figure 36.4, so
you need to run the Python program yourself.

If you run the code you see the plot is updated with a new value every second
as specified in the code.

In this example we have locked the scaling using the axis method. If we remove
or comment out the line ”plt.axis([0, N, 0, 10])”, we get a plot the automatically
scales the x axis and the y axis. Whats best depends on if you know the
simulation length from the beginning and know the minimum and maximum
value of the simulation results.

223

Figure 36.5 shows the Real-Time Plot with Auto-scaling after 30 iterations for
this example. You cannot see the the actual behavior of the plot by watching
Figure 36.5, so you need to run the Python program yourself.

Figure 36.5: Real-Time Simulation of Discrete System with Auto-scaling

The examples shown shows the discrete time step k on the x-axis. Typically we
want to display the continuous time t instead. Some small adjustment to the
examples make this possible. See the code below:

1 # Real−Time Simulat ion o f D i s c r e t e System
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 # Model Parameters
6 a = 0.25
7 b = 2
8

9 # Simulat ion Parameters
10 Ts = 0 .1
11 Tstop = 30
12 uk = 1 # Step Response
13 xk = 0
14 y sca le max = 10
15 N = in t (Tstop/Ts) # Simulat ion l ength
16 data = []
17 data . append (xk)

224

18

19 p l t . ax i s ([0 , N∗Ts , 0 , y sca le max])
20

21 f o r k in range (N) :
22 xk1 = (1 − a∗Ts) ∗ xk + Ts ∗ b ∗ uk
23 xk = xk1
24 data . append (xk1)
25

26 t = Ts∗k
27

28 p l t . s c a t t e r (t , xk1)
29 p l t . pause (Ts)
30

31 p l t . show ()

Listing 36.4: Real-Time Simulation of Discrete Dynamic System in Python

Figure 36.6 shows the final plot for this example. You cannot see the the actual
behavior of the plot by watching Figure 36.6, so you need to run the Python
program yourself.

Figure 36.6: Real-Time Simulation of Discrete System

We can also add some formatting regarding the appearance of the plot (xlabel,
ylabel, title, etc.). The final code example is shown below.

225

1 # Real−Time Simulat ion o f D i s c r e t e System
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 # Model Parameters
6 a = 0.25
7 b = 2
8

9 # Simulat ion Parameters
10 Ts = 0 .1
11 Tstop = 30
12 uk = 1 # Step Response
13 xk = 0
14 y sca le max = 10
15 N = in t (Tstop/Ts) # Simulat ion l ength
16 data = []
17 data . append (xk)
18

19

20 # Formatting the appearance o f the Plot
21 p l t . t i t l e (’ S imulat ion o f dxdt = −ax + bu ’)
22 p l t . x l ab e l (’ t [s] ’)
23 p l t . y l ab e l (’ x ’)
24 p l t . g r i d ()
25

26 p l t . ax i s ([0 , N∗Ts , 0 , y sca le max])
27

28 f o r k in range (N) :
29 xk1 = (1 − a∗Ts) ∗ xk + Ts ∗ b ∗ uk
30 xk = xk1
31 data . append (xk1)
32

33 t = Ts∗k
34

35 p l t . s c a t t e r (t , xk1)
36 p l t . pause (Ts)
37

38 p l t . show ()

Listing 36.5: Real-Time Simulation of Discrete Dynamic System in Python

Run the example and notice the difference.

[End of Example]

36.3 Real-Time Plotting with Animation

For more advanced Real-Time plots we should use the animation module in the
matplotlib library (matplotlib.animation).

To create a real-time plot, we need to use the animation module in matplotlib.
We set up the figure and axes in the usual way, but we draw directly to the
axes, ax, when we want to create a new frame in the animation.

We need to use the FuncAnimation function:

226

1 ani = animation . FuncAnimation (f i g , animate , f a r g s=(xs , ys) ,
i n t e r v a l =1000)

FuncAnimation is a special function within the animation module that lets us
automate updating the graph. We pass the FuncAnimation() a handle to the
figure we want to draw, fig, as well as the name of a function that should be
called at regular intervals. We called this function animate() and is defined just
above our FuncAnimation() call.

Still in the FuncAnimation() parameters, we set fargs, which are the arguments
we want to pass to our animate function (since we are not calling animate()
directly from within our own code). Then, we set interval, which is how long
we should wait between calls to animate() (in milliseconds).

Note: As an argument to FuncAnimation, notice that animate does not have
any parentheses. This is passing a reference to the function and not the result
of that function. If you accidentally add parentheses to animate here, animate
will be called immediately (only once), and you’ll likely get an error

Example 36.3.1. Real-Time Plotting with Animation

Below you find the Python Code for a basic example where we use the anima-
tion module in matplotlib.

In the example we update the plot every seconds by setting the interval=1000ms
as an input argument to the FuncAnaimation function.

1 import datet ime as dt
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4 import matp lo t l i b . animation as animation
5

6 # Create f i g u r e f o r p l o t t i n g
7 f i g = p l t . f i g u r e ()
8 ax = f i g . add subplot (1 , 1 , 1)
9 xs = []

10 ys = []
11

12

13 # This func t i on i s c a l l e d p e r i o d i c a l l y from FuncAnimation
14 de f animate (i , xs , ys) :
15

16 temp c = round (np . random . random () , 2)
17

18 # Add x and y to l i s t s
19 xs . append (dt . datet ime . now() . s t r f t im e (’%H:%M:%S.% f ’))
20 ys . append (temp c)
21

22 # Limit x and y l i s t s to 20 items
23 xs = xs [−20 :]
24 ys = ys [−20 :]
25

26 # Draw x and y l i s t s
27 ax . c l e a r ()
28 ax . p l o t (xs , ys)

227

29

30 # Format p l o t
31 p l t . x t i c k s (r o t a t i on =45, ha=’ r i g h t ’)
32 p l t . s ubp l o t s ad j u s t (bottom=0.30)
33 p l t . t i t l e (’ Temperature Data ’)
34 p l t . y l ab e l (’ Temperature (deg C) ’)
35

36 # Set up p lo t to c a l l animate () func t i on p e r i o d i c a l l y
37 ani = animation . FuncAnimation (f i g , animate , f a r g s=(xs , ys) ,

i n t e r v a l =1000)
38 p l t . show ()

Listing 36.6: Real-Time Plotting with Animation

Figure 37.3 shows the final plot for this example. You cannot see the the actual
behavior of the plot by watching Figure 37.3, so you need to run the Python
program yourself.

Figure 36.7: Real-Time Plotting with Animation

[End of Example]

Example 36.3.2. Discrete Simulations with Animation

Lets apply this technique on our discrete system.

Python Code:

228

1 import datet ime as dt
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4 import matp lo t l i b . animation as animation
5 # Create f i g u r e f o r p l o t t i n g
6 f i g = p l t . f i g u r e ()
7 ax = f i g . add subplot (1 , 1 , 1)
8 xs = []
9 ys = []

10

11 xk = 0 # I n i t i a l Value f o r x
12

13 # This func t i on i s c a l l e d p e r i o d i c a l l y from FuncAnimation
14 de f s imu la t i on (i , xs , ys) :
15

16 # Model Parameters
17 a = 0.25
18 b = 2
19

20 # Simulat ion Parameters
21 Ts = 0 .1 # Sampling Time
22 uk = 1 # Step Response
23 g l oba l xk # Since we change x i n s i d e a func t i on we de f i n e i t as

a gobal v a r i ab l e
24

25 # Model o f D i s c r e t e System
26 xk1 = (1 − a∗Ts) ∗ xk + Ts ∗ b ∗ uk
27 xk = xk1
28

29 # Add x and y to l i s t s
30 xs . append (dt . datet ime . now() . s t r f t im e (’%H:%M:%S.% f ’))
31 ys . append (xk1)
32

33 N = 60 # Limit x and y l i s t s to N items
34 xs = xs [−N:]
35 ys = ys [−N:]
36

37 # Draw x and y l i s t s
38 ax . c l e a r ()
39 ax . p l o t (xs , ys)
40

41 # Format p l o t
42 p l t . x t i c k s (r o t a t i on =45, ha=’ r i g h t ’)
43 p l t . s ubp l o t s ad j u s t (bottom=0.30)
44 p l t . t i t l e (’ S imulat ion o f dxdt = −ax + bu ’)
45 p l t . x l ab e l (’ t [s] ’)
46 p l t . y l ab e l (’ x ’)
47 p l t . g r i d ()
48

49 # Set up p lo t to c a l l animate () func t i on p e r i o d i c a l l y
50 ani = animation . FuncAnimation (f i g , s imulat ion , f a r g s=(xs , ys) ,

i n t e r v a l =100)
51 p l t . show ()

Listing 36.7: Real-Time Simulation of Discrete Dynamic System with Animation

Figure 36.8 shows the final plot for this example. You cannot see the the actual
behavior of the plot by watching Figure 36.8, so you need to run the Python
program yourself.

229

Figure 36.8: Real-Time Simulation of Discrete Dynamic System with Animation

[End of Example]

36.3.1 Speeding Up the Plot Animation

Clearing a graph and redrawing everything can be a time-consuming process in
terms of computer time. To remedy that, we are going to use a trick known as
blitting.

Blitting is an old computer graphics technique where several graphical bitmaps
are combined into one. This way, only one needed to be updated at a time,
saving the computer from having to redraw the whole scene every time.
Matplotlib allows us to enable blitting in FuncAnimation, but it means we need
to re-write how some of the animate() function works. To reap the true benefits
of blitting, we need to set a static background, which means the axes can’t scale
and we can’t show moving timestamps anymore. This means that you have to
take the good with the bad. So you have to choose whats most important for
you un your simulations.

Example 36.3.3. Real-Time Plotting with Animation with improved Perfor-
mance

Python Code:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import matp lo t l i b . animation as animation
4

5 # Parameters
6 x l en = 200 # Number o f po in t s to d i sp l ay

230

7 y range = [0 , 20] # Range o f p o s s i b l e Y va lue s to d i sp l ay
8

9 # Create f i g u r e f o r p l o t t i n g
10 f i g = p l t . f i g u r e ()
11 ax = f i g . add subplot (1 , 1 , 1)
12 xs = l i s t (range (0 , 200))
13 ys = [0] ∗ x l en
14 ax . s e t y l im (y range)
15

16

17 # Create a blank l i n e . We w i l l update the l i n e in animate
18 l i n e , = ax . p l o t (xs , ys)
19

20 # Add l a b e l s
21 p l t . t i t l e (’ Temperature Data ’)
22 p l t . x l ab e l (’ Samples ’)
23 p l t . y l ab e l (’ Temperature (deg C) ’)
24

25 # This func t i on i s c a l l e d p e r i o d i c a l l y from FuncAnimation
26 de f animate (i , ys) :
27

28 rand va l = np . random . random () ∗20 #Generate Random Values
between 0 and 20

29

30 temp c = round (rand val , 2)
31

32 #pr in t (temp c)
33

34 # Add y to l i s t
35 ys . append (temp c)
36

37 # Limit y l i s t to s e t number o f i tems
38 ys = ys [− x l en :]
39

40 # Update l i n e with new Y va lue s
41 l i n e . s e t ydata (ys)
42

43 r e turn l i n e ,
44

45 # Set up p lo t to c a l l animate () func t i on p e r i o d i c a l l y
46 ani = animation . FuncAnimation (f i g ,
47 animate ,
48 f a r g s=(ys ,) ,
49 i n t e r v a l =100 ,
50 b l i t=True)
51 p l t . show ()

Listing 36.8: Real-Time Plotting with Animation

Figure 37.4 shows the final plot for this example. You cannot see the the actual
behavior of the plot by watching Figure 37.4, so you need to run the Python
program yourself.

[End of Example]

Example 36.3.4. Discrete Simulations with Animation with improved Perfor-
mance

231

Figure 36.9: Real-Time Plotting with Animation

Python Code:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import matp lo t l i b . animation as animation
4

5 # Parameters
6 N = 200
7 x l en = N # Number o f po in t s to d i sp l ay
8 y range = [0 , 10] # Range o f p o s s i b l e Y va lue s to d i sp l ay
9

10 # Create f i g u r e f o r p l o t t i n g
11 f i g = p l t . f i g u r e ()
12 ax = f i g . add subplot (1 , 1 , 1)
13 xs = l i s t (range (0 , N))
14 ys = [0] ∗ x l en
15 ax . s e t y l im (y range)
16

17 xk = 0 # I n i t i a l Value f o r x
18

19 # Create a blank l i n e . We w i l l update the l i n e in animate
20 l i n e , = ax . p l o t (xs , ys)
21

22 # Add l a b e l s
23 p l t . t i t l e (’ S imulat ion o f dxdt = −ax + bu ’)
24 p l t . x l ab e l (’ Samples ’)
25 p l t . y l ab e l (’ x ’)
26

27 # This func t i on i s c a l l e d p e r i o d i c a l l y from FuncAnimation
28 de f s imu la t i on (i , ys) :
29

30 # Model Parameters
31 a = 0.25
32 b = 2
33

34 # Simulat ion Parameters
35 Ts = 0 .1 # Sampling Time
36 uk = 1 # Step Response

232

37 g l oba l xk # Since we change x i n s i d e a func t i on we de f i n e i t as
a gobal v a r i ab l e

38

39 # Model o f D i s c r e t e System
40 xk1 = (1 − a∗Ts) ∗ xk + Ts ∗ b ∗ uk
41 xk = xk1
42

43 # Add y to l i s t
44 ys . append (xk1)
45

46 # Limit y l i s t to s e t number o f i tems
47 ys = ys [− x l en :]
48

49 # Update l i n e with new Y va lue s
50 l i n e . s e t ydata (ys)
51

52 r e turn l i n e ,
53

54 # Set up p lo t to c a l l animate () func t i on p e r i o d i c a l l y
55 ani = animation . FuncAnimation (f i g ,
56 s imulat ion ,
57 f a r g s=(ys ,) ,
58 i n t e r v a l =100 ,
59 b l i t=True)
60 p l t . show ()

Listing 36.9: Real-Time Simulation of Discrete Dynamic System with Animation
and increased Speed

Figure 36.10 shows the final plot for this example. You cannot see the the actual
behavior of the plot by watching Figure 36.10, so you need to run the Python
program yourself.

[End of Example]

For more information about Matplotlib:animations:

https://scipy-cookbook.readthedocs.io/items/MatplotlibAnimations.html

Other resources:

https://learn.sparkfun.com/tutorials/graph-sensor-data-with-python-and-matplotlib/allplot-
sensor-data

https://stackoverflow.com/questions/11874767/how-do-i-plot-in-real-time-in-a-while-
loop-using-matplotlib

233

Figure 36.10: Real-Time Plotting with Animation

234

Part VII

Data Acquisition (DAQ)
with Python

235

Chapter 37

Plotting Sensor Data

37.1 Introduction

Typically we want to plot the data from the sensor. We can plot save the data
in an array and then plot the data at the end of the program, but more likely
we want to plot one value at the time inside the loop, so-called ”Real-Time
plotting”.

In this chapter we only show how you can plot the data from any given sensor
using this general approach. Instead of the actual sensor data we just use the
random generator in Python.

To read the actual sensor data you typically need a DAQ (Data Acquisition)
device connected to you PC or, e.g, a Raspberry Pi device. In all cases you
will typically need to install a driver from the vendor of the DAQ device or the
sensor you are using.

37.2 Introduction to Real-Time Plotting

You can also use the matplotlib for real-time plotting.

Example 37.2.1. Introduction to Real-Time Plotting

Here is a basic example:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3

4 p l t . ax i s ([0 , 10 , 0 , 1])
5

6 delay = 1 #Seconds
7

8 f o r i in range (10) :
9 y = np . random . random ()

10 p l t . s c a t t e r (i , y)
11 p l t . pause (de lay)

236

12

13 p l t . show ()

Listing 37.1: Real-Time Plotting in Python

We get the following plot as shown in Figure 37.1.

Figure 37.1: Real-Time Plotting with Python

You cannot see the the actual behavior of the plot by watching Figure 37.1, so
you need to run the Python program yourself.

If you run the code you see the plot is updated with a new value every second
as specified in the code.

[End of Example]

Note! If you use Anaconda and Spyder, you typically need to change the the
settings for how graphics are are displayed in Spyder.

Select Preferences from the menu, then IPython console in the list of categories
on the left, then the tab Graphics at the top, and change the Graphics back-end
from Inline to e.g. Automatic or Qt. See Figure 37.2.

237

Figure 37.2: Change how Graphics are displayed in the Spyder Editor

37.3 Real-Time Plotting with Animation

For more advanced Real-Time plots we should use the animation module in the
matplotlib library (matplotlib.animation).

To create a real-time plot, we need to use the animation module in matplotlib.
We set up the figure and axes in the usual way, but we draw directly to the
axes, ax, when we want to create a new frame in the animation.

We need to use the FuncAnimation function:

1 ani = animation . FuncAnimation (f i g , animate , f a r g s=(xs , ys) ,
i n t e r v a l =1000)

FuncAnimation is a special function within the animation module that lets us
automate updating the graph. We pass the FuncAnimation() a handle to the
figure we want to draw, fig, as well as the name of a function that should be
called at regular intervals. We called this function animate() and is defined just
above our FuncAnimation() call.

Still in the FuncAnimation() parameters, we set fargs, which are the arguments
we want to pass to our animate function (since we are not calling animate()
directly from within our own code). Then, we set interval, which is how long
we should wait between calls to animate() (in milliseconds).

Note: As an argument to FuncAnimation, notice that animate does not have
any parentheses. This is passing a reference to the function and not the result
of that function. If you accidentally add parentheses to animate here, animate
will be called immediately (only once), and you’ll likely get an error

238

Example 37.3.1. Real-Time Plotting with Animation

Below you find the Python Code for a basic example where we use the anima-
tion module in matplotlib.

In the example we update the plot every seconds by setting the interval=1000ms
as an input argument to the FuncAnaimation function.

1 import datet ime as dt
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4 import matp lo t l i b . animation as animation
5

6 # Create f i g u r e f o r p l o t t i n g
7 f i g = p l t . f i g u r e ()
8 ax = f i g . add subplot (1 , 1 , 1)
9 xs = []

10 ys = []
11

12

13 # This func t i on i s c a l l e d p e r i o d i c a l l y from FuncAnimation
14 de f animate (i , xs , ys) :
15

16 temp c = round (np . random . random () , 2)
17

18 # Add x and y to l i s t s
19 xs . append (dt . datet ime . now() . s t r f t im e (’%H:%M:%S.% f ’))
20 ys . append (temp c)
21

22 # Limit x and y l i s t s to 20 items
23 xs = xs [−20 :]
24 ys = ys [−20 :]
25

26 # Draw x and y l i s t s
27 ax . c l e a r ()
28 ax . p l o t (xs , ys)
29

30 # Format p l o t
31 p l t . x t i c k s (r o t a t i on =45, ha=’ r i g h t ’)
32 p l t . s ubp l o t s ad j u s t (bottom=0.30)
33 p l t . t i t l e (’ Temperature Data ’)
34 p l t . y l ab e l (’ Temperature (deg C) ’)
35

36 # Set up p lo t to c a l l animate () func t i on p e r i o d i c a l l y
37 ani = animation . FuncAnimation (f i g , animate , f a r g s=(xs , ys) ,

i n t e r v a l =1000)
38 p l t . show ()

Listing 37.2: Real-Time Plotting with Animation

Figure 37.3 shows the final plot for this example. You cannot see the the actual
behavior of the plot by watching Figure 37.3, so you need to run the Python
program yourself.

[End of Example]

239

Figure 37.3: Real-Time Plotting with Animation

37.3.1 Speeding Up the Plot Animation

Clearing a graph and redrawing everything can be a time-consuming process in
terms of computer time. To remedy that, we are going to use a trick known as
blitting.

Blitting is an old computer graphics technique where several graphical bitmaps
are combined into one. This way, only one needed to be updated at a time,
saving the computer from having to redraw the whole scene every time.
Matplotlib allows us to enable blitting in FuncAnimation, but it means we need
to re-write how some of the animate() function works. To reap the true benefits
of blitting, we need to set a static background, which means the axes can’t scale
and we can’t show moving timestamps anymore. This means that you have to
take the good with the bad. So you have to choose whats most important for
you un your simulations.

Example 37.3.2. Real-Time Plotting with Animation with improved Perfor-
mance

Python Code:

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import matp lo t l i b . animation as animation
4

5 # Parameters
6 x l en = 200 # Number o f po in t s to d i sp l ay
7 y range = [0 , 20] # Range o f p o s s i b l e Y va lue s to d i sp l ay
8

240

9 # Create f i g u r e f o r p l o t t i n g
10 f i g = p l t . f i g u r e ()
11 ax = f i g . add subplot (1 , 1 , 1)
12 xs = l i s t (range (0 , 200))
13 ys = [0] ∗ x l en
14 ax . s e t y l im (y range)
15

16

17 # Create a blank l i n e . We w i l l update the l i n e in animate
18 l i n e , = ax . p l o t (xs , ys)
19

20 # Add l a b e l s
21 p l t . t i t l e (’ Temperature Data ’)
22 p l t . x l ab e l (’ Samples ’)
23 p l t . y l ab e l (’ Temperature (deg C) ’)
24

25 # This func t i on i s c a l l e d p e r i o d i c a l l y from FuncAnimation
26 de f animate (i , ys) :
27

28 rand va l = np . random . random () ∗20 #Generate Random Values
between 0 and 20

29

30 temp c = round (rand val , 2)
31

32 #pr in t (temp c)
33

34 # Add y to l i s t
35 ys . append (temp c)
36

37 # Limit y l i s t to s e t number o f i tems
38 ys = ys [− x l en :]
39

40 # Update l i n e with new Y va lue s
41 l i n e . s e t ydata (ys)
42

43 r e turn l i n e ,
44

45 # Set up p lo t to c a l l animate () func t i on p e r i o d i c a l l y
46 ani = animation . FuncAnimation (f i g ,
47 animate ,
48 f a r g s=(ys ,) ,
49 i n t e r v a l =100 ,
50 b l i t=True)
51 p l t . show ()

Listing 37.3: Real-Time Plotting with Animation

Figure 37.4 shows the final plot for this example. You cannot see the the actual
behavior of the plot by watching Figure 37.4, so you need to run the Python
program yourself.

[End of Example]

For more information about Matplotlib:animations:

https://scipy-cookbook.readthedocs.io/items/MatplotlibAnimations.html

241

Figure 37.4: Real-Time Plotting with Animation

Other resources:

https://learn.sparkfun.com/tutorials/graph-sensor-data-with-python-and-matplotlib/allplot-
sensor-data

https://stackoverflow.com/questions/11874767/how-do-i-plot-in-real-time-in-a-while-
loop-using-matplotlib

242

Chapter 38

Data Acquisition (DAQ)
with Python

Python is probably best suited for ”ad-hoc” numerical calculations, analysis,
simulations, etc., but can be used for many other purposes, even if other pro-
gramming languages are better suited.

38.1 Introduction to DAQ

To read sensor data you typically need a DAQ (Data Acquisition) device con-
nected to you PC or, e.g, a Raspberry Pi device. In all cases you will typically
need to install a driver from the vendor of the DAQ device or the sensor you
are using.

A DAQ System consists of 4 parts:

• Physical input/output signals, sensors

• DAQ device/hardware

• Driver software

• Your software application (Application software) - in this case your Python
application

Figure 38.1 shows the different steps involved in a DAQ system.

Here you find more information, resources, videos and examples regarding DAQ:
https://www.halvorsen.blog/documents/technology/daq/

38.2 Data Acquisition using NI DAQ Devices

Here we will show how we can use Python to retrieve data from the physical
world using a DAQ device or an I/O module.

243

Figure 38.1: Data Acquisition (DAQ) System

We will use a DAQ device from National Instruments (NI).

Web:
http://www.ni.com/

DAQ hardware: WE will use a NI-USB-600x DAQ device from National Instru-
ments, such as:

• NI-USB-6001

• NI-USB-6008

• NI-USB-6009

They are almost identical and the prices is not so bad either.

USB-6008:
http://www.ni.com/en-no/support/model.usb-6008.html

Figure 38.2 shows the USB-6008 DAQ device from NI.

Streaming Data from NI Data Acquisition (DAQmx) Devices into Python:
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P8o0SAC

We assume we want to do the following: - We have a USB DAQ system from
National Instruments - We want to stream data from my hardware into Python
to do data processing - We would like to log data to a file on the hard disk

The best way to do this is to use the NI-DAQmx Python API provided by Na-
tional Instruments (nidaqmx). The NI-DAQmx Python API is hosted on
GitHub.

The nidaqmx Python package is a wrapper around the NI-DAQmx C API us-
ing the ctypes Python library, and only supports the Windows operating system.

A Python API for interacting with NI-DAQmx (GitHub):
https://github.com/ni/nidaqmx-python

244

Figure 38.2: USB-6008

For more information about NI DAQ:
ni.com/daq

For more information about Python Resources for NI Hardware and Software:
ni.com/python

Another option is to use the PyDAQmx Python package.
This package allows users to use data acquisition hardware from National In-
strument with python. It makes an interface between the NIDAQmx driver
and python. It currently works only on Windows. The package is not an open
source driver from NI acquisition hardware. You first need to install the driver
provided by NI.

Web:
https://pypi.org/project/PyDAQmx/

https://pythonhosted.org/PyDAQmx/

38.2.1 NI-DAQmx

NI-DAQmx is the software you use to communicate with and control your NI
data acquisition (DAQ) device.

NI-DAQmx supports only the Windows operating system.

You can download NI-DAQmx from this location:

https://www.ni.com/download

245

38.2.2 Measurement Automation Explorer (MAX)

Measurement Automation Explorer (MAX) is a software you can use it to
configure and test the DAQ device before you use it in Python (or other pro-
gramming languages).

MAX is included with NI-DAQmx software.

Figure 38.3 shows Measurement Automation Explorer (MAX).

Figure 38.3: Measurement Automation Explorer(MAX)

With MAX you can make sure your DAQ device works as expected before you
start using it in your Python program. You can use the Test Panels to test your
analog and digital inputs and outputs channels.

You can also change name of the unit, which you need to use in your Python
code.

38.3 NI-DAQmx Python API

In this section we will use the NI-DAQmx Python API provided by National
Instruments (nidaqmx). The NI-DAQmx Python API is hosted on GitHub.

The nidaqmx Python package is a wrapper around the NI-DAQmx C API us-
ing the ctypes Python library, and only supports the Windows operating system.

246

A Python API for interacting with NI-DAQmx (GitHub):
https://github.com/ni/nidaqmx-python

Other resources:
Control NI DAQ Device with Python and NI DAQmx:
https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z0000019Pf1SAE

Below 4 basic examples will be provided:

• Analog Write using NI DAQ Device

• Analog Read using NI DAQ Device

• Digital Write using NI DAQ Device

• Digital Read using NI DAQ Device

You can easily extend this examples to make them suit your needs. Typically
you need to include a while loop where you write and/or read from the DAQ
device inside the loop, e.g. read values from one or more sensors that are con-
nected to the DAQ device, you may want to create a control system reading
the process value and then later write the calculated control signal (e.g. using
a PID controller) back to the DAQ device and the process.

38.3.1 Analog Write

Example 38.3.1. Analog Write using NI DAQ Device

Python code:

1 import nidaqmx
2

3 with nidaqmx . Task () as task :
4 task . ao channe l s . add ao vo l tage chan (’Dev1/ao0 ’ , ’ mychannel ’

, 0 , 5)
5

6 value = 3
7 task . s t a r t
8 task . wr i t e (va lue)
9 task . stop

Listing 38.1: Analog Write using NI DAQ Device

Note! The USB-6008 can only output a voltage signal between 0 and 5V.

[End of Example]

38.3.2 Analog Read

Example 38.3.2. Analog Read using NI DAQ Device

Python code:

247

1 import nidaqmx
2

3 with nidaqmx . Task () as task :
4 task . a i c hanne l s . add a i vo l t age chan (”Dev1/ a i1 ”)
5

6 value = task . read ()
7 pr in t (va lue)
8 task . stop

Listing 38.2: Analog Read using NI DAQ Device

[End of Example]

Example 38.3.3. Analog Read with RSE

Python code:

1 import nidaqmx
2

3 from nidaqmx . cons tant s import (
4 TerminalConf igurat ion)
5

6 with nidaqmx . Task () as task :
7 task . a i c hanne l s . add a i vo l t age chan (”Dev1/ a i0 ” ,

t e rm ina l c on f i g=TerminalConf igurat ion .RSE)
8

9 value = task . read ()
10 pr in t (va lue)
11 task . stop

Listing 38.3: Analog Read with RSE

[End of Example]

Example 38.3.4. Analog Read with Differential

Python code:

1 import nidaqmx
2

3 from nidaqmx . cons tant s import (
4 TerminalConf igurat ion)
5

6 with nidaqmx . Task () as task :
7 task . a i c hanne l s . add a i vo l t age chan (”Dev1/ a i0 ” ,

t e rm ina l c on f i g=TerminalConf igurat ion .DIFFERENTIAL)
8

9 value = task . read ()
10 pr in t (va lue)
11 task . stop

Listing 38.4: Analog Read with Differential

[End of Example]

248

38.3.3 Digital Write

Example 38.3.5. Digital Write using NI DAQ Device

Python code:

1 import nidaqmx
2

3 with nidaqmx . Task () as task :
4 task . do channe l s . add do chan (”Dev1/ port0 / l i n e 0 ”)
5

6 value = True
7 task . s t a r t
8 task . wr i t e (va lue)
9 task . stop

Listing 38.5: Digital Write using NI DAQ Device

[End of Example]

38.3.4 Digital Read

Example 38.3.6. Digital Read using NI DAQ Device

Python code:

1 import nidaqmx
2

3 with nidaqmx . Task () as task :
4 task . d i channe l s . add di chan (”Dev1/ port0 / l i n e 0 ”)
5

6 task . s t a r t
7 value = task . read ()
8 pr in t (va lue)
9 task . stop

Listing 38.6: Digital Read using NI DAQ Device

[End of Example]

You should use the ”nidaqmx.stream readers” and nidaqmx.stream writers classes
to increase the performance of your application, which accept pre-allocated
NumPy arrays.

https://nidaqmx-python.readthedocs.io/en/latest/stream readers.html#module-
nidaqmx.stream readers

https://nidaqmx-python.readthedocs.io/en/latest/stream writers.html#module-
nidaqmx.stream writers

249

38.4 Controlling LEDs

In this section we will see how we can control a LED from Python.

We will need the following equipment:

• PC with Python

• DAQ device

• Breadboard

• LED

• Resistor (e.g., 270ohm)

• Wires for connecting the components and create the circuit

Figure 38.4 shows an overview of LEDs.

Figure 38.4: LED Overview

A breadboard is used to wire electric components together. Figure 38.5 shows
how you should wire a LED using a Breadboard.

Figure 38.6 shows how you wire the LED and connect it to the DAQ device.

Python code for turning on the LED

Example 38.4.1. Controlling a LED from Python

Basic Python code:

1 import nidaqmx
2

3 with nidaqmx . Task () as task :
4 task . do channe l s . add do chan (”Dev1/ port0 / l i n e 0 ”)
5

6 value = True
7 task . s t a r t
8 task . wr i t e (va lue)
9 task . stop

Listing 38.7: Turn on a LED using Python

250

Figure 38.5: How to wire a LED on a Breadboard

Figure 38.6: Wire the LED and connect to the DAQ device

In this basic example we just turn on the LED.

Below you see an example where we turn the LED on and off inside a loop.

Python code:

1 import nidaqmx
2 import time
3

4

5 with nidaqmx . Task () as task :
6 task . do channe l s . add do chan (”Dev1/ port0 / l i n e 0 ”)
7

8 value = True
9 task . s t a r t

10

11 i = 1
12 whi le i < 10 :
13

251

14 task . wr i t e (va lue)
15 time . s l e e p (1)
16 value = not value
17 task . wr i t e (va lue)
18 i = i+1
19

20 task . stop

Listing 38.8: Controlling a LED using Python

[End of Example]

38.5 Read Data from Temperature Sensors

In this section we will use Python to read values from a temperature sensor.
We will also use Python to plot real-time data from the sensor.

38.5.1 Read Data from TMP36 Temperature Sensor

TMP36 is a small, low-cost temperature sensor and cost about $1 (you can buy
it “everywhere”).

We will need the following equipment:

• PC with Python

• DAQ device

• Breadboard

• TMP36 Temerature Sensor

• Wires for connecting the components and create the circuit

Figure 38.7 shows the TMP36 sensor.

We connect the TMP36 to LabVIEW using a USB DAQ Device from National
Instruments, e.g., USB-6001, USB-6008 or similar. I have used a breadboard
for the wiring.
Figure 38.8 show how we can wire the TMP36 together with the USB-6008 DAQ
device.

Figure 38.9 shows the TMP3x Datasheet.

We need to convert form Voltage (V) to degrees Celsius.

From the Datasheet (Figure 38.9) we have:

(x1, y1) = (0.75V, 25◦) (38.1)

252

Figure 38.7: TMP36 Temperature Sensor

(x2, y2) = (1V, 50◦) (38.2)

From the Datasheet (Figure 38.9) we see that there is a linear relationship
between Voltage and degrees Celsius (38.3):

y = ax+ b (38.3)

We can find a and b using the following known formula (38.4):

y − y1 =
y2 − y1
x2 − x1

(x− x1) (38.4)

By putting (38.1) and (38.2) into (38.4) we get:

y − 25 =
50− 25

1− 0.75
(x− 0.75) (38.5)

Then we get the following formula we can implement in our Python program:

y = 100x− 50 (38.6)

Example 38.5.1. Read TMP36 Temperature Data

Python code:

253

Figure 38.8: TMP36 tmp36 Wiring

1 import nidaqmx
2 import time
3

4 from nidaqmx . cons tant s import (
5 TerminalConf igurat ion)
6

7

8 with nidaqmx . Task () as task :
9 task . a i c hanne l s . add a i vo l t age chan (”Dev1/ a i0 ” ,

t e rm ina l c on f i g=TerminalConf igurat ion .RSE)
10

11 i = 0
12 whi le i < 10 :
13

14 vo l tage = task . read ()
15

16 degreesC = 100∗ vo l tage − 50
17

18 pr in t (”Sample : ” , i)
19 pr in t (”Voltage Value : ” , round (vo l tage , 2))
20 pr in t (” Ce l s i u s Value : ” , round (degreesC , 1))
21 pr in t (”\n”)
22 time . s l e e p (1)
23 i = i+1
24

25 task . stop

Listing 38.9: Read TMP36 Temperature Data

In the example an ordinary while loop in combination with the sleep() function
have been used to read one new value each second.

[End of Example]

Example 38.5.2. Real-Time Plotting of Temperature Data

254

Figure 38.9: TMP3x Datasheet

In this example we will plot the data from the sensor using the Real-time plot-
ting examples shown in Chapter 37.

We want to present the value from the sensor in degrees Celsius:

1. Read Signal from DAQ Device (0-5V)

2. Convert to degrees Celsius using information from the Datasheet

3. Show/Plot Values from the Sensor

The Python code becomes as follows:

1 import nidaqmx
2 import time
3 import datet ime as dt
4 import numpy as np
5 import matp lo t l i b . pyplot as p l t
6 import matp lo t l i b . animation as animation
7

8 from nidaqmx . cons tant s import (
9 TerminalConf igurat ion)

10

11

12 # Create f i g u r e f o r p l o t t i n g
13 f i g = p l t . f i g u r e ()
14 ax = f i g . add subplot (1 , 1 , 1)
15 xs = []
16 ys = []
17

18 # I n i t i a l i z e DAQ dev i ce
19 task = nidaqmx . Task ()
20 task . a i c hanne l s . add a i vo l t age chan (”Dev1/ a i0 ” , t e rm ina l c on f i g=

TerminalConf igurat ion .RSE)

255

21 task . s t a r t
22

23

24 # This func t i on i s c a l l e d p e r i o d i c a l l y from FuncAnimation
25 de f readdaq (i , xs , ys) :
26

27 #Read Value from DAQ dev i ce
28 vo l tage = task . read ()
29

30 #Convert Voltage to degree s Ce l s i u s
31 degreesC = 100∗ vo l tage − 50
32 temp c = round (degreesC , 1)
33 pr in t (” Ce l s i u s Value : ” , temp c)
34

35 # Add x and y to l i s t s
36 xs . append (dt . datet ime . now() . s t r f t im e (’%H:%M:%S.% f ’))
37 ys . append (temp c)
38

39 # Limit x and y l i s t s to 20 items
40 xs = xs [−20 :]
41 ys = ys [−20 :]
42

43 # Draw x and y l i s t s
44 ax . c l e a r ()
45 ax . p l o t (xs , ys)
46

47 # Format p l o t
48 p l t . x t i c k s (r o t a t i on =45, ha=’ r i g h t ’)
49 p l t . s ubp l o t s ad j u s t (bottom=0.30)
50 p l t . t i t l e (’ Temperature Data ’)
51 p l t . y l ab e l (’ Temperature (deg C) ’)
52

53

54 # Set up p lo t to c a l l readdaq () func t i on p e r i o d i c a l l y
55 ani = animation . FuncAnimation (f i g , readdaq , f a r g s=(xs , ys) ,

i n t e r v a l =1000)
56 p l t . show ()
57 task . stop

Listing 38.10: Real-Time Plotting of Temperature Data

[End of Example]

38.5.2 Read Data from Thermistor

A Thermistor is an electronic component that changes resistance to tempera-
ture, a so-called Resistance Temperature Detectors (RTD). It is often used as a
temperature sensor.

Example 38.5.3. Read Thermistor Temperature Data

We will need the following equipment:

• PC with Python

• DAQ device

256

• Breadboard

• 10kohm Thermistor

• 10kohm Resistor

• Wires for connecting the components and create the circuit

Our Thermistor is a so-called NTC (Negative Temperature Coefficient). In a
NTC Thermistor, resistance decreases as the temperature rises.

There is an non-linear relationship between resistance and excitement. To find
the temperature we can use the following equation (Steinhart-Hart equation):

1

TK
= A+B ln(R) + C(ln(R))3 (38.7)

whereA, B and C are constants with the following values: A = 0.001129148, B =
0.000234125, C = 8.76741E − 08

TK is the temperature in Kelvin.

We want to solve the equation regarding the Temperature:

TK =
1

A+B ln(R) + C(ln(R))3
(38.8)

The Temperature in degrees Celsius will then be:

TC = TK − 273.15 (38.9)

Wiring...
Figure 38.10 shows how we wire the components together.

Figure 38.10: Thermistor Wiring

257

Figure 38.11: Voltage Divider

The wiring is called a ”Voltage divider”.

Figure 38.11 shows a general Voltage Divider.

A general Voltage Divider has the following equation:

Vout = Vin
R2

R1 +R2
(38.10)

The Voltage Divider for our system becomes as shown in Figure 38.12.

Figure 38.12: Voltage Divider for our System

We then have the following equation:

Vout = Vin
Rt

R0 +Rt
(38.11)

258

where Rt is our 10kohm Thermistor and R0 is an ordinary 10kohm Resistor.

Vin in our case will be +5V which we get from the USB-6008 DAQ device as
shown in the wiring diagram.

Vout is the voltage we read using the DAQ device.

Since we need to find the Resistance Rt, which is used in the Steinhart-Hart
equation, we reformulate the formula:

Rt =
VoutR0

Vin − Vout
(38.12)

We har no ready to start making the Python program for this example.

The program include the following necessary steps:

1. We wire the circuit on the Breadboard and connect it to the DAQ device

2. We measure Vout using the DAQ

3. We calculate Rt using the Voltage Divider equation

Rt = VoutR0

Vin−Vout

4. We use Steinhart-Hart equation for finding the Temperature

TK = 1
A+B ln(Rt)+C(ln(Rt))3

5. Finally we convert to degrees Celsius

TC = TK − 273.15

The Python code then becomes:

1 import nidaqmx
2 import numpy as np
3 import time
4

5 from nidaqmx . cons tant s import (
6 TerminalConf igurat ion)
7

8

9 Vin = 5
10 Ro = 10000 # %10k Re s i s t o r
11

12

13 with nidaqmx . Task () as task :
14 task . a i c hanne l s . add a i vo l t age chan (”Dev1/ a i0 ” ,

t e rm ina l c on f i g=TerminalConf igurat ion .RSE)
15

16 i = 0
17 whi le i < 10 :
18

19 Vout = task . read ()
20

21 Rt = (Vout∗Ro) /(Vin−Vout) # Voltage Div ider Equation
22 # Rt=10000; Used f o r Test ing . Se t t i ng Rt=10k should g ive

TempC=25
23

259

24 # Ste inha r t cons tant s
25 A = 0.001129148
26 B = 0.000234125
27 C = 0.0000000876741
28

29 # Ste inhart−Hart Equation
30 TempK = 1 / (A + (B ∗ np . l og (Rt)) + (C ∗ pow(np . l og (Rt) ,3))

)
31

32 # Convert from Kelvin to Ce l s i u s
33 TempC = TempK − 273 .15
34

35 pr in t (”Sample : ” , i)
36 pr in t (”Voltage Value : ” , round (Vout , 2))
37 pr in t (” Ce l s i u s Value : ” , round (TempC, 1))
38 pr in t (”\n”)
39 time . s l e e p (1)
40 i = i+1
41

42 task . stop

Listing 38.11: Read Thermistor Temperature Data

[End of Example]

Example 38.5.4. Real-Time Plotting of Thermistor Temperature Data

Python code:

1 See prev ious examples

Listing 38.12: Real-Time Plotting of Thermistor Temperature Data

[End of Example]

38.5.3 Read Data NI TC-01 Thermocouple Device

In this chapter several examples have been shown using a DAQ device combined
with different sensors and components.

Here some examples will be shown using a preset temperature sensor from Na-
tional Instruments called NI USB-TC01. This is a USB based temperature
without need for any kind of wiring, you just plug it in and make your Python
program. Since the NI USB-TC01 is compatible with NI-DAQmx, you can pro-
gram it in the same way as other DAQ devices from NI.

Figure 38.13 shows the TC-01 Thermocouple Device from NI.

Example 38.5.5. Real-Time Plotting of Thermistor Temperature Data

Python code:

260

Figure 38.13: TC-01 Thermocouple Device

1 import nidaqmx
2

3 task = nidaqmx . Task ()
4

5 task . a i c hanne l s . add a i thrmcpl chan (”TC01/ a i0 ”)
6

7 task . s t a r t ()
8

9 value = task . read ()
10 pr in t (round (value , 1))
11

12 task . stop ()
13 task . c l o s e ()

Listing 38.13: TC-01 Thermocouple Python Example

This is just a basic example, which you can easily extend using a while loop or
using some kind of plotting, etc..

[End of Example]

38.6 Data Logging

Python has several functions for creating, reading, updating, and deleting files.

261

Part VIII

Python Database
Development

262

Chapter 39

Database Applications with
Python

Here we will learn how we can use Python for communication with a Database
system such as SQL Server or MySQL. We will learn how we connect to a
database, how we can insert data into the database and retrieve data from the
database.

A Database is a structured way to store lots of information. The information
is stored in different tables. Some of the most popular Database Systems today
are:

• SQL Server

• MySQL

• MariaDB

• MongoDB

• etc.

ER Diagram (Entity-Relationship Diagram) is used for design and modeling of
databases. It specifies tables and relationship between them (Primary Keys and
Foreign Keys)

Figure 39.1 shows an example of an ER diagram consisting of two database
tables.

Here you can learn more about Database Systems, download examples and get
additional resources, see videos, etc.:
https://www.halvorsen.blog/documents/technology/database/

39.1 Structured Query Language (SQL)

Structured Query Language (SQL) is a database language supported by most of
the existing database systems today. You use SQL to interact with the database

263

Figure 39.1: ER Diagram Example

system, like insert data into the database and retrieve data from the database.

Here you can learn more about SQL, download examples and get additional
resources, see videos, etc.:
https://www.halvorsen.blog/documents/technology/database/

39.2 SQL Server

Here we will see how we can communicate with a SQL Server database from
Python.

39.3 MySQL

Here we will see how we can communicate with a MySQL database from Python.

39.4 MongoDB

Here we will see how we can communicate with a MongoDB database from
Python.

MongoDB is a so-called NoSQL database. One of the most popular NoSQL
database systems is MongoDB.

You can download a free MongoDB database from:
https://www.mongodb.com

264

Chapter 40

MongoDB with Python

Here we will learn how we can use Python for communication with MongDB.
We will learn how we connect to a database, how we can insert data into the
database and retrieve data from the database.

40.1 Introduction to MongoDB

Here we will see how we can communicate with a MongoDB database from
Python.

MongoDB is a so-called NoSQL database. One of the most popular NoSQL
database systems is MongoDB.

You can download a free MongoDB database from:
https://www.mongodb.com

40.2 MongoDB with Python

Here we will see how we can communicate with a MongoDB database from
Python.

Python needs a MongoDB driver to access the MongoDB database. Many dif-
ferent drivers do exists, so you just need to choose one.

40.2.1 PyMongo

The PyMongo distribution contains tools for interacting with MongoDB database
from Python

https://pypi.org/project/pymongo/

Installation is done using PIP:

265

1 python −m pip i n s t a l l pymongo

40.3 Additional Resources

Tutorials:
https://www.w3schools.com/python/pythonmongodbgetstarted.asp

266

Part IX

Python Application
Development

267

Chapter 41

Development of
Applications with Python

Python is popular within computation, but can be used within many other
applications and can be integrated and used in combination with other pro-
gramming languages, e.g., for development of Web Applications, etc.

Python is probably best suited for ”ad-hoc” numerical calculations, analysis,
simulations, etc., but can be used for many other purposes, even if other pro-
gramming languages are better suited.

Python can be used for creating Web pages (in combination with HTML, CSS,
JavaScript). Python is then typically used on the server-side, while HTML, CSS
and JavaScript are used on the client-side.

An example is Django, which is a server-side Python framework used for creat-
ing dynamic web pages.

Python can also be used for programming and creating Raspberry Pi applica-
tions.

In general, Python is a multipurpose programming language that can be used
in many situations. But there is not one programming language which is best
in all kind of situations, so it is important that you know about and have skills
in different languages.

My list of recommendations:

• Visual Studio and C

• LabVIEW - a graphical programming language well suited for hardware
integration, taking measurements and data logging

• MATLAB - Numerical calculations and Scientific computing

• Python - Numerical calculations, and Scientific computing, etc.

268

• Web Programming, such as HTML, CSS, JavaScript and a Server-side
framework/programming language like PHP, ASP.NET

• Databases (such as SQL Server and MySQL) and using the Structured
Query Language (SQL)

• App Development for the 2 main platforms iOS (XCode using the Swift
Programming Language) and Android (Android Studio using the Java
Programming Language or Kotlin Programming language)

If you have skills in most of the tools, programming languages and frameworks
mention above, you are well suited for working as a full-time programmer or
software engineer.
A good resource or starting point for creating Applications for Python is:

Applications for Python [18]:
https://www.python.org/about/apps/

41.1 Mathematics, Science and Engineering

Python is probably best suited for ”ad-hoc” numerical calculations, analysis,
simulations, etc. These kinds of applications has also been the main focus in
this textbook. Other kinds of applications will briefly be covered in this chap-
ter. More details will be covered in later chapters and in other textbooks in
my Python textbooks series, which you can read more of in the Preface of this
textbook.

The SciPy is a collection of packages for mathematics, science, and engineering,
which has been thoroughly reviewed earlier in this textbook.

41.2 Desktop GUI Applications

Python don’t come with builtin tools for creating traditional desktop GUI ap-
plications, so you need to use an external GUI packages for this purpose.

In my opinion, tools like Visual Studio where you can create professional GUI
applications using either the C or VB.NET languages in one integrated packages
is a better choice.

Another good alternative is LabVIEW, which has powerful GUI features in com-
bination with extensive hardware integration.

Other tools (Integrated Programming Environments, IDE) and programming
languages for GUI applications os Xcode on macOS, which can be used for cre-
ating macOS desktop applications and apps for iPhone and iPad.

269

For Android development you have Android Studio. Here you can use program-
ming languages like Java and Kotlin.

Since this is a Python textbook, lets go back to the options we have if we want
to create desktop GUI applications with Python.

Python has different desktop GUI frameworks like:

• PyQt

• Tkinter

• WxPython

• PyGUI

• PySide2

• Kivy

These are just some of the options we have, for a comprehensive overview of
GUI frameworks for Python see the following:

https://docs.python.org/3/library/othergui.htmlother-gui-packages
https://wiki.python.org/moin/GuiProgramming

PyQt and wxPython, all have a modern look and feel and more widgets than
Tkinter.

This is also a bit of a problem when it comes to desktop GUI development with
Python. You have so many choices, and sometimes its better better with one
good option than many half good options.

41.2.1 PyQt

PyQt brings together the Qt C++ cross-platform application framework and the
cross-platform interpreted language Python. Qt is a cross-platform GUI toolkit.

Qt also includes Qt Designer, a graphical user interface designer. PyQt is able
to generate Python code from Qt Designer. It is also possible to add new GUI
controls written in Python to Qt Designer.

For more information about PyQt:

https://riverbankcomputing.com/software/pyqt/intro

For more information about Qt:

https://www.qt.io

270

PyQt Tutorials:

https://likegeeks.com/pyqt5-tutorial/

https://build-system.fman.io/pyqt5-tutorial

41.2.2 PySide2

PySide2 is the official Python module from the Qt for Python project, which
provides access to the complete Qt framework.

The originally PySide framework was originally released by Nokia, then owner
of Qt. After Nokia sold Qt in 2011, PySide was no longer maintained. Then
PySide2 was established and maintained by a community. Finally, in 2016, the
Qt company committed to officially support the PySide2 project.
So basically, PySide2 is very similar to PyQt.

The downside with PySide2 (August 2019) is that it is still in ”beta” (Technical
Preview).

For more information about PySide2:

https://pypi.org/project/PySide2/

https://wiki.qt.io/QtforP ython

41.2.3 Tkinter

Another popular GUI framework is Tkinter.

For more information about Tkinter:

https://docs.python.org/2/library/tkinter.html

41.2.4 WxPython

WxPython is a cross-platform GUI toolkit for the Python language.

For more information about WxPython:

https://www.wxpython.org

https://wiki.wxpython.org/Getting

271

41.3 Web Applications

Python can be used for creating Web pages (in combination with HTML, CSS,
JavaScript). Python is then typically used on the server-side, while HTML, CSS
and JavaScript are used on the client-side.

An example is Django, which is a server-side Python framework used for creat-
ing dynamic web pages.

Read more about Django here:

https://www.djangoproject.com
Other popular web application frameworks and programming languages are
ASP.NET and PHP.

You may read more about web programming in general here:

https://www.halvorsen.blog/documents/programming/web/

41.4 Database Applications

Python can be used for communication with a database system such as SQL
Server or MySQL. Python has different packages for communication with dif-
ferent database systems, both SQL databases (e.g., SQL Server, MySQL, Mari-
aDB, etc.) and so-called NoSQL databases (e.g., MongoDB).

Here you can learn more about Database Systems and SQL, download examples
and get additional resources, see videos, etc.:
https://www.halvorsen.blog/documents/technology/database/

41.4.1 SQL Server

SQL Server is a Database System from Microsoft. SQL Server comes in different
editions, for basic, personal use SQL Server Express is recommended because it
is simple to use and it is free.

Read more about SQL Server here:

https://www.halvorsen.blog/documents/technology/database/sqlserver.php

41.4.2 MySQL

MySQL is an open-source and widely used Relational Database Management
System (RDBMS).

MySQL comes in different editions, both paid (Enterprise) and free versions
(Community).

272

In addition to the Database itself, the MySQL Workbench is nice to have.
MySQL Workbench visual database design tool, used for Datbase Modelling,
etc. Another handy tool is phpMyAdmin. phpMyAdmin is a free software tool
written in PHP, intended to handle the administration of MySQL.

Read more about MySQL here:

https://www.halvorsen.blog/documents/technology/database/mysql.php

41.4.3 MariaDB

MariaDB is a spinoff from the more famous MySQL Database System.

The MariaDB database server is published as free and open source software.
MariaDB has compatibility with MySQL in most situations. MariaDB is said
to have slightly better performance than MySQL.

Read more about MariaDB here:

https://www.halvorsen.blog/documents/technology/database/mariadb.php

41.4.4 MongoDB

MongoDB is a general purpose, document-based, distributed database.

MongoDB is a cross-platform document-oriented database program. Classified
as a NoSQL database program.

You can download MongoDB from:
https://www.mongodb.com

273

Chapter 42

Python Integration with
Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from
Microsoft. It is used to develop computer programs, as well as websites, web
apps, web services and mobile apps. The deafult (main) programming language
in Visual studio is C, but many other programming languages are supported.

Visual studio is available for Windows and macOS.

Visual Studio (from Visual Studio 2017), has integrated support for Python, it
is called ”Python Support in Visual Studio”.

Web:
https://visualstudio.microsoft.com

Wikipedia:
https://en.wikipedia.org/wiki/MicrosoftV isualStudio

Here you can learn more about Visual studio and C, download examples and
get additional resources, see videos, etc.:
https://www.halvorsen.blog/documents/programming/csharp/

For an introduction to the Python integration in Visual Studio, see Chapter 19.

274

Chapter 43

Python Integration with
LabVIEW

43.1 What is LabVIEW?

LabVIEW is a graphical programming language well suited for hardware inte-
gration, taking measurements and data logging.
Go to my web site in order to learn more about LabVIEW:
https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/labview/

Her you find information about LabVIEW, you find lots of resources like training
material, videos, code examples, etc.

43.2 Using Python in LabVIEW

LabVIEW is a fully functional programming language which you can use to cre-
ate many different kinds of applications. In addition it cal also integrate with
many other programming languages like MATLAB and Python.

Web:
http://zone.ni.com/reference/en-XX/help/371361R-01/glang/python pal/

Use the Python functions to call Python code from LabVIEW. See Figure 43.1

Note! LabVIEW supports calling Python version 2.7 and 3.6. Although un-
supported versions might work with the LabVIEW Python functions, NI rec-
ommends using supported versions of Python only.

Ensure that the bitness of Python corresponds to the bitness of LabVIEW in-
stalled on the machine. This means if you have LabVIEW 32 bit, you should
use Python 32 bit and if you have LabVIEW 64 bit, you should use Python 64

275

bit.

To run the Python code, LabVIEW requires the Python shared libraries (DLLs)
in the system path.

For Windows: If you install Python 3.6, add the directory containing python36.dll
to the system path. If you install Python 2.7, add the directory containing
python27.dll to the system path.

For detailed instructions regarding Installing Python for Calling Python Code:
http://www.ni.com/product-documentation/54295/en/

LabVIEW functions for dealing with Python: Open Python Session Python
Node Close Python Session

Figure 43.1: Python Integration in LabVIEW

The ”Python Node” calls a Python function directly.

Here I will present some examples how we can integrate an existing Python
script or Python function.

Example 43.2.1. Python Integration in LabVIEW

We want to use Python to covert between Ceslius and Fahrenheit (and vice
versa).

The formula for converting from Celsius to Fahrenheit is:

Tf = (Tc × 9/5) + 32 (43.1)

The formula for converting from Fahrenheit to Celsius is:

Tc = (Tf − 32)× (5/9) (43.2)

First, we create a Python module with the following functions (fahrenheit.py):

1 de f c2 f (Tc) :
2

276

3 Tf = (Tc ∗ 9/5) + 32
4 r e turn Tf
5

6

7 de f f 2 c (Tf) :
8

9 Tc = (Tf − 32) ∗ (5/9)
10 r e turn Tc

Listing 43.1: Python Functions

Then, we create a Python script for testing the functions (testfahrenheit.py) :

1 from fah r enhe i t import c2f , f 2 c
2

3 Tc = 0
4

5 Tf = c2 f (Tc)
6

7 pr in t (”Fahrenheit : ” + s t r (Tf))
8

9

10 Tf = 32
11

12 Tc = f2c (Tf)
13

14 pr in t (” Ce l s i u s : ” + s t r (Tc))

Listing 43.2: Testing the Functions

The results becomes:

1 Fahrenheit : 32 .0
2 Ce l s i u s : 0 . 0

Lets make the LabVIEW program that call these Python functions:

In Figure 43.2 we see the Front Panel.

In Figure 43.3 we see the Block Diagram.

In Figure 43.4 we see LabVIEW Code for calling both Python func-
tions (c2f and f2c) from LabVIEW.

[End of Example]

277

Figure 43.2: Python Integration in LabVIEW

Figure 43.3: Python Integration in LabVIEW

278

Figure 43.4: Python Integration in LabVIEW

279

Chapter 44

Raspberry Pi and Python

44.1 What is Raspberry Pi?

The Raspberry Pi is a credit-card-sized computer that plugs into your TV and
a keyboard. It is a capable little computer which can be used in electronics
projects, and for many of the things that your desktop PC does.

Raspberry Pi is very popular in IoT projects and applications.

For more information and resources regarding Raspberry Pi:

https://www.halvorsen.blog/documents/technology/iot/raspberry pi.php

Other Resources:

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-
with-the-raspberry-pi/programming-in-python

First, before you start programming Python on a Raspberry Pi device, you need
to install an operating system like Raspbian. Raspbian is a Linux distribution
tailor made for Raspberry Pi.

Raspbian comes also pre-installed Python.

For more information about Raspbian:

https://www.raspberrypi.org/downloads/raspbian/

280

Chapter 45

Machine Learning with
Python

45.1 Introduction to Machine Learning

Here you can learn more about Machine Learning, download examples and get
additional resources, see videos, etc.:
https://www.halvorsen.blog/documents/technology/machinelearning/

281

Part X

Resources

282

Chapter 46

Python for MATLAB Users

If you are familiar with MATLAB, you can relatively easily switch to Python.
Most of the functionality and the functions in different toolboxes have similar
functions in Python.

If you are looking for MATLAB resources, please see the following:
https://www.halvorsen.blog/documents/programming/matlab/

I have made lots of MATLAB resources, including the following textbooks:

• Introduction to MATLAB

• Modelling, Simulation and Control in MATLAB

• Simulink and Advanced Topics in MATLAB

Figure 46.1 shows the book covers.

Figure 46.1: MATLAB Textbooks

283

46.1 Use Python inside MATLAB

To call Python libraries from MATLAB, you need to install the reference im-
plementation for Python (CPython).
For more information, see the following:

https://se.mathworks.com/help/matlab/getting-started-with-python.html

MATLAB and Python must also be the same architecture/bit version. If you
have MATLAB 64 bits version, you need Python 64 bits. If you have MATLAB
32 bits version, you need Python 32 bits.

In MATLAB start by finding information about the default Python Environ-
ment used by MATLAB:

1 >> pyvers ion

This gives the following on my Windows10 computer:

1 > pyvers ion
2

3 ve r s i on : ’ 3 . 7 ’
4 executab l e : ’C:\ Users \hansha\AppData\Local \Programs\Python\

Python37 64\pythonw . exe ’
5 l i b r a r y : ’C:\ Users \hansha\AppData\Local \Programs\Python\

Python37 64\python37 . d l l ’
6 home : ’C:\ Users \hansha\AppData\Local \Programs\Python\

Python37 64 ’
7 i s l o ad ed : 1

If MATLAB and Python don’t the same architecture/bit version, you need to
either install the proper version of either MATLAB or Python. You may also
need to ”Add Python to Path” as described in Chapter 3.

Example 46.1.1. MATLAB - Python Example

Earlier we have created a Python module with 2 functions. The first function
should convert from Celsius to Fahrenheit and the other function should convert
from Fahrenheit to Celsius.

The formula for converting from Celsius to Fahrenheit is:

Tf = (Tc × 9/5) + 32 (46.1)

The formula for converting from Fahrenheit to Celsius is:

Tc = (Tf − 32)× (5/9) (46.2)

First, we created a Python module with the following functions (fahrenheit.py):

284

1 de f c2 f (Tc) :
2

3 Tf = (Tc ∗ 9/5) + 32
4 r e turn Tf
5

6

7 de f f 2 c (Tf) :
8

9 Tc = (Tf − 32) ∗ (5/9)
10 r e turn Tc

Listing 46.1: Fahrenheit Functions

Then, we created a Python script for testing the functions (testfahrenheit.py):

1 from fah r enhe i t import c2f , f 2 c
2

3 Tc = 0
4

5 Tf = c2 f (Tc)
6

7 pr in t (”Fahrenheit : ” + s t r (Tf))
8

9

10 Tf = 32
11

12 Tc = f2c (Tf)
13

14 pr in t (” Ce l s i u s : ” + s t r (Tc))

Listing 46.2: Python Script testing the functions

The results becomes:

1 Fahrenheit : 32 .0
2 Ce l s i u s : 0 . 0

Now we want to use these functions inside the MATLAB environment.

The MATLAB code for this becomes:

1 c l c
2 Tc = 0
3 Tf = py . f ah r enhe i t . c 2 f (Tc)
4 Tc = py . f ah r enhe i t . f 2 c (Tf)

Listing 46.3: Calling Python Library and Functions from MATLAB

[End of Example]

46.2 Calling MATLAB from Python

The MATLAB Engine API for Python provides a package for Python to call
MATLAB as a computational engine. The engine supports the reference imple-
mentation (CPython).

285

For more information, see the following:

https://se.mathworks.com/help/matlab/matlab-engine-for-python.html

286

Chapter 47

Python Resources

Here you find my Web page with Python resources [1]:
https://www.halvorsen.blog/documents/programming/python/

Python Home Page [6]:
https://www.python.org

Python Standard Library [19]:
https://docs.python.org/3/library/index.html

47.1 Python Distributions

Anaconda:
https://www.anaconda.com

47.2 Python Libraries

NumPy Library:
http://www.numpy.org

SciPy Library:
https://www.scipy.org

Matplotlib Library:
https://matplotlib.org

47.3 Python Editors

Spyder:
https://www.spyder-ide.org

287

Visual studio Code:
https://code.visualstudio.com

Visual Studio:
https://visualstudio.microsoft.com

PyCharm:
https://www.jetbrains.com/pycharm/

Wing:
https://wingware.com

Jupyter Notebook:
http://jupyter.org

47.4 Python Tutorials

Python Tutorial - w3schools.com [13]:
https://www.w3schools.com/python/

The Python Guru [20]:
https://thepythonguru.com

Wikibooks - A Beginner’s Python Tutorial:
https://en.wikibooks.org/wiki/ABeginner

TutorialsPoints - Python Tutorial:
https://www.tutorialspoint.com/python/

The Hitchhiker’s Guide to Python:
https://docs.python-guide.org

Google’s Python Class:
https://developers.google.com/edu/python/

47.5 Python in Visual Studio

Work with Python in Visual Studio
https://docs.microsoft.com/visualstudio/python/

288

Bibliography

[1] H.-P. Halvorsen, “Technology blog - https://www.halvorsen.blog,” 2018.

[2] H.-P. Halvorsen, “Technology blog - https://en.wikipedia.org/wiki/Python(programminglanguage),
′′ 2018.

[3] T. . T. P. Languages, “The 2018 top programming languages
- https://spectrum.ieee.org/at-work/innovation/the-2018-top-
programming-languages,” 2018.

[4] S. Overflow, “Stack overflow developer survey 2018 -
https://insights.stackoverflow.com/survey/2018/,” 2018.

[5] stackoverflow.blog, “The incredible growth of python -
https://stackoverflow.blog/2017/09/06/incredible-growth-python/,”
2018.

[6] python.org, “python.org - https://www.python.org,” 2018.

[7] python.org, “The python tutorial - https://docs.python.org/3.7/tutorial/,”
2018.

[8] python.org, “Python 3.7.1 documentation - https://docs.python.org/3.7/,”
2018.

[9] scipy.org, “Scipy - https://www.scipy.org,” 2018.

[10] matplotlib.org, “Matplotlib - https://matplotlib.org,” 2018.

[11] pandas, “pandas - http://pandas.pydata.org,” 2018.

[12] Wingware, “Wingware python ide - https://wingware.com,” 2018.

[13] w3schools.com, “Python tutorial - https://www.w3schools.com/python/,”
2018.

[14] Wikipedia, “Debugging - https://en.wikipedia.org/wiki/Debugging,” 2018.

[15] TechBeamers, “Get the best python ide -
https://www.techbeamers.com/best-python-ide-python-programming/,”
2018.

[16] Jupyter, “Jupyter - https://jupyter.org,” 2018.

[17] JupyterHub, “Jupyterhub - http://jupyter.org/hub,” 2018.

289

[18] python.org, “Applications for python -
https://www.python.org/about/apps/,” 2018.

[19] python.org, “The python standard library -
https://docs.python.org/3/library/,” 2018.

[20] T. P. Guru, “The python guru - https://thepythonguru.com,” 2018.

290

Part XI

Solutions to Exercises

291

Start using Python

Simulation and Plotting of Dynamic System

Given the autonomous system:
ẋ = ax (1)

Where:

a = − 1

T

where T is the time constant.

The solution for the differential equation is:

x(t) = eatx0 (2)

Set T=5 and the initial condition x(0)=1.

Create a Script in Python (.py file) where you plot the solution x(t) in the time
interval:

0 ≤ t ≤ 25

Add Grid, and proper Title and Axis Labels to the plot.

Python Script:

1 import math as mt
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5

6 # Model Parameters
7 T = 5
8 a = −1/T
9

10 # Simulat ion Parameters
11 x0 = 1
12 t = 0
13

14 t s t a r t = 0

292

15 t s top = 25
16

17 increment = 1
18

19 x = []
20 x = np . z e r o s (t s top+1)
21

22 t = np . arange (t s t a r t , t s top+1, increment)
23

24

25 # Def ine the Function
26 f o r k in range (t s top) :
27 x [k] = mt . exp (a∗ t [k]) ∗ x0
28

29

30 # Plot the Simulat ion Resu l t s
31 p l t . p l o t (t , x)
32 p l t . t i t l e (’ S imulat ion o f Dynamic System ’)
33 p l t . x l ab e l (’ t ’)
34 p l t . y l ab e l (’ x ’)
35 p l t . g r i d ()
36 p l t . ax i s ([0 , 25 , 0 , 1])
37 p l t . show ()

The simulation gives the results as shown in Figure 1.

Figure 1: Simulation of Dynamic System

[End of Exercise]

293

Mathematics in Python

Create Mathematical Expressions in Python

Create a function that calculates the following mathematical expression:

z = 3x2 +
√
x2 + y2 + eln (x) (3)

Test with different values for x and y.

We create a Python Module with a Python Function (mymathfunctions.py):

1 import math as mt
2

3 de f c a l c e xp r e s s i o n (x , y) :
4

5 z = 3∗x∗∗2 + mt . sq r t (x∗∗2 + y∗∗2) + mt . exp (mt . l og (x))
6 r e turn z

Then we can create a Python Script in order to test the function:

1 import mymathfunctions as mymath
2

3 x = 2
4 y = 2
5

6 z = mymath . c a l c e xp r e s s i o n (x , y)
7

8 pr in t (z)

The results become:

1 16.82842712474619

[End of Solution]

Create advanced Mathematical Expressions in Python

Create the following expression in Python:

f(x) =
ln (ax2 + bx+ c)− sin(ax2 + bx+ c)

4πx2 + cos(x− 2)(ax2 + bx+ c)
(4)

294

Given a = 1, b = 3, c = 5 Find f(9)
(The answer should be f(9) = 0.0044)

Tip! You should split the expressions into different parts, such as:

poly = ax2 + bx+ c

num = . . .
den = . . .
f = . . .

This makes the expression simpler to read and understand, and you minimize
the risk of making an error while typing the expression in Python.

When you got the correct answer try to change to, e.g., a = 2, b = 8, c = 6

Find f(9)

Python Script:

1 . . .

[End of Solution]

295

Discrete Systems

Bacteria Population

In this task we will simulate a simple model of a bacteria population in a jar.

The model is as follows:

birth rate = bx (5)

death rate = px2 (6)

Then the total rate of change of bacteria population is:

ẋ = bx− px2 (7)

Set b=1/hour and p=0.5 bacteria-hour

We will simulate the number of bacteria in the jar after 1 hour, assuming that
initially there are 100 bacteria present.

Find the discrete model using the Euler Forward method by hand and imple-
ment and simulate the system in Python using a For Loop.

We can use e.g., the Euler Approximation:

ẋ ≈ xk+1 − xk
Ts

(8)

Ts - Sampling Interval

Then we get:

296

xk+1 − xk
Ts

= bxk − px2k (9)

This gives the following discrete differential equation:

xk+1 = xk + Ts(bxk − px2k) (10)

Now we are ready to simulate the system.

Python Script:

1 # Simulat ion o f Bacte r i a Populat ion
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 # Model Parameters
6 b = 1
7 p = 0 .5
8

9 # Simulat ion Parameters
10 Ts = 0.01
11 Tstop = 1
12 xk = 100
13 N = in t (Tstop/Ts) # Simulat ion l ength
14 data = []
15 data . append (xk)
16

17

18 # Simulat ion
19 f o r k in range (N) :
20 xk1 = xk + Ts∗ (b ∗ xk − p ∗ xk ∗∗2) ;
21 xk = xk1
22 data . append (xk1)
23

24 # Plot the Simulat ion Resu l t s
25 t = np . arange (0 , Tstop+Ts , Ts)
26

27 p l t . p l o t (t , data)
28 p l t . t i t l e (’ S imulat ion o f Bacte r i a Populat ion ’)
29 p l t . x l ab e l (’ t [s] ’)
30 p l t . y l ab e l (’ x ’)
31 p l t . g r i d ()
32 p l t . ax i s ([0 , 1 , 0 , 1 00])
33 p l t . show ()

The simulation gives the results as shown in Figure 2.

[End of Solution]

297

Figure 2: Simulation of Bacteria Population

Simulation with 2 variables

Given the following system:

dx1
dt

= −x2 (11)

dx2
dt

= x1 (12)

Find the discrete system and simulate the discrete system in Python. Solve the
equations, e.g., in the time span [-1 1] with initial values [1, 1].

Python Script:

1 # Simulat ion with 2 Var i ab l e s
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 # Model Parameters
6 b = 1
7 p = 0 .5
8

9 # Simulat ion Parameters
10 Ts = 0 .1
11 Tstart = −1
12 Tstop = 1
13 x1k = 1
14 x2k = 1
15 N = in t ((Tstop−Tstart) /Ts) # Simulat ion l ength
16 datax1 = []

298

17 datax2 = []
18 datax1 . append (x1k)
19 datax2 . append (x2k)
20

21

22 # Simulat ion
23 f o r k in range (N) :
24 x1k1 = x1k − Ts ∗ x2k
25 x2k1 = x2k + Ts ∗ x1k
26

27 x1k = x1k1
28 x2k = x2k1
29 datax1 . append (x1k1)
30 datax2 . append (x2k1)
31

32 # Plot the Simulat ion Resu l t s
33 t = np . arange (Tstart , Tstop+Ts , Ts)
34

35 p l t . p l o t (t , datax1 , t , datax2)
36 p l t . t i t l e (’ S imulat ion with 2 Var i ab l e s ’)
37 p l t . x l ab e l (’ t [s] ’)
38 p l t . y l ab e l (’ x ’)
39 p l t . g r i d ()
40 p l t . ax i s ([−1 , 1 , −1.5 , 1 . 5])
41 p l t . show ()

The simulation gives the results as shown in Figure 2.

Figure 3: Simulation Example with 2 Variables

Alternative Solution:

1 # Simulat ion with 2 Var i ab l e s
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 # Model Parameters

299

6 b = 1
7 p = 0 .5
8

9 # Simulat ion Parameters
10 Ts = 0 .1
11 Tstart = −1
12 Tstop = 1
13 N = in t ((Tstop−Tstart) /Ts) # Simulat ion l ength
14 x1 = np . z e r o s (N+2)
15 x2 = np . z e r o s (N+2)
16 x1 [0] = 1
17 x2 [0] = 1
18

19

20 # Simulat ion
21 f o r k in range (N+1) :
22 x1 [k+1] = x1 [k] − Ts ∗ x2 [k]
23 x2 [k+1] = x2 [k] + Ts ∗ x1 [k]
24

25

26 # Plot the Simulat ion Resu l t s
27 t = np . arange (Tstart , Tstop+2∗Ts , Ts)
28

29 p l t . p l o t (t , x1 , t , x2)
30 p l t . t i t l e (’ S imulat ion with 2 Var i ab l e s ’)
31 p l t . x l ab e l (’ t [s] ’)
32 p l t . y l ab e l (’ x ’)
33 p l t . g r i d ()
34 p l t . ax i s ([−1 , 1 , −1.5 , 1 . 5])
35 p l t . show ()

Choose the approach that fits you. You should also check the time that the
simulation take. For larger simulations, this second alternative may be better.

[End of Solution]

300

Python for Science and Engineering
c©Hans-Petter Halvorsen

August 12, 2020

ISBN:978-82-691106-5-4

301

Python for Science and Engineering

